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Abstract— In this paper we are going to analyze the
settling-time in single-, two- and three-stage amplifiers with the
intent of deriving approximate but useful design equations that
include the effects of the zeros and of the slew-rate limitations.
The analysis is mainly devoted to the definition of an approach
for the design of three-stage CMOS operational transconductance
amplifiers from settling-time specifications. A design example is
carried out to validate the proposed approach.

Index Terms— Settling-time, operational transconductance
amplifiers, multi-stage amplifiers, feedback amplifiers, CMOS,
low-voltage.

I. INTRODUCTION

OPERATIONAL transconductance amplifiers (OTAs)
are the main building blocks in many analog and

mixed-signal electronic circuits. Across the last decades,
the design of OTAs has evolved with the fabrication process of
integrated circuits (ICs) since it had to follow the technology
scaling mainly imposed by the digital trend predicted by the
Moore’s law. As a consequence, the lowering of the supply
voltage (VDD < 1 V) and the reduction of the transistor
intrinsic gain (gmrd ∼ 10) made the realization of cascoded
structures unfeasible and pushed the interest of the research
towards the design of multistage amplifiers [1]–[8]. In this
scenario, the main performance metric used to evaluate (and
compare) the ‘speed’ of OTAs remained the gain-bandwidth
product (GBW).

In the last fifteen years, the design of low-voltage and
multi-stage CMOS OTAs from settling-time specifications
has raised the attention of the scientific community because
of the growing demand for high-performance discrete-time
circuits (i.e., advanced switched-capacitor circuits or data
converters) and for circuits that require fast reactions to step
inputs (i.e., voltage regulators) [9]–[18]. Despite the significant
number of proposed design procedures, many of them do not
provide simple relationships between the amplifier parameters
and the settling-time, which cut their utility in a real design.
Further, most of them assume that the amplifier behaves in
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a linear fashion and do not analyze the large-signal effects
caused by slew-rate (SR) limitations which can severely affect
the time response.

In the past, the SR was analyzed in monolithic opera-
tional amplifiers since the ‘70s [19], [20]. In [21], [22] the
authors analyze in great detail the SR of a two-pole amplifier.
However, the analysis does not include zeros or higher order
amplifiers and manipulating the final results to obtain a design
equation is not so straightforward. In [23], [24] the authors
introduce some improved slew rate models which are not
exploited to predict the settling-time. In [25], [26] the authors
propose very accurate models for the settling-time but they are
limited to particular topologies.

In recent years an efficient technique for the analysis and
the design of the settling-time in amplifiers was developed
by the authors. In particular, the approach allows to design
and optimize the amplifier in the time domain [27], [28].
However, the methodology previously presented does not
allow to include the SR effect, since it is focused only on the
small signal settling-time. In this paper, we extend the previous
methodology to model and evaluate the whole settling-time
taking into account the SR effect, also. In particular, we
are going to analyze the settling-time in single-, two- and
three-stage amplifiers with the intent of deriving approximate
but useful design equations that include the effects of the zeros
and of the SR limitations.

In the discussion we shall focus our analysis to those
amplifiers in which the slew-rate limitation resides in the
first stage and is associated with the capacitor responsible for
the dominant pole.1 This class of amplifiers includes many
topologies based on Miller or reversed-Miller compensations.
The analysis also concentrates on those amplifiers where the
zeros of the transfer function are placed above the GBW.
This is a minor limitation since, as shown in sections III-B
and IV-B, one or more zeros placed below the GBW slow
down the transient response and, if not used to cancel one or
more corresponding poles, lead to bad designs. In addition,
the compensation cases that rely on the cancellation of a pole
using a low-frequency zero, such as those in [29]–[38], can

1If the slew-rate limitation does not reside in the first stage, as shown in
section III-D, the circuit can experience a positive feedback connection during
its slewing period, thus revealing large overshoots and loosing settling-time
performance [24]. In a well-designed amplifier, this situation must be avoided
and is not included in our analysis.
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be managed as detailed in [39] where an extensive model of
the pole-zero compensation and some useful design criteria
are provided in terms of transient response.

The paper is structured as follows. In section II we analyze
in detail the step response in single-pole amplifiers with
slew-rate limitations. In sections III and IV the analysis is
extended to the two- and three-pole amplifiers. In section V
we propose our design procedure and in section VI we design
a three-stage CMOS OTA to validate the proposed approach.

II. THE STEP RESPONSE IN SINGLE-POLE AMPLIFIERS

A. Small-Signal Analysis

The generic loop gain of a single pole amplifier is

T (s) = βa(s) = βa0

1 + s
ωd

(1)

where a(s) is the open-loop transfer function, β is the loop
feedback factor, a0 is the open-loop dc gain and ωd is the
frequency of the pole. As long as βa0 � 1, the frequencies
of interest reside for ω � ωd and we can always simplify this
single-pole transfer function into

T (s) = 1

s/GBW
(2)

where GBW = βa0 × ωd defines the gain-bandwidth product
of the amplifier.

As known, if we close the amplifier (2) in feedback,
we obtain the closed-loop transfer function

A(s) = A0
T (s)

1 + T (s)
= A0

1 + s
GBW

(3)

where A0 = 1/β is the closed-loop dc gain2 and the GBW
becomes the pole of the closed-loop amplifier.

A convenient way to analyze the amplifier’s time response
is to use a dimensionless transfer function normalized to the
GBW. Hence, defining s̄ = s/GBW as the dimensionless
frequency and t̄ = GBW·t as the corresponding dimensionless
time, the closed-loop transfer function becomes

A(s̄) = A0

1 + s̄
(4)

If y(t̄) is the output response to a step input, the dimensionless
settling-time within a certain percentage error, �, is defined as

t̄s = min

{
t̄� :

∣∣∣∣ y(∞) − y(t̄)

y(∞)

∣∣∣∣ ≤ � ∀ t̄ ≥ t̄�
}

(5)

and the resulting dimensionless settling-time for the
single-pole amplifier is

t̄s(sp) = |ln �| (6)

Clearly, dividing t̄s(sp) by the GBW, returns the dimensional
settling-time (expressed in seconds) for the single-pole ampli-
fier, that is

ts(sp) = |ln �|
GBW

(7)

2Actually A0 can differ from 1/β since it depends on the terminal where
the input signal is applied.

