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� Open on-road LSS test under various weather conditions such as dry, wet and rain.

� Generalized estimating equation to highlight correlation among observations.

� Average 3.9% fault probability of LSS with high variability in two-lane rural roads.

� Comparatively rain increases the fault probability by a factor of 2.75 than dry weather condition.

� Marking RLw and curvature 1/R are the most relevant road factors.
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With the growing rate of automated vehicles (AVs) at the lower level of automation, the

experimental tests are also in progress with vehicles at higher levels. In the absence of

extended digital infrastructures and deployment of level 5 full automated vehicles, the

physical infrastructure is required to maintain a fundamental role to enable their intro-

duction in public roads. This paper focuses on lane support system (LSS) whose operational

design domain (ODD) is strongly connected to the road characteristics and conditions. An

experimental test was carried out with a state of the art, and LSS and advanced technol-

ogies were used for road monitoring on different roads under various environmental

conditions including dry, wet pavements and rain. We applied the generalized estimation

equation for logistic regression to account within-cluster homogeneity which is induced by

repeated measures on the same road sections. Statistical models allow the identification of

variables that are significant for the LSS fault probability among various effects of road

features including marking, pavement distress, weather conditions, horizontal curvature,

and cross section. Results pointed out the relevance of the wet retro-reflection of marking

(RLw) and the horizontal curvature in the definition of ODD for LSS. Threshold values have

been proposed for the tested LSS. Wet pavement doesn't affect the LSS performance when
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compared to the dry condition. Rain was shown to be critical even with very good road

characteristics.

© 2022 Periodical Offices of Chang'an University. Publishing services by Elsevier B.V. on

behalf of KeAi Communications Co. Ltd. This is an open access article under the CC BY-NC-

ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

According to the definition of the Society of Automotive En-

gineers (SAE International, 2018), there are 6 progressive

stages of driving automaticity, from level 0 (L0, no

automation) to level 5 (L5, full automation). At L1 and L2, the

driver is in charge for the assisted driving task, and at higher

levels (L3þ) the automated vehicle (AV) can drive

autonomously, but only at L5 the operational design domain

(ODD) is assumed unlimited. The vehicle automation is

expected to improve safety and mobility. Despite of the

potential benefits, barriers to mass-market penetration

remain, including the definition of the appropriate standards

for liability and guidelines for autonomous vehicle

certification (Fagnant and Kockelman, 2015). In 2022, the

inclusion of advanced driving assistant systems (ADAS) at L1

and L2 will become mandatory for European vehicles to

protect road users (European Commission, 2018). The lane

support system (LSS) is one of the new compulsory safety

ADAS for vehicles that will always be present in the new

cars. Therefore, increasing share of vehicles in the traffic

flow will be furnished with systems for the identification of

lane markings (L1 and L2) and new standards for

certification have already been proposed by the

International Organization for Standardization (ISO) and by

the European Standards Organization. In L2 ADAS, adaptive

cruise control (ACC) in combination with LSS ensures

vehicle positioning both on the roadway and in relation to

other vehicles. For L2þ vehicles, a process belonging to the

field of robotics is used for automated driving. In this

process the “perception” and “localization” are stages of the

dynamic driving task (DDT) whereas other processes like

lane detection performed by LSS. LSS is used for centering

the vehicle within the road lane. Therefore, for a safe

operation, the ODD of LSS needs to be defined to ensure

actual conditions monitoring and timely vehicle

communication to control the availability of the automated

DDT. For a certain AV system, ODD represents the set of

driving conditions under which it is designed to work (SAE

International, 2018). These driving conditions include

weather conditions, road (and roadside) infrastructure

components, and vehicle-related conditions such as speed

and AV driving logics (Olstam et al., 2020).

In such type of framework, the ODD of LSS shows high

interactions with the characteristics and conditions of the

physical road infrastructure (Gruyer et al., 2017; NCHRP, 2020).

Currently, roads are designed and maintained for drivers,

only. Therefore, despite of the assumed technological

readiness, considerable uncertainty still exists regarding the

needs of LSS vision systems in to “read” the road, as
t al., Assessing the oper
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highlighted by recent state of the art reports (ERTRAC, 2019;

Marr et al., 2020). In this perspective, the paper describes the

experimental set-up that was specifically designed and data

collection with high accuracy equipment. The

methodological statistical approach was selected to identify

road characteristics and variable weather conditions that

defines the ODD of LSS system with data collected in

repeated runs. In the framework of the present state of the

art, the paper contributes to identify the road infrastructure

components of ODD considering other than marking quality

also road geometry features and pavement conditions.

The paper is organized in the following sections.

� Overview of the technologies used in LSS to highlight the

links between system features and road infrastructure.

� State of the art and gaps in the knowledge about opera-

tional design domain for LSS.

� Experimental design and data collection in selected road

and environmental conditions using a mobile laboratory

specifically equipped for the study.

� Statistical analysis of data and models to identify factors

and inter-correlation among road and weather conditions.

� Results and discussion.

� Conclusions.
2. Technological frameworks

The sensory components of automated driving require an

automated vehicle to collect and process multiple data before

making decisions. Fully automated driving at L4, L5 requires a

wide set of sensors consisting of camera, radar, laser imaging

detection and ranging (LIDAR), Global Navigation Satellite

System (GNSS) and connectivity equipment. To acquire the

accuracy required for level 3þ, AVs need a precision naviga-

tion system that can locate the vehicle accurately within a

matter of centimeters. Sensor data (radar, LIDAR, GNSS and

cameras) used for object identification, detection and inter-

pretation of horizontal and vertical signs, can be associated

with high definition maps (HD map) to allow for navigation.

