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Abstract: The growing use of electric vehicles is requiring the implementation of power electronics
applications with ever faster devices, such as silicon carbide (SiC) MOSFET, to reduce switching
power losses and reach higher power density, with the final objective of improving performance
and lowering the system cost. A side effect of such faster switching devices is the generation of
high-frequency harmonics with significant energy, so their impact must be evaluated in terms of
conducted and radiated electromagnetic interference (EMI). The optimal design of PCBs and filters
for facing electromagnetic compatibility issues requires properly estimating the EMI level of different
design solutions. Analysis of the current state of the art reveals that previous approaches can not
effectively support a design focusing on a reduction in radiated EMI. To surpass these limits, the
paper defines an electromagnetic simulation flow aimed at evaluating the radiative fields in the
case of an integrated power electronics module operating in automotive applications and featuring
fast SiC power devices. Then, the proposed simulation was applied to an LLC resonant converter
featuring an STMicroelectronics SiC-based ACEPACK module. The work also highlights that future
research efforts must concentrate on finding the best compromise between computational effort and
estimation accuracy.

Keywords: electromagnetic simulations; EMI; IPEM; LLC resonant converter; SiC; radiation

1. Introduction

The need for cleaner vehicles is leading to the growing usage of power electronics
inside vehicles aimed at managing significant amounts of power, often higher than tens of
kW. Newer and faster power devices such as silicon carbide (SiC) MOSFETs are destined
to become the heart of the power stages of hybrid electric vehicles (HEVs). SiC devices
can switch at higher frequencies and improve system efficiency. On the other hand, faster
switching means higher current and voltage slopes inside application circuitries, and the re-
lated radiative effects could become an important aspect to be analysed and pondered [1,2].
Among the several solutions adopted for managing large power amounts, the one based
on integrated power electronics modules (IPEMs) (Figure 1) is very effective in the control
of thermal aspects [3]. IPEMs can usually be built by adopting several technologies on
the basis of different solutions such as discrete components on insulated-metal substrates
(IMS), dices on IMS, or substrate-free molded structures according to the context in which
they have to be used.

While electromagnetic simulation flows aimed at evaluating electromagnetic related
phenomena were extensively studied in the literature [4–8], their specific application in
IPEMs or power modules is less examined or often limited to electromagnetic compatibility
(EMC) aspects [9]. In some cases, electromagnetic (EM) evaluation is performed through
mathematical models able to predict EM interference (EMI) phenomena [4] or through
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a classical measurement approach [10] with all the issues related to the need for a prototype
and an anechoic chamber.
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An accurate electromagnetic simulation flow that can predict radiative phenomena
without the need for a physical prototype can be extremely useful, since alternatives
can be evaluated at the design stage, thus avoiding redesign and fabrication costs, and
time-to-market delays that are caused by an eventual failure of the compliance tests.

This paper outlines an electromagnetic simulation flow able of providing accurate
results on the radiated field in the case of an HEV application exploiting an LLC resonant
converter featuring an IPEM that uses SiC MOSFET devices in a half-bridge configuration.
The paper is divided into two parts. The first one provides an overview of previous
works on EMC/EMI phenomena and an analysis of their limits. Then, the proposed
electromagnetic simulation flow is discussed. The second part describes the simulation
workflow in an actual power module where the radiated emissions are estimated by using
the proposed approach. Lastly, this case study raises the issues in using the proposed
approach that requires future research efforts.

2. Radiated EMI Estimation for the Optimal Design

The optimal design of PCBs and filters requires the correct assessment of the EMI
level for different design solutions. This estimation, in turn, requires the use of appropriate
techniques and tools able to compute the EMI expected from different design solutions.
When these techniques are based on experimental results, the optimal design leads to high
development costs and time. To reduce the time to market and to analyse a large number of
different design solutions with inexpensive effort, an appropriate technique must rely only
on simulation tools. From this perspective, when integrated power electronics modules are
considered, a proper electromagnetic simulation flow that does not need measurements is
essential. One of the most relevant aspects of this work is that it mainly emphasizes the
phenomenon of radiated emissions with respect to conducted emissions. This strategy was
adopted to tune the simulation flow using a complete set of waveforms and not a filtered
one as it is usually performed by firstly minimizing conducted emissions and consequently
also radiated ones [9,11]. This preventive filtering of conducted emissions risks makes less
appreciable the levels of emissions radiated by the system, therefore making the simulation
flow harder to set up due to the system being less sensitive to the radiative phenomenon. It
is for this reason that we analyse the tested device without having previously optimized
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the conducted emissions. It should certainly not be surprising that this assumption could
make the system noncompliant with current regulations.