A useful parameter that we shall use extensively in the
following is the normalized settling-time (NST), defined as
the settling-time of the amplifier under test, ts , normalized to
the settling-time of a linear single-pole amplifier with the same
GBW, that is

NST = ts
ts(sp)

= GBW

|ln �| ts (8)

The normalized settling-time can be evaluated also noting that
t̄s = GBW · ts represents the dimensionless settling-time of the
amplifier under test, and so

NST = t̄s
t̄s(sp)

= t̄s
|ln �| (9)

Obviously, when the amplifier under test is the single-pole
amplifier in (1), the normalized settling-time, by definition,
equals 1.

B. Large-Signal Analysis and Slew-Rate Modeling

The simple model derived so far assumes that the amplifier
behaves in a linear fashion, however, especially for large input
signals, slew-rate (SR) limitations can seriously affect the time
response.

Current limitations in transconductors give rise to slew-
rate, therefore a single-pole amplifier with this non-linearity
can be represented by the block schematic in Fig. 1a, where
Q(s) = 1. In the figure, the output current of the transconduc-
tor is set by

it (vd ) =

⎧⎪⎪⎨
⎪⎪⎩

Gmvd for |vd | ≤ Io

Gm

Io sgn(vd ) for |vd | >
Io

Gm

(10)

The output impedance of the first stage of the amplifier is
also responsible for the dominant pole and is simplified with
its reactive element as Zo = Ro/ (1 + sCo Ro) ≈ 1/(sCo). The
gain-bandwidth product results GBW = βGm/Co. Capacitor
Co and the saturation current, Io, set also the slew-rate as
SR = Io/Co.

Normalizing the complex variable, s, to the gain-bandwidth
product of the amplifier (i.e., s̄ = s/GBW), we can reduce the
block schematic in Fig. 1a into the equivalent block schematic
of Fig. 1b, where the parameter

ν = Io

βGm
= SR

GBW
(11)

is the equivalent saturation limit of the saturation block.
As demonstrated in the Appendix A, for a single-pole

amplifier, the NST has the closed-form solution

NSTsp =

⎧⎪⎪⎨
⎪⎪⎩

1 for

∣∣∣∣�Y

ν

∣∣∣∣ < 1

1 +
�Y
ν − (

1 + ln �Y
ν

)
| ln �| for

∣∣∣∣�Y

ν

∣∣∣∣ ≥ 1
(12)

where �Y is the output step. The plot of (12) is depicted
in Fig. 2 versus the normalized output, �Y/ν, and for different
values of the response accuracy level, �.
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Fig. 1. Block schematic representation of a generic amplifier with a
Slew-Rate modeling. a) Actual schematic. b) Equivalent version (lower-case
variables represent time-domain signals with respect to the dimensionless
time, t̄ = GBW · t).

Fig. 2. Plot of the NST versus �Y/ν for the single-pole amplifier.

III. THE STEP RESPONSE IN TWO-POLE AMPLIFIERS

A. Small-Signal Analysis of a Pure Two-Pole Amplifier

A pure two-pole amplifier contains a dominant pole, a sec-
ond high-frequency pole and no zeros. Using the approxima-
tion in (2) for modeling the high dc gain and the dominant
pole, the loop gain is

T (s) = 1
s

GBW (1 + a1s)
= 1

s
GBW

(
1 + s

ωs

) (13)

where ωs = 1/a1 is the second (non-dominant) pole.
Closing the system (13) in a loop leads to the closed-loop

transfer function

A(s) = A0

1 + s
GBW + s2

GBWωs

= A0

1 + s
GBW + s2

GBW2 K

(14)

where K = ωs/GBW is the separation factor, that is, the ratio
between the second pole and the gain-bandwidth product of
the amplifier. The separation factor was established in [40]
and, in a stable feedback amplifier, it is related to the phase
margin through the relationship K ≈ tan (PM). Hence it is
responsible for the amplifier stability and for its transient
response [41]–[43].

Fig. 3. Plot of the normalized settling-time, NST, versus the separation factor,
K , for the pure two-pole amplifier. The response accuracy level is � = 0.5%.
The PM is also shown.

TABLE I

MINIMUM NST AND CORRESPONDING K FOR
DIFFERENT ACCURACY LEVELS

To understand how the separation factor affects the response
to a step input, we used MATLAB to compute the NST defined
in (8). To do so, first we normalize (14) with respect to GBW
(i.e., s̄ = s/GBW), thus leading to

A(s̄) = A0

1 + s̄ + s̄2

K

(15)

Second, we numerically evaluate the corresponding time
response to a unity-step input, y(t̄), and find the dimensionless
settling-time as in (5). Finally, we evaluate the NST from (9).

The plot of the NST versus the separation factor, K ,
is reported in Fig. 3 for the accuracy level of � = 0.5 %.
As explained in the Appendix B, this plot is a discontinuous
function and, as long as the amplifier operates in the linear
region, it is independent of the signal amplitude. Different
plots but with similar behaviors are observed for different
accuracy levels. The plot shows how the separation factor
affects the settling-time of the amplifier. A small separation
factor (K < 1) can lead to a prohibitively large settling-
time. Conversely, a higher separation factor, can lead to a fast
amplifier [18], [28]. However, in this latter case, for the same
GBW and load capacitor, the increased speed is paid in terms
of power consumption.