HD maps for self-driving vehicles are considerably more

detailed than a conventional map requiring high computation

power as it requires the continuous updating of the three-

dimensional vision of the environment. Due to the high

deployment costs of digital infrastructures, especially in the

secondary rural road network, the availability of connectivity

and HD maps will be delayed. In this framework, when the

interpretation of the road infrastructure is not supported by

connectivity (V2X) and digital infrastructures, the reading of

road markings, signs and traffic signals is mainly done by

means of camera-based artificial vision.
ational design domain of lane support system for automated
ffic and Transportation Engineering (English Edition), https://
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Fig. 1 e Example of limited ODD and transition in the DDT

(Alkim, 2017).
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Machine vision for AVs involves cameras and sensors that

feed digital data to the signal processor, which runs complex

AI algorithms to provide input for driving control (Gruyer

et al., 2017). Mono and stereocameras (Cafiso et al., 2017),

can provide an accurate assessment of speed and distance,

as well as the detection of obstacles and moving objects.

The LSS operation consists of several phases, such as image

capture of markings, identification of image properties, lane

detection and tracking (Chen et al., 2020). Each LSS uses its

own proprietary AI algorithms for detecting lane markings.

However, technologies are similar (Narote et al., 2018).

Currently, camera systems use complementary metal oxide

semiconductor (CMOS), image sensors having a resolution of

up to two megapixels to adapt quickly to diverse light

situations. No color-accurate signal is generally required, as

only the direct raw data of the image sensor is used with

color filter to provide a higher light intensity (e.g., signal-to-

noise ratio (SNR) ¼ 1 for 1 millilux (mlx)). For marking

detection, the main issue in the digital image is the contrast

between the pixels of the pavement marking and the road

(NHTSA, 2017). The impact of road geometry to the

algorithm's performance to detect road markings is related

to the viewing geometry that defines distance to the target

area and viewing angle with respect to horizontal

positioning (Kluge and Lakshmanan, 1995).

Because of the common and well-established vision tech-

nology, selected road features have been identified to define

the ODD of LSSs. Roadmarking characteristics, pavement and

environmental conditions affect pixel intensity and contrast

ratio, road geometry (horizontal and vertical alignment, cross

section) define the field of view of camera for lane marking

detection. As the design speed is of concern, the frame rate is

set usually at high frequencies (e.g., 30e60 frame/s) to operate

up to 180 km/h certified by OEMs in standard dry and daylight

conditions (Mobileye, 2019).
3. LSS operational design domain

According to SAE, the operational design domain (ODD) is

defined as the “operating conditions under which a given

driving automation system or feature is specifically designed
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to function including, not limited to environmental,

geographical, and time-of-day restrictions, and the requisite

presence or absence of certain traffic roadway characteristics”

(SAE International, 2018). The AV can perform safely only

within its ODD (Olstam et al., 2020). It is worth mentioning

that only for level 5 is the ODD assumed to be “unlimited” in

SAE J3016. Therefore, for a given ADAS, the ODD and

corresponding SAE level should be clearly defined by the

manufacturer. In situations where the AV is outside of its

ODD (Fig. 1), the vehicle should transit to a minimal risk

condition (NHTSA, 2017). The transition needs to be clearly

identified and timely recognized by the AV at L3 and L4 or

communicated to the driver at L2 and L3 to avoid critical

safety concerns during the fallback of the automatic driving

task (De Winter et al., 2014; Vlakveld et al., 2015).

The international organizations have defined standard test

conditions to certify the systems (Table 1).

Table 1 shows as the testing conditions are not

representative of the real-world environment (e.g., light and

weather) and road characteristics. Moreover, some factors

are not defined (N.D.), have a qualitative definition (e.g.,

marking quality) or are set at only favorable values (e.g., lane

width > 3.5 m, radius of curve (R) > 250 m) not always

available in the secondary rural road network.

Austroads technical report AP-T347-19 (Austroads, 2019)

provided a widespread literature evaluation complemented

by consultations with industry stakeholders. Results

confirmed that all referenced testing of vehicle capabilities

for LSSs require that this testing occurs only in the most

favorable conditions. Marking characteristics of luminosity

ratio for day conditions and retro-reflectivity in night

conditions appear the matter most investigated. Conclusions

associated to LSSs emphasized that the results offered by in-

field testing remain still limited.

Farah et al. (2018) provided a literature review on

infrastructure for automated vehicles. It was found that

there is a limited data about road infrastructure as

compared to digital infrastructure. A research review

promoted by EuroRAP and Euro NCAP (Lawson, 2018)

identified and classified low/medium and high severity

factors affecting the performance of LSS.

� High severity factors: road surface condition such as wet or

icy, marking characteristics and maintenance conditions.

� Medium severity factors: road gradient, road curvature and

boundaries between multiple lanes.

� Low severity factors: lane width (too narrow or too wide)

and visibility (e.g., foggy conditions).

Austroads project documents the outcomes of a literature

analysis and on-road and off-road evaluations of data

focusing specifically on implications of pavement markings

formachine vision (Marr et al., 2020). Themain results were as

follows.