With all this in mind, in the following, the literature is analysed to highlight the limits
of previous approaches. After that, the proposed electromagnetic simulation flow that
overpasses these limits is described.

2.1. Related Papers

The work in [12] is one of the first papers proposing an exclusively simulation-based
evaluation of electromagnetic interference due to switching power converters, although it
only focused on conducted emissions.

Some parasitic components of boards and devices were combined with simplified
switching waveforms to estimate electromagnetic radiation [13]. That method enables only
a good estimation of noise waveforms that are expected to be the source of radiated EMI,
but it does not evaluate them. A circuit simulation tool was proposed in [14] to evaluate
the switching voltage waveforms in SiC MOSFET power modules. The waveforms of
the voltage at the input and output of the converter were estimated to simulate the EMI
due to cables, while the EMI due to the converter was not investigated. Similarly, a
computationally efficient method for the wideband modelling and simulation of the voltage
and current in medium-voltage DC railway systems was proposed in [15] as a necessary
step for the assessment of conducted EMI during the project design stage, but it was not
used to foresee radiated EMI.

A procedure to foresee electromagnetic disturbances was suggested in [6]. The need
for near-field measurements is a limitation at the design stage. Another approach based
on near-field measurements for modelling the electromagnetic emissions of PCBs was
proposed in [16]. The method can be used when simple PCB structures are considered and
does not consider power converters. A method for modelling the sources of electromagnetic
disturbance due to power electronic equipment was discussed in [17]. It is based on near-
field measurement like the previous one; thus, it presented similar limitations.

A method that models the common-mode current with a radiation source and the
cable bundle with elementary dipoles to compute field emissions was discussed in [7]. That
work also presented a method that only uses common mode current and transmission line
parameters for field emissions. However, also this method requires measurements in an
anechoic shielded chamber.

An advanced version of multiple-segment transfer functions, including a current
distribution algorithm without the need for extra phase information, was presented in [18].
Those current distributions in combination with multiple transfer functions are used in that
work to calculate the electrical field. However, the method used common-mode currents
on the cable harness and it did not consider power converters. A method similar to the
previous one was applied to an inverter in [19]. However, it was based on two transfer
functions whose parameters were obtained from current measurements.

The numerical prediction of radiated emissions from a PCB segment was performed
in [4]. On the other hand, typical excitations due to switching devices and the multiple
traces usually present in a power converter were not considered. A field prediction method
that combines a measured common-mode current distribution with numerical computa-
tions for the radiated fields in the frequency range of 30–1000 MHz was presented in [5].
The method focused only on the radiation from the cable bundle, and the need for measure-
ments impeded its use at the design stage. In [20], the radiated emission from cables was
simulated using HFSS. The converter model was combined with the model of the antenna
equivalent to the behaviour of the cable. The weakness of the approach is that it needed the
measurements of the switching voltages related to the power converter devices. Moreover,
the parasitic components of the PCB were not considered. Lastly, only the radiated EMI of
the cable was considered, while that related to the converter was neglected. Similarly, the
authors in [21] focused only on the prediction of radiated EMI due to the cable.
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An analytical method for calculating parasitic components was combined with finite-
difference time-domain simulation in [22] to calculate the near magnetic field emitted by
the power supply cable of a buck converter. The measured drain-to-source voltage was
necessary for the model, which implemented the waveform in a voltage source to account
for MOSFET contribution to EMI.