Tab. I reports the minimum NST and the corresponding
value of separation factor, K , for different accuracy levels
under the assumption that the amplifier operates in the linear
region. It is worth noting that these minimum values are placed
in points of discontinuities for which any small deviation (due
to approximate modeling, process tolerances, etc.) will move
the NST away from these ideal points. For this reason, as better
discussed in [28], the minimum NST in Tab. I is realistically
unreachable while the specification NST � 1 becomes a
reasonable target for almost any practical design.
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As a final key point, if the closed-loop transfer function is
available in the form

A(s) = A0

1 + α1s + α2s2 (16)

a comparison with (14) allows us to evaluate the open-loop
parameters from

GBW = 1

α1
(17a)

K = α2
1

α2
(17b)

B. Small-Signal Analysis of a Generic Two-Pole Amplifier

The generic two-pole amplifier includes a zero in the loop
gain, so that

T (s) = 1 + b1s
s

GBW (1 + a1s)
=

1 + s
ωz

s
GBW

(
1 + s

ωs

) (18)

where ωz = 1/b1. The corresponding closed-loop transfer
function takes the form

A(s) = A0
1 + b1s

1 + α1s + α2s2 (19)

where

α1 = 1

GBW
+ b1 (20a)

α2 = a1

GBW
(20b)

As long as the GBW remains below the zero of the transfer
function (i.e., |b1| < 1/GBW), under the assumption that
the time response of the closed-loop amplifier is mainly
determined by the denominator of A(s), we can define an
equivalent or global separation factor for the generic two-pole
amplifier using the coefficients of its closed-loop gain, as we
did in (17b), so that

K̂ = α2
1

α2
= (1 + b1GBW)2

a1GBW
(21)

This ensures that the generic two-pole amplifier has almost
the same NST of the pure two-pole one.

Therefore we can satisfy the NST specification of the
generic two-pole amplifier by applying to K̂ the same value
that we would choose for the pure two-pole amplifier. In par-
ticular, minimizing the NST in a generic two-pole amplifier
means setting K̂ = K using the numerical values in Tab. I.

The case with the zero placed below the GBW is not consid-
ered in the paper since this situation represents a bad example
of design and must be avoided. In this case, the time response
is slowed down by the factor (1+b1GBW) that heavily affects
the main time constant of the amplifier. Occasionally, a zero
can be intentionally placed below the GBW for compensating
a low-frequency pole as, for example, in [44]. This case is not
covered here as it was exhaustively discussed in [39] where the
pole-zero compensation is examined in terms of time response.

Fig. 4. Block schematic of a two-stage amplifier. The compensation is
performed through a Miller network composed by the series of CC and RC.

Fig. 5. Time response to a step input for two different design cases.
Maintaining the same GBW and the same global separation factor, the two
responses are equivalent.

C. The Design Using the Global Separation Factor

To prove the validity of our assumption, we simulated
the ideal two-stage amplifier in Fig. 4 for two different
compensation cases: the pure two-pole case and the generic
case. The two cases are compared through the 0.5-% settling-
time.

In both the designs we maintained Gm1 = 100 μA/V,
CC = 1 pF and CL = 2 pF, so that the GBW is kept
constant, also. In the pure two-pole case, we set K = 2.96,
Gm2 = K Gm1(CL/CC) = 592 μA/V and RC = 1/Gm2 =
1.69 k	, so to remove the right-half plane zero and obtain
a pure two-pole amplifier. In the generic case, we imposed
the global separation factor to K̂ = 2.96 but we set to zero
the value of RC, so that b1 = −CC/Gm2. From (21) we got
Gm2 = 781 μA/V.

In both cases the simulated GBW is 100 Mrad/s (about
15.5 MHz). In the pure two-pole case, with a phase margin
of 72.2◦, the simulated settling-time is 28.0 ns (NST = 0.53).
In the generic case, the phase margin reduces by 3.4◦ and the
settling-time becomes 25.5 ns (NST = 0.48). The plot of the
output response for the two cases is shown in Fig. 5 where a
good matching between the two curves is apparent.3

D. Large-Signal Analysis and Slew-Rate Modeling

The slew-rate analysis of two-pole amplifiers is carried out
for those amplifiers where the slew-rate limitation resides in
the first stage and is associated with the capacitor responsible
for the dominant pole. If this is not the case, the circuit can
experience a positive feedback connection during its slewing

3Although the generic case would lead to a slightly superior performance
in terms of settling-time, this design is more power consuming since, for the
same capacitive load and GBW, it requires a higher Gm2. As a consequence,
this strategy has no practical application in the Miller compensation of
two-pole amplifiers and was just presented to prove the assumption that two
amplifiers with the same global separation factor have similar NST.
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Fig. 6. Transient response of a two-stage amplifier with SR limitations.
In the solid-line case the maximum current of the first stage is limited to
40 μA. In the dashed-line case the maximum current of the second stage is
limited to 140 μA. Other small-signal parameters are the same of the first
circuit designed in section III-C and plotted in Fig. 5.

period, thus revealing large overshoots and loosing speed
performance [24].

This is what happens, for example, in two-stage
Miller-compensated amplifiers such as that in Fig. 4. Specif-
ically, connecting the circuit in unity-gain configuration and
assuming that the SR limitation is in the second stage, when a
large input step is applied, the second transconductor provides
a current independent of the voltage at its input node. This
means that the second stage is no more controlled by the
loop and that the output of the first stage is directly connected
to the overall output, vout, through the path provided by the
compensation network, CC–RC. It is apparent that, as long as
the second stage operates in slew-rate condition, the overall
feedback of the network remains positive. The consequence
is clearly reported in Fig. 6 where the case with slew-rate
limitation in the first stage is compared to the case with
slew-rate limitation in the second stage. As depicted in the
figure, even if the circuit is perfectly compensated from a
small-signal point of view, a large overshoot arise if the SR
limitation does not reside in the first stage.

To ensure that the slew-rate of the first stage is the limiting
factor, the designer can adopt slew-rate enhancers [45]–[48]
or class-ab topologies [27], [49], [50] to overcome the current
limitation of the subsequent stage.

As far as the slew-rate modeling is concerned let us focus
our attention to relationship (12) which was derived for the
single-pole case. It says that, with respect to the situation
without SR limitations, the small-signal NST increases by

�NST =
�Y
ν − (

1 + ln �Y
ν

)
| ln �| (22)

This statement can be supposed as true for the two-pole
case, too. Therefore, we assume that, if SR limitations occur,
the small-signal normalized settling-time, NST0, increases
by (22) also in the case of two-pole amplifiers. In other words,
for two-pole amplifiers, we assume that

NST =

⎧⎪⎪⎨
⎪⎪⎩

NST0 for

∣∣∣∣�Y

ν

∣∣∣∣ < 1

NST0 +
�Y
ν − (

1 + ln �Y
ν

)
| ln �| for

∣∣∣∣�Y

ν

∣∣∣∣ ≥ 1
(23)

We checked the validity of our assumption through the
simulation of an ideal case. In Fig. 7 we plotted the NST