� A minimum 3:1 contrast ratio between markings and the

pavement surface is generally supported by machine-

vision systems.

� Many of the design standards for markings meet or exceed

machine-vision requirements.
ational design domain of lane support system for automated
ffic and Transportation Engineering (English Edition), https://
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Table 1 e Standards for the test of the systems.

Road &
environmental factor

ISO 17361:2017 (International
Organization for Standardization,

2017)

European new car assessment
program (European New Car
Assessment Program, 2018)

EU standard
(European

Commission, 2012)

Road surface Dry and flat surface of asphalt or concrete Dry, flat and level paved surface, no

irregularities including cracks or manhole

covers within 3 m laterally or 30 m

longitudinally of the test area

Flat, dry asphalt or

concrete surface

Temperature Between 10 �C and 30 �C Between 5 �C and 40 �C Between 0 �C and 45 �C
Visibility Good horizontal visibility exceeding 1 km,

daylight with illumination more than 2000

lx and no shadows

Good horizontal visibility exceeding 1 km

and no precipitation

Visibility conditions that

allow safe driving at the

required test speed

Lane marking type N.D. Lane markings that continue at least 20 m

beyond the testing vehicle. line width

ranging from 100 to 250 mm

According to national

standards in EU

countries. Line width

ranging from 100 to

300 mm

Lane marking quality Good condition, according to the relevant

national standard

RL > 150 mcd/lx/m2, RLw > 35 mcd/lx/m2 Good condition and of a

material conforming to

the standard in the

member states

Lane width N.D. Between 3.5 and 3.7 m Greater than 3.5 m

Verge N.D. A verge from 0.2 to 0.3 m wide N.D.

Speed N.D. N.D. 65 km/h

Radius of curve R > 500 m for Class I;

R > 250 m for Class II

N.D. R > 250 m

Note: N.D. indicates not defined; RL indicates marking retroreflectance in dry condition; RLw indicates marking retroreflectance in wet

condition.
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� Lane widths (either too narrow or too wide) may reduce

machine vision's capability to detect lane markings.

� Daytime conditions generally make lane detection less

effective than at night.

� Wet pavements have different impacts on LSS. With min-

imal ambient lighting (e.g., rural roads) the contrast ratio

can be even improved due to reduced specular diffusion.

Project 20e102, task 6 road markings for machine vision

(Pike, 2019), noted contents are shown as follows.

� Edge lines and lane lines show a similar performance.

� Roadway lighting minimally affects nighttime

performance.

� Daytime conditions are in general more difficult than

nighttime conditions, especially on a wet day because of

the reflective glare.

� The effect of speed is minimal (up to 104 km/h).

� For daytime dry conditions, a luminance coefficient in

diffuse lighting conditions (Qd) of more than 100 mcd/lx/

m2 seems to be suitable.

� A difference of > 25 mcd between markings and the

pavement surface is required.

The European Union Road Federation (European Union

Road Federation, 2018), suggests a minimum marking

reflectance RL in dry conditions of 150 mcd/lx/m2 and a

minimum width of 150 mm for visible road markings. For

wet and rainy conditions, the minimum level of

performance of the marking in wet conditions (RLw) has

been proposed at 35 mcd/lx/m2.
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Adverse weather conditions, such as fog or rain, are well

documented scenarios that are problematic for vision-based

detection systems (Chen et al., 2020; Gopalan et al., 2012).

To best of our knowledge, marking quality is the road

factor that mainly attract the researchers and road agencies,

instead a limited number of studies have considered the ef-

fects of road geometry (e.g., horizontal alignment, cross sec-

tion). Nitsche et al. (2014) led a qualitative research based on

literature review and stakeholders’ consultation. The

primary factors were identified in quality of lane markings,

poor visibility due to bad weather, and irregular or damaged

road edges or curbs. Low curve radius was of medium

importance. Morsink et al. (2016) hypothesized that the radii

of road curves could be reduced, due to the greater reliability

of automated vehicles, but minimum thresholds were not

defined.

Simulation studies focusing on detection algorithms

showed that errors are prone to occurwhen the curve radius is

narrow, and the lane width is high. An increase of LSS failure

probability to 6% compared to 1.5% in ideal straight road

alignment has been reported. The horizontal alignment was

qualitatively classified as straight or curved sections (Deng

and Wu, 2018).

A systematic review of current findings on lane marking

was carried out by Babi�c et al. (2020), one of the conclusions

was that curves are critical sections for LSS, but only

tangents are still involved in the test procedure.

Reddy et al. (2020) in a field test, found that the highest

lane-keeping performance was observed on tangents and

the least on left curves. No quantitative values of curve radii

were reported. Few in field experimental studies have
ational design domain of lane support system for automated
ffic and Transportation Engineering (English Edition), https://
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Fig. 2 e Data can be surveyed with ARAN from different sensors installed on board. (a) ARAN 9000. (b) Data from ARAN 9000.
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analyzed quantitative effect of the horizontal alignment on

the LSS performance in detail. Garcı́a et al. (2020) identified a

correlation between system disengagement with speed and

curve radius during test carried out in dry and day

conditions. In the same environmental conditions, Cafiso

et al. reported that curvature radius and marking coefficient

Qd are the most relevant road factors in explain the LSS

fault probability (Cafiso and Pappalardo, 2020), thresholds of

Qd > 150 mcd/m2/lx and R > 140 m have been identified for

the day and dry testing conditions (Pappalardo et al., 2021).