A terminal equivalent circuit model for estimating radiated EMI from the cables
connected to the terminals of DC–DC converters was proposed in [23]. The first step to
obtaining the model requires the measurement of the input and output common-mode
currents and the drain-source voltage with varying loads. To minimize the EMI in a buck
converter, a new structure and control based on a combination of two techniques was
proposed in [24]. To this aim, a simple analysis was performed using circuit simulation
to foresee the conducted EMI, while the radiated EMI was neglected. In view of EMI
evaluations, a modelling method of buck converter IC based on the analysis of noise
path was proposed in [25] so that the switching voltage from buck converter can be
estimated and simulated faster and simpler without using SPICE models. Although
the model is interesting, it has not been actually used for EMI estimation. The finite-
element simulation was adopted in [26] to design a low-inductance busbar to reduce
high-frequency EMI and voltage overshoot in an active neutral point clamped DC-DC
converter undergoing zero-voltage switching. EMI performance (conducted and radiated)
was experimentally validated for two of the most useful switching schemes. Once again,
the need for experimental measurements to evaluate EMI was the main limitation.

The optimal design of an on-board charger in terms of satisfying EMC limits was
introduced in [9]. To this aim, that work explained a method to integrate electromagnetic
simulation and measurements. Therefore, it highlighted the strength of the use of elec-
tromagnetic simulation for the computer-aided design of a shield, but it needed some
measurements for radiated emission analysis.

An electromagnetic simulation framework to generate system-level EMC results was
proposed in [27]. Current and voltage were extracted using the measurement method
specified in IEC 61967-4. The waveforms were then used in a mixed model to foresee EMI.

Radiated EMI due to the voltage between input and output cables in a nonisolated
power converter was investigated in [28]. The radiated EMI model of a nonisolated
power converter was presented on the basis of circuit topologies, PCB parasitics, switching
waveforms, and transfer functions. The measured waveforms of currents and voltages of
switches and diodes were used for radiated EMI prediction.

EMI prediction is essential during the optimal design of a power converter aiming at
reducing the radiated EMI, but the analysis of previous works in this field revealed that
they usually present one or more of the following limitations.

• The need for measurements.
• The estimation of only the EMI source (e.g., simulation of the switching waveforms).
• The prediction of radiated EMI due to only the cables.

The simulation flow for radiated EMI estimation described in Section 2.2 surpasses
these limitations.

2.2. Proposed Simulation Flow for Raiated EMI Prediction

In order to predict EMI phenomena in electronics systems, a computer-aided design
(CAD) workflow was implemented. A key aspect of the proposed flow (Figure 2) relies
on the possibility of generating signal spectra that represent the electric fields radiated by
devices; this approach would allow for reducing measurements in an anechoic chamber,
which is often complex to accomplish. Moreover, increasingly stringent radiative limits
imposed by regulations require predictive approaches to reduce the time to market for the
system under development.
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Figure 2. Outline of the proposed EM simulation flow.

The flow starts by reproducing the 3D geometry of the system to be simulated (3D DUT
Model Generation) by creating 3D structure of connectors, vias, wire bonds, solder balls,
signal traces, power, ground planes and so on. During this step, details about materials
must also be provided to the tool. Then, the CAD drawing is provided to a quasistatic
EM simulator to extract the parasitic contributions of interconnections (RLCs). During this
step, the input and output ports of the system must also be defined and assigned to specific
physical areas of the structure.

Once the parasitic contributions are evaluated, they are associated with the circuit
models of the discrete power devices. A transient simulation is then performed to obtain
the simulation waveforms representing realistic ones. The waveforms obtained in the time
domain are then expressed in terms of electrical spectra by applying Fourier analysis. For
example, the voltage waveforms between the nodes (nets) of one device are represented by
these spectra. The spectra are, in turn, the input (excitation pushing) for the final radiative
electromagnetic simulation that must be performed by a full-wave FEM tool. Once the FEM
simulation is completed, the radiated electrical field at several distances from the system
can be plotted.