Fig. 7. Plot of the NST versus �Y/ν for the pure two-pole amplifier. The
accuracy level is � = 0.5%. Points represent simulations of the amplifier
in Fig. 1b with Q (s̄) = 1/ (1 + s̄/K ). Lines plot the NST forecasted by (23).
The plot shows simulations for different values of the separation factor, K .
Including also the simulations for K = 1.0, K = 1.5 and K = 4.0,
the maximum error is maintained below 23%.

obtained from the direct simulation of a two-pole amplifier
realized with the schematic in Fig. 1b where ν = 0.1 V and

Q (s̄) = 1

1 + s̄
K

(24)

The figure reports the simulation points of the NST versus the
normalized output step, �Y/ν. In the same plot, lines report
the values predicted using (23). The separation factor was
varied from K = 1.0 to K = 4.0 with a 0.5-step but only the
most commonly used interval (K ∈ [2.0, 3.5]) was reported in
the figure. For this interval of values of K , the maximum error
between the points and the values predicted by (23) maintains
below 17%. If we include also the cases not reported in the
figure (i.e., K = 1.0, K = 1.5 and K = 4.0), the maximum
percentage error is 23%.

IV. THE STEP RESPONSE IN THREE-POLE AMPLIFIERS

A. Small-Signal Analysis of a Pure Three-Pole Amplifier

A pure three-pole amplifier does not contain zeros and,
as we did for the pure two-pole case, is modeled by

T (s) = 1
s

GBW

(
1 + a1s + a2s2

) (25)

where coefficients a1 and a2 account for the non-dominant
poles (complex-conjugate, in many cases) and where, once
again, we used the approximation in (2) for modeling the high
dc gain and the dominant pole.

The amplifier in (25) can be represented as in Fig. 8a,
where the non-dominant poles arise because of an inner loop
or stage in a nested-loop structure [28]. This inner stage
is characterized by its own internal gain-bandwidth product,
GBWi , and by its own second pole, ωs , so that we can
define an internal separation factor, Ki = ωs/GBWi , which
is responsible for the stability of the inner loop. Hence,
describing the inner stage as in (14), we can express the
non-dominant poles of the whole amplifier as a function of
GBWi and Ki , as in Fig. 8b.

If the inner stage is stable, we can assume that the band-
width of the “non-dominant poles” block in Fig. 8b is mainly
set by GBWi which, in turn, becomes the equivalent second
pole of the overall amplifier. This means that we can define
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Fig. 8. Block schematic representation of a pure three-pole amplifier.
a) The poles of the amplifier arise from two nested feedback loops. b) The
non-dominant poles arise from the internal feedback loop.

the external separation factor, Ke = GBWi/GBW, which is
responsible for the stability of the outer loop. When the loop
gain is known in the form expressed by (25), we can evaluate

Ke = 1

a1GBW
(26a)

Ki = a2
1

a2
(26b)

so that

T (s) = 1
s

GBW

(
1 + s

KeGBW + s2

K 2
e Ki GBW2

) (27)

Closing the system (25) in feedback, the closed-loop trans-
fer function takes the form

A(s) = A0

1 + α1s + α2s2 + α3s3 (28)

where

α1 = 1

GBW
(29a)

α2 = a1

GBW
= 1

Ke GBW2 (29b)

α3 = a2

GBW
= 1

K 2
e Ki GBW3 (29c)

To evaluate the NST of the amplifier in (25), we normal-
ize (28) by the GBW (i.e., s̄ = s/GBW) and, by applying a
step input, we use MATLAB to compute the settling-time, t̄s ,
for a given accuracy level, �. Then, from (9), we obtain the
NST as a function of the separation factors, Ke and Ki , for
the accuracy level, �.

Fig. 9 reports the contour plot of the NST as a function
of the two separation factors and for the accuracy level of
� = 0.5%. This plot, carried out for the pure three-pole
amplifier, is equivalent to the plot in Fig. 3, which was
obtained for the two-pole case. It allows to determine the

Fig. 9. Contour plot of the normalized settling-time, NST, for the
pure three-pole amplifier. The response accuracy level is � = 0.5%. The
settling-time is normalized to that of a single-pole system having the same
GBW. The PM is also plotted.

TABLE II

MINIMUM NST AND CORRESPONDING Ke AND Ki
FOR DIFFERENT ACCURACY LEVELS

minimum normalized settling-time, NSTmin, and the corre-
sponding values of the separation factors, Ke and Ki . Also
in this case, the NST is a discontinuous function and different
contour plots, but with similar behaviors, are observed for
different accuracy levels. Tab. II reports a summary of the
results for different accuracy levels. As for the two-pole case,
these minimum values are placed in points of discontinuities
for which any small deviation (due to approximate modeling,
process tolerances, etc.) would move the NST away from
these ideal points. This makes the minimum NST in Tab. II
realistically unreachable while the specification NST � 1 is
still a reasonable target for almost any practical design. Fig. 9
shows that this target can be obtained from a wide area in
the right side of the plot. However, in general, the higher
are the separation factors (Ke or Ki ) the higher results the
power dissipation of the amplifier. As a rule-of-thumb, a good
trade-off seems to be setting Ke and Ki 10–20% higher than
the optimum value of Tab. II.

Finally, if the closed-loop transfer function is available in
the form described by (28), we can evaluate the open-loop
parameters from (29), that is

GBW = 1

α1
(30a)

Ke = α2
1

α2
(30b)

Ki = α2
2

α1α3
(30c)
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B. Small-Signal Analysis of a Generic Three-Pole Amplifier

The generic three-pole amplifier includes two zeros in the
loop gain, so that

T (s) = 1 + b1s + b2s2

s
GBW

(
1 + a1s + a2s2

) (31)

The resulting closed-loop transfer function takes the form

A(s) = A0
1 + b1s + b2s2

1 + α1s + α2s2 + α3s3 (32)

where

α1 = 1

GBW
+ b1 (33a)

α2 = a1

GBW
+ b2 (33b)

α3 = a2

GBW
(33c)

As long as the GBW remains below the zero of the
transfer function (i.e., |b1| < 1/GBW), under the assump-
tion that the time response of the closed-loop amplifier is
mainly determined by the denominator of A(s), we can define
the equivalent or global separation factors for the generic
three-pole amplifier using the coefficients of its closed-loop
gain, as we did in (30), so that

K̂e = α2
1

α2
= 1

a1GBW

(1 + b1GBW)2

1 + b2GBW
a1

(34a)

K̂i = α2
2

α1α3
= a2

1

a2

(
1 + b2GBW

a1

)2

1 + b1GBW
(34b)

This ensures that the generic three-pole amplifier has almost
the same NST of the pure three-pole one.