Recently, the Automated Vehicle Safety Consortium

(AVSC, 2020) has proposed a best practice for defining the

ODD. The testing parameters that are appropriate to this

study, such as lane width, verge width, climate conditions

and horizontal alignment, are specified.

This background clarifies that, even if road factors

affecting the ODD of LSS have been identified, the main

research focus is on marking characteristics. Therefore, some

questions are still open concerning the relevance of road ge-

ometry features and the combined effects of different road

characteristics and conditions which define the LSS real world

operation.

More specifically, the paper contributes to identify the road

infrastructure components of ODD for LSSs by considering

other than marking quality (reflectivity parameters). This

research also highlights road geometry (cross-section and

horizontal alignment) and pavement conditions (dry, wet,

cracking) with experimental data and a modeling approach

which is able to handle the combined set of conditions.
4. Experimental data collection

4.1. Experimental study design

Experimental studies in open roads allow ADAS to be exposed

to a wide variety of conditions that would not be fully feasible

in closed-loop testing and are difficult to model in simulation.

However, open-road as compared to closed-track testing

might have some disadvantages related to the control over the

ODD conditions, the difficulty of replication in different loca-

tions and repeatability in iterate tests (Thorn et al., 2018).

Furthermore, the issues of safety and legal responsibility

must be settled.
Please cite this article as: Pappalardo, G et al., Assessing the oper
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To address the controllability, replicability, and repeat-

ability issues, in the experimental setup we applied a longi-

tudinal approach, using repeated runs in designated sections

of two-lane rural roads with traffic volume and physical set-

tings that were correctly monitored by the mobile laboratory

during the test. As detailed below, uncontrolled events have

been identified and data cleaned from the sample. Moreover,

to solve safety and legal constraints, during the test the LSS

system was in operation but without control or feedback to

the driver. The instrumentation required for the in-field

experiment and the data collection and coding are defined

below.
4.2. Instrumentation

To gather the information needed for LSS and ODD perfor-

mance evaluation, a variety of equipment was employed. The

Automatic Road Analyzer (ARAN) is one of the most advanced

mobile laboratories for road asset survey (Cafiso et al., 2019b).

ARAN 9000 (Fig. 2) is able to collect data and accurately

evaluate the geometric characteristics of the road and the

inventory of road asset (e.g., typology and geometric

features of marking, sign, barriers, access). Using the laser

cracking measurement system (LCMS), it is possible to

automatically detect and classify the distresses on the

pavement surface (Cafiso et al., 2019a). For the objectives of

the research, we considered only linear extension of

longitudinal cracks with medium/high severity width greater

than 10 mm (ASTM, 2011).

Pavement marking quality has been gauged with the sup-

port of a portable retroreflectometer (Fig. 3). Pavement

marking were classified according to the EU standard for

“road marking materials - road marking performance for

road users and test method” (British Standards Institution,

1998), which states the next parameters.

� Luminance coefficient in diffuse lighting conditions (Qd):

measure of visibility of the road markings as perceived by

drivers of motor vehicles in conditions of diffuse lighting

(daylight or artificial light) at a distance of 30 m.

� Marking reflectance RL in dry conditions: measure of visi-

bility of road markings in dry conditions, as perceived by

drivers, at night at 30 m with the aid of artificial lighting

provided by the headlamps of their vehicles.
ational design domain of lane support system for automated
ffic and Transportation Engineering (English Edition), https://
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Fig. 3 e Survey of the marking retroreflectance in dry (RL,

Qd) and wet conditions (RLw).
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� Marking RLw: measure of visibility of road markings ac-

quired in the same testing condition as for RL while 1 min

after the surface is flooded with water (wet pavement).

The ARAN was coupled with a Mobileye 6.0 system (Fig. 4),

which uses a digital camera and AI algorithms for providing

driving assistance in lane keeping, forward and pedestrian

warnings (Mobileye, 2019).

LSS output from Mobileye has been collected at high fre-

quency (60 frames per second, fps) and synchronized with

ARANand road data via the standard CANprotocol by building

an Arduino platform and software codes. More specifically,

depending on the actual lane marking detection, two condi-

tions are available and used in the study, marking detected

(coded as LSS ¼ 0) or marking not detected (coded as LSS ¼ 1).

4.3. Data collection and coding

The experiment was carried out in two-lane rural roads in

daylight under various weather conditions (dry, wet and rain)

(Fig. 5). Wet pavement conditions refer to the presence of a

thin film of water with light or no rain (equivalent to the

RLw testing conditions). Two-lane rural road was selected

because it offers more constrained conditions than primary

rural roads both in terms of road characteristics (e.g.,

minimum curve radius, lane and shoulder widths) and

maintenance (e.g., marking and pavement distress). In urban

environment LSS performance is less reliable because of the

complex traffic and infrastructure conditions and less

effective due to the lower running speeds. That is the reason

because, usually LSS is automatically switched off at speed

lower than 40e60 km/h.

The road stretches for a total extension of about 30 km

have been selected to cover a wide range of values of the road

characteristics to be included in the analysis.