It is worth highlighting that circuit simulator results are implicitly related to the
conducted emission that the system is undergoing. Hence, a preliminary idea about the
noise on the system nets arises from their evaluation, thus allowing for a preliminary check
of harmonics with high energy levels. Figure 3 shows that the noise at first harmonics
(50 and 100 kHz) is around ~170 dBuV, a non-negligible quantity of energy, meaning that
attenuation is necessary.
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Figure 3. Example of electrical spectrum extracted from an internal node of the system.

3. Case Study

The general flow described in the previous section was customized for an applica-
tion featuring an integrated power electronics module produced by STMicroelectronics
(ACEPACK). We describe every step by providing the relevant information concerning
the implementation phase. The module itself is part of a complex system belonging to the
automotive application field.

3.1. Description of the System

The system belongs to the category of automotive applications designed for the HEV
market. It is a zero-voltage switching (ZVS) converter featured by a DC/DC converter
block at the battery side (Figure 4).
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Figure 4. Simplified block diagram of an EV charger.

Resonant converters in their half-bridge implementation are increasingly popular in
front-end DC/DC converters thanks to their interesting characteristics such as high efficiency,
low switching noise, and the ability to achieve high power density. A potential drawback
of these converters derives from their quite high (for this class of applications) switching
frequency that can cause high dv/dt on internal nodes, affecting EMI performance [29].

There are many topologies of resonant converters that can be grouped according to
the number of resonant elements. Among the most well-known topologies (LLC, CLL, and
LCL), this paper focuses on an LLC configuration as reported in Figure 5.

Power switches M1 and M2, which, in our case study, were SiC MOSFETs (breakdown
voltage 1200 V, conduction resistance 21 mΩ, rated current 91 A), were configured to form
a square-wave generator. This generator produced a unipolar square-wave voltage, Vsq,
by driving switches Q1 and Q2, with alternating 50% of the duty cycles for each switch.
A small amount of dead time is needed to prevent the possibility of cross-conduction and
to allow time for ZVS to be achieved.
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Figure 5. LLC resonant converter.

The resonant circuit consisted of the resonant capacitance, Cr, and two inductances,
the series resonant inductance, Lr, and the transformer’s magnetizing inductance, Lm. The
transformer turn ratio was n. The resonant network circulates the electric current and, as a
result, the energy is circulated and delivered to the load through the transformer.

On the converter’s secondary side, two diodes constitute a full-wave rectifier to
convert AC input into DC output and supply load RL. The output capacitor smooths the
rectified voltage and current. The rectifier network can be implemented as a full-wave
bridge or centre-tapped configuration with a capacitive output filter [30].

Figure 6 shows an overview of LLC converter operation and waveforms.
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Figure 6. LLC converter operation and waveforms.

The device under test (DUT) is the IPEM reported in Figure 1, which is the core of the
half-bridge square-wave generator block whose simplified top-view diagram is reported
in Figure 7.
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The equivalent electric circuit is reported in Figure 8. The high slopes of the SiC
MOSFETs current can generate overvoltage due to the presence of parasitic inductances
of interconnections that may exceed the breakdown of the device. Moreover, the energy
exchange between the parasitic inductances and the parasitic capacitance of both the board
and the SiC MOSFET causes electromagnetic compatibility issues.
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As reported in the introduction of this paper, the final objective of the work is the
definition of an effective electromagnetic simulation flow tailored to IPEM specifications
and based on a simulation platform distributed on circuit simulators and finite element
method (FEM) tools that are able to predict its EMI radiative behaviour.

Figure 9 shows the previously proposed diagram that was applied to the case study.
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3.2. 3D DUT Model Generation

The first step is the generation of the 3D model of the IPEM structure as shown in
Figure 1. The model was derived from a 2D AutoCAD-like representation of the DUT
(Figure 7) by an extrusion process where several details of the package were accurately
considered, such as bond wires and pins (Figure 10). This modelling phase was performed
within the modeler of Ansys Q3D Extractor.
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Figure 10. Bond wire JDEC-5.

In detail, the diameter of the source and sense wires was 12 mils, and the diameter of
the gate wires was 7 mils. After the interconnections had been implemented, we concluded
the realisation of the 3D model of the power module by placing the pins in order to obtain
the structure shown in Figure 11.
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Figure 11. 3D model of the power module: (a) bond wires; (b) pin.