Therefore we can satisfy the NST specification of the
generic three-pole amplifier by applying to K̂e and K̂i the
same values that we would choose for the pure three-pole
amplifier. In particular, minimizing the NST in a generic
three-pole amplifier means setting K̂e = Ke and K̂i = Ki

using the numerical values in Tab. II.
Like for the two-pole case, we do not consider the situation

of zeros placed below the GBW since they heavily degrade
the time response of the amplifier and lead to an unaccept-
able design that must be avoided. Furthermore, the case of
zeros intentionally placed below the GBW for compensating
low-frequency poles, as in [29]–[38], is discussed in [39] in
terms of transient response.

C. The Design Using the Global Separation Factors

To prove the validity of our assumption, we simulated the
step response of a pure three-pole amplifier with the generic
amplifier in Fig. 10, compensated using the well-known
Reversed Nested Miller Compensation (RNMC). The two
responses are compared in terms of 0.5-% settling-time.

The pure-three pole amplifier was modeled and simulated
through the transfer function in (28) for which we set a GBW
of 100 Mrad/s (about 15.5 MHz), Ke = 2.55 and Ki = 2.00.
According to Tab. II, this minimizes the settling-time.

Fig. 10. Block schematic of a three-stage amplifier. The compensation is
performed through a Reversed Nested Miller network composed by capacitors
CC1 and CC2.

Fig. 11. Three-pole amplifiers. Time response to a step input for two different
design cases. Maintaining the same GBW and the same global separation
factor, the two responses are equivalent.

For the generic amplifier we simulated the topology
in Fig. 10, for which we assumed that Gm1 = 100 μA/V,
CC1 = 1 pF and CL = 2 pF were known4 and used (34)
to finalize our design with the constraints K̂e = 2.55 and
K̂i = 2.00.

The coefficients of the transfer function in (31) are

GBW = Gm1

CC1
(35a)

a1 = CLCC2

CC1Gm3
+ CC2

Gm3
− CC2

Gm2
(35b)

a2 = CC2CL

Gm2Gm3
(35c)

b1 = − CC2

Gm2
(35d)

b2 = − CC1CC2

Gm2Gm3
(35e)

Hence, we set CC2 to the reasonable value of 1 pF and
used (34) to obtain Gm2 = 653 μA/V and Gm3 = 655 μA/V.

In both cases the simulated GBW is 100 Mrad/s (about
15.5 MHz). In the pure three-pole case, the simulated
settling-time is 21.5 ns (NST = 0.41). In the generic case,
the settling-time results 23.5 ns (NST = 0.44). The plots of
the two output responses are shown in Fig. 11 where a good
matching between the two curves is apparent.

D. Large-Signal Analysis and Slew-Rate Modeling

Similarly to the two-pole case, even the slew-rate analy-
sis of three-pole amplifiers deals with amplifiers with the
slew-rate limitation in the first stage. If this condition is not
guaranteed, the circuit can experience large overshoots and

4Usually, Gm1 is known because set by noise specifications. Then, CC1
was set accordingly so maintain the same GBW for an effective comparison.
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Fig. 12. Maximum percentage error between the NST of a simulated
three-pole amplifier and the values predicted by (23). The accuracy level is
� = 0.5%. White: the error is below 10%. Light gray: the error is between
10% and 20%. Dark gray: the error is between 20% and 30%. Black: the
error is above 30%.

increase the settling-time due to positive feedback connections
during the slewing period [24]. Slew-rate enhancers [48] or
class-ab topologies [27], [49] can be used to guarantee that
the limitation is in the first stage.

As we assumed in section III-D, referring to the slew-rate
of two-pole amplifiers, also in this case we take for granted
that, with respect to the situation without SR limitations, the
NST increases with (22). Therefore, we assume that the NST
behaves as in (23).

We checked the validity of this statement by computing the
maximum percentage error between the NST of a simulated
three-pole amplifier and the values predicted by (23). The
amplifier was realized with the block schematic in Fig. 1b
where ν = 0.1 V and

Q (s̄) = 1

1 + s̄
Ke

+ s̄2

K 2
e Ki

(36)

The separation factors, Ke and Ki , were swept in the range
[1.0, 4.0] and for each pair of points, we simulated the maxi-
mum error between the settling-time and (23) while sweeping
the output signal, �Y/ν, from 0.5 to 10.0. The plot in Fig. 12
shows the region where the error remains below 10% (white),
the region where the error is between 10% and 20% (light
gray), the region where the error is between 20% and 30%
(dark gray), and the region where the error is above 30%
(black).

The sets of simulations discussed above, confirmed that (23)
is a fairly good approximation of the behavior of the NST also
in three-pole amplifiers.

V. THE SETTLING-TIME BASED DESIGN PROCEDURE

In this section we propose a procedure for the design of a
three-stage OTA5 on the basis of settling-time requirements.

5The procedure can be used also for the design of a two-stage OTA whose
open-loop gain can be modeled with a third-order transfer function, such as
a two-stage amplifier that exploits the Ahuja compensation [51].

Fig. 13. Plot of the gm -over-ID ratio versus VGS − VTH for a 65-nm
process. Two different channel lengths for NMOS and PMOS type transistors
are reported.

In the general context described so far, the OTA is modeled
by the block schematic in Fig. 1. In sections III and IV
we found that, with a proper choice of the separation fac-
tors, the small-signal normalized settling-time, NST0, can be
set less than 1 and that, under the presence of slew-rate
limitations, the overall normalized settling-time behaves as
in (23). Unfortunately, we cannot use (23) as a design equa-
tion because we cannot guarantee a precise value of NST0.
However, we can use (12), instead, provided that we ensure
NST0 � 1.