All data were associated with homogeneous sections of

variable length between 20 and 50 m, having a constant value

for each variable considered in the experiment. To record

reliable LSS exits and fault conditions with potential hazard to

the driver assistance, the minimum and maximum section

lengths with a travel time between 1 and 6 s have been
Please cite this article as: Pappalardo, G et al., Assessing the oper
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identified. As the Mobileye data are concerned, the positive

lane detection (i.e., LSS ¼ 0) and the negative condition of

failure in the detection (i.e., LSS ¼ 1) have been associated to

each sample section in different conditions of dry and wet

pavement or rain. Other factors, out of the experiment set up

(e.g., parked vehicles, edge pavement drop off), which can

create artefacts have been detected reviewing the video

recording of an auxiliary front camera (Fig. 6) and removed

from the database. Only data collected without closing

forward vehicles have been included in the dataset. The

time gap of the vehicle in front (if present) is detected by the

forward warning of Mobileye (Fig. 4). A minimum gap of

1.0 s was set as threshold to guarantee a suitable field of

view for mark detection by LSS. The LSS data used in the

study refer mainly to free flow conditions with a running

speed in the range 50e71 km/h limited only by the road

geometry and posted speeds.

After the data cleaning the dataset was composed by 1608

samples, collected in 667 road sections with an overall length

of 26.2 km without repetition of measures in the same envi-

ronmental conditions (dry, wet, rain). The road sample is

composed by 334 curved units with radius ranging between 73

and 880m. Summary statistics of the variables in the database

are described in Tables 2 and 3, and the frequency distribu-

tions showed in Fig. 7. Sample size and data variability may be

considered representative of two-lane rural roads. Table 4

displays the Pearson product moment correlations of each

pair of continuous variables. All the explanatory variables

are not correlated except for Qd with RL, that show only a

moderate correlation (0.339). Therefore, they were all

included in the statistical modeling.
5. Regression modelling

The purpose of study was to evaluate the operational failure

mechanism for LSS under complex real-world conditions of

road and weather factors. With the objective of relating the

probability of system fault described by a dichotomous vari-

able (i.e., LSS ¼ 0, 1) to one or more covariates, the logistic

regression is a suitable statistical model. Tests were con-

ducted with multiple runs on the same sections of two-lane

rural roads in diverse weather conditions, i.e., dry, wet, and

rain. Repeated observations can be interdependent, as nested

tests in the same road section are likely to function similarly

than tests in different sections. Therefore, the testing exper-

iment efficient for estimating the system performance, posed

conditions for model-based statistical inference. More spe-

cifically in an ordinary logistic regressionmodel the responses

for each observation are considered independent of each

other while this assumption is violated in multilevel longitu-

dinal studies (Laird and Ware, 1982).

Adopting a logit model fitted with generalized estimation

equations (GEE) to estimate the regression parameters, allows

to overcome the absence of a closed-form joint likelihood

function as in the standard logistic models (Liang and Zeger,

1986).

A GEE is amethod based on quasi-likelihood estimation for

longitudinal marginal models that allows a valid interpreta-

tion of the regression coefficients (b) in Eq. (2) and standard
ational design domain of lane support system for automated
ffic and Transportation Engineering (English Edition), https://
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Fig. 4 e Mobileye 6-Series.
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errors of the estimates, by implicitly considering the

correlation (Liang and Zeger, 1986).

The LSS response is a binary dependent variable Yit, which

takes the value of either 0 or 1 in the section i at test t (t ¼ 1, 2,

3) and the GEE logit assumes the similarmodel as the standard

logistic regression.

Yit � Bernoulli
�
yit

��pit

�¼p
yit
it ð1� pitÞ1�yit (1)

The systematic component pit is given by

pit ¼ 1
1þ expð � ðb0 þ bkxkðitÞÞÞ (2)

where xk(it) is the vector of k explanatory variables for section i

at test t and b0, bk is the vector of coefficients to be estimated.

pit is interpreted as the probability of the dependent variable Y

equaling a success rather than a failure.

GEE models need three conditions, the mean function pit

and the variance function given by the variance of the Ber-

noulli stochastic component, like in standard logistic. More-

over, the correlations within each section i in the repeated

measures t are displayed by defining the structure of a 3 � 3

“working” correlation matrix. Note that the model assumes

correlations within section “i” but independence across sec-

tions. Even if the correlation structure is incorrectly specified,

GEE models provide consistent estimates of the parameters

and consistent estimates of the standard errors may be found

via a robust estimator (Liang and Zeger, 1986). More

specifically, GEE for logistic regression was applied in SPSS

(SPSS 25.0.0) for a two-level random model, where the first

(lower) level defined by the test repetitions (t ¼ 1, 2, 3) in the

different weather conditions (dry/wet/rain) and the second

(higher) level represented by the inspection units (i ¼ 1, 2, $$$,
Fig. 5 e Various weather conditions during the experiment.
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667), each of which was characterized by site specific road