The definition of materials stack is an important aspect to which to pay attention.
Materials can be assigned to 3D objects from some built-in CAD libraries; name, origin,
relative permittivity, relative permeability, bulk conductivity, and tangent dielectric loss
were considered for each material (Table 1).
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Table 1. Material details.

Material Object Relative
Permittivity

Relative
Permeability

Bulk
Conductivity

Dielectric Loss
Tangent

Copper Top Layer, Bottom Layer 1 9.99911 × 10−1 58 × 106 Si/m 0

Aluminum Bond wire 1 1.000021 38 × 106 Si/m 0

Solder Die Solder, Pin Solder 1 1 7 × 106 Si/m 0

Al2O3 Ceramic Dielectric layer 9.8 1 0 0

CuSn6 Pin 1 1 9 × 106 Si/m 0

Cu-DHP Pin Holder 1 9.9991 × 10−1 45 × 106 Si/m 0

3.3. RLC Parasitic Extraction

In order to obtain simulation waveforms similar to real ones, it was necessary to
combine accurate models of the SiC MOSFETs with the parasitic contributions. To this
aim, RLC parasitic contributions were evaluated by means of the tool Ansys Q3D Extractor.
This tool takes advantage of a surface mesh to calculate the high-frequency behaviour of
conductive structures. It enables the efficient extraction of frequency-dependent partial
inductances, resistances, and capacitive couplings between conductive nets, where a net
is a collection of touching conductor objects separated by non-conducting materials or
by the background material. The tool estimates these partial inductances within a power
module and then provides an equivalent circuit representing the electromagnetic behaviour
of the 3D modelling structure in a defined frequency range [31]. It is worth noticing that
the simulation of the whole system (ideal components plus parasitic contributions) could
pose some challenges in terms of simulation convergence and computational burden. A
potential solution to this problem is the use of a single-frequency RLC matrix extracted
at 1 MHz.

The result of this step is the extraction of a lumped RLC netlist encapsulated in the
matrix shown in Figure 12.
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3.4. SPICE Simulation Accounting for Parasitic Components

The objective of the circuit simulation is to obtain voltage spectra on the converter nets
to be used as excitations for the final radiative simulation. For this purpose, the test bench
shown in Figures 13–15 was set up.
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The test bench comprised the RLC matrix, two SiC devices in parallel, components
of the LLC converter (Figure 16), and a stimulus. The simulation was conducted with the
Ansys Circuit Design Simulator. Table 2 reports the main quantities related to the LLC
converter, and the simulations were carried out considering an ideal transformer.
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Table 2. Main quantities related to the LLC converter.

Components Values

Ci 50 nF
Li 200 nH
Co 50 nF
Ro 5 ohm
Vo 350 V
Io 70 A
T 338 K

Switching frequency 50 kHz

3.5. Spectral Extraction on Nets

Once the transient simulation had been finished, the spectra related to the voltage of
the nodes were obtained. Figure 17 depicts the PHASE net. For each net, it was necessary
to assign N “source” ports and only one “sink” port. Figure 18 reports one spectrum from
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0 to 1 GHz of the PHASE net. Specifically, the PHASE NET depicted in Figure 17 was the
net that connected the LLC converter to the ideal transformer.
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Figure 18. The spectrum of PHASE net (0–1 GHz).

All the spectra related to the remaining nets were derived and then converted into a
proper format (magnitude/phase) (Figure 19) to be pushed as excitations to 3D FEM Solver
Ansys HFSS. The final step consisted of converting waveforms data into a numerical table
as shown in Figure 20.
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3.6. 3D FEM Radiative Simulation

Before performing the radiative simulation, some steps were necessary. First, it was
necessary to import the Q3D DUT model into the 3D solver Ansys HFSS. This operation
was conducted quite smoothly since the two tools belong to the same simulation suite.
The only action to complete the excitation flow was the need to assign special ports at the
points of interest of the 3D model. Second, it was also necessary to define the boundary
conditions that specified the field behaviour at the edges of the system region and object
interfaces. Boundaries in HFSS exist for two main purposes; the first is to create either an
open or a closed model. “Open” represents a structure where energy cannot escape except
through an applied port, for example, a waveguide; “closed” represents an electromagnetic
model that allows for electromagnetic energy to be radiated away. Examples can be a PCB,
an antenna, or any structure that is not enclosed within a closed cavity. The second reason
why boundaries are used within HFSS is to define a smaller computational domain and
decrease the geometric or electromagnetic complexity of a given structure or model.