Let us focus our attention on the argument of (12), �Y/ν.
Replacing the value of ν in (11), we obtain

�Y

ν
= β

Gm

Io
�Y (37)

It is clear that the higher is the value of (37) the higher
is the NST and, consequently, the settling-time. In general,
β is a fixed quantity that depends on the application. In those
applications where β can be programmed from βmin to βmax
(i.e., in programmable A/D or D/A converters, β can be
selected by changing the connections of a suitable array of
capacitors), the amplifier must be designed in the worst-case
scenario, that is, for β = βmax. Regarding �Y , the worst case
depends on the power supply, VDD. However, in some cases
the maximum output can be lower than VDD, and the design
is more relaxed (i.e., in SC amplifier where the output returns
to zero during the sampling phase, the maximum output step
is limited to ±VDD/2 during the evaluation phase). Finally,
as far as the ratio Gm/Io is concerned, it is strictly related to
the bias point of the first stage. More specifically, referring to
the typical case of a CMOS source coupled differential pair,
Gm and Io/2 are the small-signal transconductance and the
bias current of each input transistors, respectively. Therefore

Gm

Io
= 


2
(38)

being 
 the transistor gm-over-ID ratio, a parameter that
defines the bias condition of the device [52]. Fig. 13 reports
the simulated plot of 
 versus the gate-source overdrive,
VGS − VTH, for the standard-threshold and complementary
devices of a 65-nm process.6 In the lighter area (VGS > VTH)

6Although the plot is obtained for a particular CMOS process, similar plots
are common to many technologies and do not differ very much from each
other [53].
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the transistors operate in the saturation region. In the darker
area the transistors operate in the subthreshold region. In the
analog design scenario, all transistors are biased so that VGS ∼
VTH. This makes the stage more efficient since, for a given
drain current, the transistors exhibits a higher transconduc-
tance. Furthermore, this reduces also the drain-source sat-
uration voltage (V sat

DS) thus providing more room for volt-
age swing, a critical requirement in low-voltage applications.
However, from (38), a higher 
 means a slower amplifier,
so that a trade-off between speed and power dissipation must
be considered while setting the bias currents of the devices of
the first stage. Due to all these considerations, the choice of
the gm-over-ID ratio has a limited range (typically, 8 V−1 ≤

 ≤ 16 V−1).

From the above discussion, we can finally obtain our
fundamental design equations that relates the GBW to
the settling-time specification. Solving (8) for the GBW,
using (12) for the NST, and considering (38) with �Y = VDD,
we have

GBW = | ln �| + β 

2 VDD − [

1 + ln
(
β 


2 VDD
)]

ts
(39)

that allows the designer to set the GBW on the basis of the
required settling-time, and other amplifier parameters.

The value of the transconductance of the first stage, Gm1,
is imposed on the basis of noise considerations. Assuming for
the first stage the CMOS source coupled differential pair and
neglecting the flicker noise to simplify the discussion, the input
voltage spectral density of the OTA is approximated by

Sn = 2 · 4kT · 2

3

1

Gm1
(1 + c) (40)

being k the Boltzmann’s constant, T the absolute temperature
and c ∼ 1 a coefficient that depends on the transconductor
topology. Therefore the value of Gm1 results

Gm1 ≈ 16

3

kT

Sn
(1 + c) (41)

In Miller-compensated amplifiers the main capacitor con-
nected between the output of the first stage and the out-
put of the overall amplifier, CC1, is responsible for the
gain-bandwidth product as GBW = βGm1/CC1. Therefore,
we obtain for CC1

CC1 = βGm1

GBW
(42)

The remaining design equations come from (34) where K̂e

and K̂i must be set as in Tab. II or at a slightly higher value
to mitigate the effects of the discontinuities at the absolute
minimum points of the NST function.

The steps of the proposed design procedure are summarized
in Fig. 14.

VI. DESIGN EXAMPLE AND VALIDATION

In this section, to demonstrate and confirm the advantages of
the design procedure presented, we are going to describe the
design of a three-stage operational transconductance ampli-
fier (OTA) suitable for the switched-capacitor application

Fig. 14. Steps of the proposed design procedure.

Fig. 15. Forward-Euler SC integrator.

Fig. 16. Block schematic of a RNMC-FF three-stage amplifier. The com-
pensation is performed through a Reversed Nested Miller network, composed
by capacitors CC1 and CC2, and a feed-forward transconductor, Gmf .

shown in Fig. 15 where Cs = C f = Cout = 0.4 pF. During
the evaluation phase, φ2, the OTA drives the load capacitance
CL = Cout + CsC f /(Cs + C f ) = 0.6 pF with the feedback
factor β = C f /(Cs + C f ) = 0.5. The sampling frequency of
the SC integrator is assumed fs = 1/Ts = 25 MHz so that the
output signal is required to settle within the interval of time
Ts/2 = 20 ns, with a maximum error � = 0.5%. The power
supply is VDD = 1 V.

Among the various three-stage OTA topologies, we chose
a Reversed Nested Miller Compensated amplifier which is
intrinsically advantageous with respect to a Nested Miller
one [54]. In particular, for its simplicity, we considered the
topology with two capacitors only (i.e., with no elements
to eliminate the RHP zero) and a Feed-Forward stage that
slightly improves the large signal behavior. The amplifier block
schematic, named RNMC-FF, is shown in Fig. 16.

The transistor-level implementation is shown in Fig. 17 and
exploits a 65-nm CMOS process provided by STMicroelec-
tronics. Standard threshold devices (tox = 1.8 nm, VTHn ∼
470 mV and |VTHp| ∼ 440 mV) were used for all the transis-
tors with the exceptions of the source coupled pair, M1–M2
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Fig. 17. Transistor-level schematic of the RNMC-FF three-stage amplifier.

(tox = 1.3 nm and |VTHp| ∼ 243 mV) and of the slew-rate
enhancer device, M13 (tox = 1.8 nm, VTHn ∼ 317 mV).

The first stage of the OTA is made up of a PMOS source
coupled differential pair with current mirror load (M1–M5).
The common source M6, biased by M7, is the second stage.
The common source M8 and the current mirror M9–M10,
used to obtain a further signal inversion, realize the third
stage. Transistor M11 acts as the feed-forward stage, Gmf ,
and provides the bias current to the third stage.