factors (curvature, marking coefficients Qd, RL, RLw, verge

width, pavement cracking). Correlation matrix was defined

as “independent” and we applied the Huber/White/sandwich

robust estimator which can provide a consistent estimate of

the covariance (Bressoux, 2010), if the number of units is

relatively large and the number of repeated tests is relatively

small, as in the present study.
6. Results

The total sample consisted of 1608 tests, clustered in 667

units, characterized by 6 factors at L2 (Qd, RL, RLw, 1/R, long

crack, verge width) and by 3 repeated measures in different

weather conditions at L1 (dry, wet, rain). We fit three multi-

level logistic regression model forms. The first one was the

null model (model 1) which contained no environmental or

section characteristics i.e., an intercept-only model. In such a

way, it incorporated only section-specific random effects to

model between-section variation in system faults. The simple

model 1 with no predictors is useful to estimate the fault

probability in the overall test runs and the goodness of fit,

estimated by the quasi-likelihood under independence model

criterion (QICC) that can be used for comparison with the

other models with more explanatory variables. The second

model (model 2) included only the weather test factors, to

estimate their effects when sharing the identical section

average conditions. The third model (model 3) included both

weather factors and road section characteristics significant at

95th level of confidence.
(a) Dry condition. (b) Wet condition. (c) Rain condition.
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Fig. 6 e Data cleaning Mobileye screen. (a) Missing marking detection due to parked vehicles (false positive). (b) Road edge

detected as marking (false negative).

J. Traffic Transp. Eng. (Engl. Ed.) xxxx; xxx (xxx): xxx8
The results of the GEE for two-level logistic regression of

the intercept-only model 1 are shown in Table 5.

The multivariate logistic model 2 (Table 6) and model 3

(Table 7) were then developed with the significant factors to

assess their simultaneous effect on the dependent variable.

The Wald c2 test was used to fix the significance of indi-

vidual b coefficients, and a backward selectionmethod, with a

significance level of 5%, was applied in model 3 to select only

significant variables (Blanchet et al., 2008). In model 2, which

consists of only weather-related testing conditions (Table 6),

the overall significance of the explanatory variable was

associated with the odds of a fault in the system at 10%

significance level (P-value ¼ 0.101). In the model 3, which

included both test and section characteristics, 3 of the 6 road

factors (i.e., longitudinal crack, Qd and verge width) showed

a P-value higher than 0.05 and therefore were removed in

the backward selection, whereas the weather condition

remained significant (Table 7).

For model 3, the last column in Table 7 also shows the

standardized coefficient and odds ratio. Since the variables

are measured in different units, these continuous variables

have been standardized to compare the relative influence of

different predictors. Unlike ordinary regression, for which

there is a unique definition for the standardized coefficient,

in logistic regression it is not possible to define a

standardized coefficient. However, there is a small

difference in meaning if we are interested only in the
Table 2 e Summary statistics: continuous variables.

Variable Number of samples Minimum

1/R (m�1) 1608 0

RL (mcd/m2/lx) 1608 30

RLw (mcd/m2/lx) 1608 0

Qd (mcd/m2/lx) 1608 30

Longitudinal crack (m) 1608 0
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ranking order of the magnitude of the influence of the

predictors on the dependent variable (Menard, 2004). The

procedure suggested by Menard is to standardize both the

predictors and the dependent variable resulting in the

standardized coefficient b*k:

b*
k ¼ bkSkðxÞ

.�
p=

ffiffiffi
3

p �
(3)

where bk is the unstandardized logistic regression coefficient

of the predictor x (Eq. (3)), Sk(x) is the sample standard

deviation of the predictor k(x), p/
ffiffiffi
3

p
is the standard

deviation of the standard logistic distribution.

The usual goodness of fit statistics based on the log-like-

lihood estimation, cannot be computed in GEEs. Therefore,

the corrected QICC was used to compare different sets of

model terms. The criterion states that the lower the QICC

value the better the model. The goodness of fit results for all

the models are reported in Table 8.

The highest value of QICC in the intercept-only model 1 in

Table 8, shows that the addition of the predictor variables

significantly reduces the deviance as compared to a model

containing only a constant term and they are thus useful for

predicting the probability of the studied outcome. Only

weather factors at L1 in model 2 have not improved the

goodness of fit that is significantly better in model 3 when

road factors are considered to explain the LSS fault

probability.
Maximum Mean Standard deviation

0.01364 0.002374 0.0029232

429 216.54 73.888

118 88.29 21.218

223 178.01 31.249

37.972 0.391542 2.72337
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Table 3 e Summary statistics: categorical variables.

Variable Category

LWD ON ¼ 1 OFF ¼ 0

Frequency (%) 97.1 2.9

Verge width (cm) <20 20e30 >30
Frequency (%) 37.3 31.4 30.8

Weather Dry Wet Rain

Frequency (%) 39.4 28.2 32.5
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7. Discussion

Coefficients and confidence intervals estimated in the three

models can be further analyzed to gain information about the

LSS fault probability.

The coefficients in Tables 6 and 7 are more prone to esti-

mate the relevance of the explanatory variables rather than

specific threshold values. Moreover, it is important to note

that in multilevel logistic regression the interpretation of the

coefficients and odds ratios for the individual variables is

conditional on both the within and inter-cluster covariates

(Liang and Zeger, 1986).
7.1. Model 1

In model 1 with only intercept, we can better estimate the

average and confidence interval of the LSS fault probability in

the overall test runs. In the null the estimated intercept was

�3.503, whereas the estimated standard error was 0.1488.

Thus, on average the system fault probability was
Fig. 7 e Frequency distribution of continuous
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expð�3:503Þ = ð1þexpð�3:503ÞÞ¼ 2:9% (4)

The 95% probability interval for the LSS fault would lies in

the interval 2.2%e3.9%.