In our case, we focus our attention on the radiation boundary (Figure 21) that is used
to create an open model in HFSS, and the boundaries were placed a quarter wavelength
away from any radiating surface.Electronics 2022, 11, x FOR PEER REVIEW 25 of 29 
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One of the most interesting features of the proposed flow is the possibility to directly
push spectra inside the 3D solver. Once the 3D structure is defined into HFSS, a dynamic
link between the circuit simulator and HFSS must be established (Figure 22).
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Figure 22. Dynamic-link HFSS and circuit designer simulator. (a) Block HFSS, (b) voltage sources,
(c) load.

This operation involves the definition of some voltage sources associated with the
aforementioned extracted spectra (numerical tables). These voltage sources were then used
as excitations for the “dynamic-link” HFSS model. In order to obtain the advantage of the
described “dynamic link” (interaction between “circuit designer” and HFSS), the system
exploited the results of an HFSS simulation that had to be coupled with all excitations
generated by the SPICE simulation. In this case study, the HFSS simulation was performed
with the following parameters.

• Frequency sweep: linear step.
• Start: 10 kHz.
• Stop: 1 GHz.
• Step: 10 kHz.

Then, HFSS evaluates the electric field at each specified frequency, including the start
and stop frequencies. After that, the HFSS simulation was completed, and the final electric
field at 1 m can easily be plotted, as shown in Figure 23. Through such a plot, it was possible
to foresee if the system was compliant with current regulations of the specific application
field (e.g., CISPR), and thus to decide if the prototyping stage could start or if some changes
were necessary for the system design.
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Figure 23. Radiated emissions results: 150 kHz to 30 MHz (E field@1m, sphere, dBu).

An issue that arose at this step was the computational cost due to the high number
of exciting nets (17). It is important to highlight that the HFSS simulation was limited to
30 Mhz to resolve this problem. In the specific case, the final HFSS simulation (in the range
of 0–30 Mhz) lasted about 7 days by exploiting 8 medium-performance CPUs with an
amount of memory of 800 Gb.

4. Conclusions

The definition of a simulation flow capable of estimating radiated EMI in power
modules is an enabling tool to reduce them by optimal design. The need for measurements
and/or the estimation of the EMI source without radiated EMI evaluation and/or the pre-
diction of radiated EMI only due to the cables were the main limits of previous approaches.

Therefore, a workflow that combines circuit and electromagnetic simulations to eval-
uate the radiated emission of an integrated power electronics module, was defined and
described. The key advantage of the proposed approach is the independence from ex-
perimental measurements at each assessment step, thus enabling considerable cost and
time savings. In fact, it is not necessary to have a prototype and to perform anechoic
chamber characterisation in order to estimate the emissions of the designed system. In
other words, the strength of such a workflow is the ability to foresee the EMI of industrial
products before realising the prototype, thus allowing for companies to save time and
reduce the investment effort. This target was reached by the interaction and integration of
the simulation results obtained from different simulation tools.

This work is a first step towards the development of a well-suited technique supporting
an optimal design focusing on the reduction in radiated EMI. From this perspective, some
noticeable aspects emerged from the workflow analysis in an actual case study. In detail,
the discrete frequency sweep required considerable computational effort. This is indeed a
critical aspect since it could significantly impact the overall activity timeline. For this reason,
future developments of this work will focus on finding the best compromise between
computational effort and estimation accuracy, and eventually devising new strategies for
computational cost reduction with a limited effect on the simulation results’ accuracy.
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