To overcome the slew-rate (SR) limitations that occur during
negative steps at the output node, the SR enhancer M12–M14
was added in parallel to M11 to help the discharge of the
load capacitor. The SR enhancer works as follows. In bias
condition, M12 reads the voltage v2 and provides a small
(and negligible) current to the low-threshold transistor, M13.
Since the threshold voltage of M14 is higher than that of
M13, the SR enhancer is designed so that, in bias condition,
the regular-threshold device, M14, remains disconnected from
the output node. This is accomplished by setting

[VGS13]bias < VTH14 (43)

When node v2 goes low and transistor M8 switches off
(i.e., v2 = VTH8), the increment of current in M12 must be
able to increase the gate-source voltage of M13 above the
threshold voltage of M14, thus connecting this latter device
to the output node to sink the extra current. To do so, the SR
enhancer must satisfy the condition

[VGS13]v2=VTH8 > VTH14 (44)

In our design, we assumed that the specifications on the
input noise spectral density, Sn , imposed Gm1 = 320 μA/V.
Therefore, we chose 
 = 16 V−1 for the gm-over-ID ratio of
M1–M2 and, using (39), we obtained the minimum required
GBW of 55 MHz.

At this point, we should evaluate capacitor CC1 from (42).
However, due to the low transistor intrinsic gain (gmrd ∼ 10),
(42) overestimates the value of the compensation capacitor
which would lead to a lower GBW. The actual expression of
the GBW takes the form [18]

GBW = βGm1

CC1
· 1

1 + η
(45)

where, for the RNMC-FF OTA, the error is

η = 1

Gm2 Ro2
+ CC2/CC1

Gm2 Ro1
(46)

TABLE III

RESULTS OF THE DIMENSIONING PROCEDURE

being Roi the output resistance of the i -th stage. Assuming
Gm2 Ro1,2 ∼ 10 and CC1 ∼ CC2, we can estimate the error as
η ∼ 0.2. This means that we can use all the expressions that
we derived so far, provided that we dimension our circuit for
an equivalent GBW which is 20% higher than that obtained
from (39). Therefore we set GBW = 66 MHz and evaluate
CC1 = 385 fF from (42).

The open-loop transfer function takes the expression in (31)
where

b1 =
(

Gmf

Gm3
− 1

)
CC2

Gm2
(47a)

b2 = − CC1CC2

Gm2Gm3
(47b)

a1 =
(

1 + CL

CC1

)
CC2

Gm3
+

(
Gmf

Gm3
− 1

)
CC2

Gm2
(47c)

a2 = CLCC2

Gm2Gm3
(47d)

Setting Gmf = Gm3, coefficient b1 becomes zero and a1 turns
into

a1 =
(

1 + CL

CC1

)
CC2

Gm3
(48)

Substituting these coefficients in (34) and using the values7

in Tab. II for K̂e and K̂i , we obtain two equations that can be
solved for the two unknown time constants, θ1 = CC2/Gm3
and θ2 = CL/Gm2. Since CL is known, Gm2 is easily
evaluated. Setting Gm3 = Gm2 allows us to determine CC2,
also. The values obtained from the dimensioning procedure
are reported in Tab. III. The corresponding transistors’ aspect
ratios are reported in Tab. IV.

All the simulations were conducted using the Spectre
simulator in the Cadence environment. The open-loop gain
of the SC integrator in Fig. 15 was carried out through
an ac-sweep simulation. The resulting Bode plot is shown
in Fig. 18. The circuit exhibits a GBW of 57.5 MHz, which
is the value required by (39), with a phase margin of 65 deg.
The simulated GBW is in agreement with the discussion that
led to relationships (45) and (46).

All the remaining transient simulations concern the step
responses of the SC integrator during the evaluation phase, φ2.
Hence, the circuit was simulated using the simplified
schematic in Fig. 19. In this case, the input step was set equal
to the voltage stored in Cs during the sampling phase, φ1, but

7To mitigate the effects of the discontinuities at the absolute minimum points
of the NST function, we increased K̂e and K̂i by 10% with respect to the
values reported in Tab. II.
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TABLE IV

TRANSISTORS’ ASPECT RATIOS FOR THE RNMC-FF OTA

Fig. 18. OTA loop gain Bode plots: magnitude (solid line) and phase (dashed
line).

Fig. 19. Equivalent schematic of the Forward-Euler SC integrator.

changed in sign. Two big resistors, R f and Rs (in the order
of tenths of megaohms), were used to create a dc path across
the integrator thus setting its bias point.8

The transient responses of the closed-loop amplifier to dif-
ferent input steps are shown in Fig. 20. Subfigures 20a and 20b
report the response to a ±100-mV step for the rising edge
at the output and the falling one, respectively. The simulated
0.5-% settling-times are 7.8 ns (NST = 0.52) and 9.8 ns
(NST = 0.66), respectively. With respect to the minimum
theoretical NST reported in Tab. II, this is a good result if we
consider the approximate nature of the transfer function in (31)
(the amplifier has other poles that were not considered because
placed at higher frequencies) and of coefficients in (47) (where
we neglected the contributions of the output resistances and
capacitors of the transconductors). Subfigures 20c and 20d
report the response to a ±800-mV step. This signal excursion
is close to the rail-to-rail situation but still guarantees that all

8To not alter the overall transfer function of the integrator the two resistors
must satisfy the constraint Rs Cs = R f C f .

Fig. 20. Transient simulation of the closed-loop amplifier compensated
with the RNMC-FF. (a) +100-mV output step. (b) −100-mV output step.
(c) +800-mV output step. (d) −800-mV output step.

Fig. 21. Settling-time versus output step amplitude for the closed-loop ampli-
fier compensated with the RNMC-FF. The plot shows also the single-pole limit
evaluated using (12).

the transistors work in the saturation region. Due to slew-rate
limitations, the 0.5-% settling-times increase up to 16.0 ns
(NST = 1.07) and 17.0 ns (NST = 1.14), for the rising output
step and the falling one, respectively.

The plot of the 0.5-% settling-time versus the output step
amplitude is shown in Fig. 21. The curve of the single-pole
limit, that was used to obtain the GBW specification from (39),
is also reported. The settling-times, for both the rising and
the falling edges, remain below the single-pole limit except
when the output step approaches the supply voltage, VDD,
because some transistors exit from the saturation region.
Despite this, the settling-time specifications are guaranteed up
to an output step of 850 mV. The small differences in the rising
settling-time with respect to the falling one are justified by the
asymmetrical structures of the two final stages of the amplifier.
The figure validates the proposed SR modeling and the design
procedure advanced in section V. In particular it confirms the
goodness of (39) in determining the GBW specification from
the settling-time requirements.