7.2. Model 2

In model 2 with only L1 variable, the weather reference con-

dition was set to “dry”. The significant criterion for the

weather-related variable was satisfied only at a 10% confi-

dence level, especially for the low significance of the wet

conditions (P-value ¼ 0.861) in explain a change in LSS fault

probability from the dry pavement condition. The odds ratio

of the estimated rain coefficient shows an average increase of

1.81 in the probability of LSS fault when compared to the dry

condition at 8% level of confidence.

It is noteworthy that the overall P-value ¼ 0.101 of the

weather coefficient estimates was acceptable, but higher than

the most robust acceptance level of 0.05. This means that the

effects of inter-cluster variations of the road characteristics

can be expected relevant like the within-cluster weather fac-

tor. Therefore, the role played by the weather condition needs

to be investigated in more detail by using the model 3,

whereas the inter-cluster level of road factors is also

considered.
7.3. Model 3

The results in Table 7 show that curvature 1/R and marking

parameters RL and RLw significantly affect the probability of

the system fault. No significant effects are caused by the
variables. (a) 1/R. (b) RL. (c) RLw. (d) Qd.
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Table 4 e Correlation matrix: explanatory variables.

Variable RL RLw Qd Longitudinal

1/R 0.0635 0.0391 0.0343 �0.0829

RL 1.0000 �0.0663 0.3390 �0.0584

RLw 1.0000 0.2650 �0.0634

Qd 1.0000 �0.0657

Longitudinal crack 1.0000
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luminance coefficient Qd, the extension of longitudinal crack

and the verge width, given that the P-values of all these

covariates were identified greater than 0.05 and the variable

excluded during the backward procedure. Weather variable

is also significant at 5% level of confidence.

In model 3, for each variable included in the models the

odds ratio of the standardized coefficients, reported in Table 7,

represents the percentage increase in the odds of an outcome

for an increase of one standard deviation in the variable xi. A

one standard deviation change is a reasonably substantial

change typically encompassing approximately 10% of the

total range of the independent variable. Indeed, for the

categorical variable, the odds ratio represents the percentage

increase with respect to the reference condition in the

model (i.e., dry).
Table 5 e Intercept-only model parameter estimates.

Parameter b0 Standard error 95% Wald con

Lower

Intercept �3.503 0.1488 �3.795

Table 7 e Multilevel logistic full model 3 parameter estimates.

Parameter b Standard error 95% Wald confidence

Lower U

Intercept �0.518 0.6256 �1.744 0.

D/W/R

D/W/R ¼ wet 0.184 0.3748 �0.550 0.

D/W/R ¼ rain 1.013 0.3200 0.386 1.

D/W/R ¼ dry 0a

1/R 143.479 47.696 49.996 23

RL �0.005 0.0016 �0.008 �
RLw �0.036 0.0070 �0.050 �
Scale 1

Note: a means this value sets to zero because this parameter is redundan

Table 6 e Multilevel logistic Model 2 parameter estimates.

Parameter b Standard error 95% Wald confidenc

Lower

Intercept �3.718 0.2613 �4.231

D/W/R

D/W/R ¼ wet �0.073 0.4150 �0.886

D/W/R ¼ rain 0.595 0.3419 �0.075

D/W/R ¼ dry 0a

Note: a means this value sets to zero because this parameter is redundan
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A comparison of the value of the odds ratio among the

variables shows that curvature 1/R and rain may give the

highest increase in fault probability with values of 1.26 and

2.75, respectively. Effects statistically significant are also

associated to RLw (odds ratio ¼ 0.65, P-value ¼ 0) and RL

(odds ratio ¼ 0.81, P-value ¼ 0.004), but not to the wet

condition when compared to the dry ones (P-

value ¼ 0.623).

In logit models, for analyzing the relevance of covariates

(numerical and categorical) with a different range of variation,

even standardized odds ratios are difficult to compare. A

method suggested in the literature recommends analyzing the

increase in goodness-of-fit (g.o.f.) when each variable is added

to a model that already contains all the other variables

(Gromping, 2006). We applied a procedure similar to the

computation of the McFadden's pseudo-R2 (McFadden, 1972)

to estimate the proportion reduction in the g.o.f. allocated by

each variable when excluded from the model by using QICC

as g.o.f. measure.

Pseudo -R2
k ¼ 1 � QICCk=QICC0 (5)

where QICC0 is the g.o.f. of a model with no predictors, QICCk

is the g.o.f. for the model being estimated without the covar-

iate k.
fidence interval Hypothesis test

Upper Wald Chi-square df P-value

�3.211 553.867 1 0

interval Hypothesis test Standardized
b* (odds ratio)pper Wald Chi-square df P-value

708 0.685 1 0.408

10.448 2 0.005

919 0.241 1 0.623 (1.2)

640 10.016 1 0.002 (2.75)

6.963 9.049 1 0.003 0.23 (1.26)

0.002 8.438 1 0.004 �0.21 (0.81)

0.022 26.396 1 0.000 �0.42 (0.65)

t; D/W/R means dry/wet/rain.

e interval Odds ratio Hypothesis test

Upper Wald Chi-square df P-value

�3.206 202.487 1 0.000

4.577 2 0.101

0.741 0.93 0.031 1 0.861

1.265 1.81 3.028 1 0.082

t; D/W/R means dry/wet/rain.
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Table 8 e QICC goodness of fit.

Model Model 1 only intercept Model 2
L1

Model 3
L1 & L2

QICC 426.677 426.349 384.864

Fig. 8 e Relative importance of covariates in model 3.
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The graphical output in Fig. 8 shows the incremental

impact of each variable in model 3. Marking RLw is the most

important variable in explaining the variability of the LSS

fault probability.

Curvature 1/R plays a more limited role in the g.o.f. of the

model, but as represented by the value of the odds ratio pre-

viously discussed, it can cause the largest increase in the fault

probability, as well.

Therefore, the variability of fault probability with curve

radius for different values of marking quality and weather

conditions was further analyzed by drawn pit (Eq. (2)) versus 1/

R for different values of the other covariates in model 3.

Results are showed in Fig. 9 and threshold values of 10% and

5% are drawn as reference for medium and high-risk

thresholds of LSS performance (Reddy et al., 2020).

It is evident that a value of RLw ¼ 35 and RL ¼ 150, for

marking quality, as suggested by European Commission (2012)

and Euro NCAP (European New Car Assessment Program,
Fig. 9 e LSS fault
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2018) is adequate to guarantee a fault probability less than

10% in dry and wet conditions only in straight alignment.

Minimum values of RLw ¼ 50 (RW3-EN 1436) and RL ¼ 150

(R3-EN 1436) can provide an acceptable risk of fault in wet

and dry pavement and for curve radius higher than 200 m.

In road curves with R < 150 m the LSS is not able to provide

acceptable detection also with very good pavement marking.

Rain conditions remain challenging for LSS requiring very

high marking standards (eg., RL ¼ 150 and RLw ¼ 75) while

always limited by the curvature radius.
8. Conclusions

Lack of digital infrastructure's extended availability and the

deployment of AVs at L5, the ODDneed to be remained limited

for AVs. The characteristics and conditions of physical road

infrastructure will play a fundamental role in enabling their

safe introduction.

The results of the present study complement existing

knowledge that is focusing on pavement marking charac-

teristics in the definition of ODD for LSSs. Results offer the

added value of a real-world experiments where different

factors can occur simultaneously. The testing procedure

on 26.2 km of two-lane rural roads with repeated measures

was an efficient way for collecting data to analyze LSS

performance in different road characteristics and envi-

ronmental conditions. Still, some posed issues on the

applicability of the conventional statistical inference,

because repeated observations are interdependent.

Therefore, we applied the GEE multilevel logistic models to

increase the precision of the estimates and to better

handle within-cluster and inter-cluster correlations.

Statistical models allowed the identification of the statis-

tically significant road and environmental factors affecting

the fault probability of the LSS tested in the experiment.

However, the importance of the identified factors for the ODD

can be generalized to other systems due to the similarities in

the technology of LSS based on computer vision.

With reference to the tested system, the mean fault

probability was estimated at 3.9% with 95% level of
probability.
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confidence, under average road section characteristics and

weather conditions during the test, showing high perfor-

mance of LSS. Results also highlights good performance in

two-lane rural roads that are more challenging than

motorway and primary roads for their geometric and

maintenance characteristics. When only the weather

conditions were considered, model 2 presented a lower

statistical significance at 90% for the coefficient estimates,

showing that only the rain condition can explain a varia-

tion in the LSS fault probability and that the inter-cluster

variations in road characteristics can be meaningful as

well. Therefore, as final step in the analysis, all the avail-

able co-variables have been considered in the model 3. The

results showed that RLw, R and rain are the most signifi-

cant and contributing factors in the LSS fault probability.

LSS performance in wet pavement was not significant

different from that in dry conditions, confirming the

contrast ratio is not affected by the presence of a thin film

of water.

Noteworthy are some results that should be emphasized in

the perspective of preparing roads for AVs. The horizontal

curvature needs increased consideration, because sharp

curves are sites where the support of LSS for keeping the lane

is more important and recurrent in the secondary roads and

specific sites, such as intersections, interchanges, and road-

work areas. That the quality of marking is a basic requirement

was confirmed. The control parameters and reference condi-

tions can be like those usually considered in the present

standards for human vision to guarantee a suitable contrast

ratio with the pavement surface, but LSS based marking

detection and tracking is more sensible to artefacts (e.g., bad

maintenance, dirt, glare, traffic congestions, parked vehicles,

pavement edges, and etc.).

For a safe and wide introduction of AVs in public roads

the ODD must be clearly defined with a shared re-

sponsibility between public sector and OEMs. Road

agencies can be called to maintain at good standards the

infrastructure conditions while further technological

development of LSSs is needed to extend the ODD to cope

with the geometric feature and maintenance conditions of

the existing roads. The factors limiting the ODD for LSSs

must include rain. Good pavement surface maintenance

can avoid ponding to limit the risk of thin water films, but

also with medium rain intensity, like in the experiment

conditions, the issue is difficult to handle. Therefore,

monitoring of rain intensity and communication coverage

at a very small geographical scale (e.g., 2 km) is required to

identify and communicate in advance about the occur-

rence of critical weather conditions to AVs (including fog

and snow). The research revealed the relevance of the

combined effect of several factors (e.g., curvature and

marking vs. weather) and the opportunity of including

real-world conditions in the testing and certification of the

system.
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