A final Monte-Carlo simulation (400 run) was carried out
to check the behavior of the circuit under both global and
local process variations. The results are summarized in the
histograms in Fig. 22. Subfigures 22a and 22b refer to the
rising and the falling cases of a ±100-mV output step. Sub-
figures 22c and 22d refer to the rising and the falling cases of a
±800-mV output step. As revealed from Fig. 22d, a very small
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Fig. 22. Monte-Carlo simulation of the settling-time of the closed-loop ampli-
fier compensated with the RNMC-FF. (a) +100-mV output step. (b) −100-mV
output step. (c) +800-mV output step. (d) −800-mV output step.

number of samples fall outside the settling-time specifications
of 20 ns, a good result considering that the circuit was not
designed to be robust against process variations. However, our
design procedure can be easily extended in the worst case
corner of a PVT scenario or integrated with the approach
proposed in [28].

VII. CONCLUSION

In this paper we analyzed the settling-time in single-,
two- and three-stage amplifiers including the effects of the
zeros and of the slew-rate limitations. The analysis led to
useful design equations and to an approach for the design
of three-stage CMOS operational transconductance amplifiers
from settling-time specifications. A design example was car-
ried out on to validate the theoretical analysis and the proposed
design procedure.

APPENDIX A
NORMALIZED SETTLING-TIME FOR THE SINGLE-POLE

AMPLIFIER WITH SLEW-RATE LIMITATION

A single-pole amplifier with slew-rate limitation can be
modeled with the equivalent block schematic in Fig. 1b with
Q (s̄) = 1.

The differential equation related to the state variable x is9

ẋ(t̄) =

⎧⎪⎪⎨
⎪⎪⎩

−x(t̄) + u(t̄)

β
for

∣∣∣∣u(t̄)

β
− x(t̄)

∣∣∣∣ < ν

ν for

∣∣∣∣u(t̄)

β
− x(t̄)

∣∣∣∣ ≥ ν
(49)

with y(t̄) = x(t̄).
Assuming that we apply a positive input step10 of amplitude

�U/β ≥ ν, the amplifier enters the slewing period. Relation-
ship (49) reduces to

ẋ(t̄) = ν (50)

9Remember that, since the amplifier in Fig. 1b is normalized with respect
to the GBW, the time is the dimensionless variable t̄ = GBW · t .

10A similar discussion can be made for a negative input step, �U/β ≤ −ν.

Fig. 23. Plot of the dimensionless settling-time, t̄s , versus �Y/ν for the
single-pole amplifier.

whose solution is

x(t̄) = ν · t̄ for t̄ < t̄SR (51)

being t̄SR is the time at which �U/β − ν · t̄SR = ν or

t̄SR = �U/β

ν
− 1 (52)

For t̄ ≥ t̄SR, the saturation block is linear and (49) becomes

ẋ(t̄) = −x(t̄) + �U

β
(53)

whose solution is of the type x(t̄) = Ae−(t̄−t̄SR)+B . Constants
A and B can be determined considering that

x(t̄SR) = �U

β
− ν (54a)

x(+∞) = �U

β
(54b)

and

x(t̄) = −ν · e−(t̄−t̄SR) + �U

β
for t̄ ≥ t̄SR (55)

Bearing in mind that y(t̄) = x(t̄) and applying the definition
of the settling-time in (5), we obtain

t̄s = t̄SR + ln

(
1

�

ν

�U/β

)
(56)

Taking into account (52) and defining the output step as

�Y = �U

β
(57)

the dimensionless settling-time results

t̄s = | ln �| + �Y

ν
−

(
1 + ln

�Y

ν

)
(58)

which is valid under the initial assumption of large-signal,
�Y/ν ≥ 1. The plot of (58) versus �Y/ν is shown in Fig. 23
where t̄s = | ln �| was considered for �Y/ν < 1.

Evaluating the NST means dividing the dimensionless
settling-time, t̄s , by its small-signal value, | ln �|. Therefore,
we can write our final relationship in (12).
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Fig. 24. Plots of the output, y(t̄), for two different values of K . The response
for K = 2.96 (solid line) leads to the minimum NST. The response for
K = 2.94 (dashed line) explains the jump discontinuity in the settling-time.

APPENDIX B
JUMP DISCONTINUITIES IN THE NST

The plot of the NST in Fig. 3 presents several jump
discontinuities, a consequence of the oscillating nature of the
output response and of the settling-time definition in (5).
In this appendix we are going to explain where they come
from.

As known, the settling-time is defined as the time required to
the output to reach its final value within an assigned settling
error, �. The plot in Fig. 3 was obtained with MATLAB by
applying a unity step to the closed-loop system in (15) and
evaluating the corresponding time response, y(t̄). For each
value of K , we computed the dimensionless 0.5-% settling-
time, t̄s(K ), and, finally, we divided the result by | ln �|, thus
obtaining the NST versus K . Since the NST and t̄s differ by
the product of a constant term, we are going to inspect how
the dimensionless settling-time behaves as we move K .

Fig. 24 shows the time response of the output, y(t̄), for two
different values of K . In the figure, the solid curve is the output
response obtained for K = 2.96. From Tab. I, this is the value
that results in the minimum NST for � = 0.5%. In this case,
indeed, the first peak of y(t̄) just touches the upper settling
error limit and the output enters the settling error region in
the point ‘A’, thus reaching the absolute minimum settling
time identified by t̄s A in the figure [55].

For a slightly lower value of K , the output becomes as
that in the dashed line in Fig. 24, where the specific case
of K = 2.94 is depicted. In this case, the output enters the
settling error region in the point ‘B’ and the settling-time
jumps from t̄s A to t̄s B , thus causing the discontinuity observed
in the proximity of K = 2.96 in Fig. 3. In a similar manner,
the other jump discontinuities observed in Fig. 3 arise when
the oscillations cause the subsequent peaks of y(t̄) to touch the
settling error limits of the settling error region.
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