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Abstract: The traditional approach to calculate the active and reactive power in AC power systems
requires the measurement of the phase shift between the voltage and current for the evaluation of the
power factor. To do this, power analyzers can implement several methods. In principle, it is always
necessary to identify specific points of waveforms (e.g., using a zero-crossing detection technique)
and get their time shift. In a similar way, the frequency value must be evaluated in order to calculate
the angular frequency. Unfortunately, this kind of common method exhibits some issues, such as the
large sensitivity to noise. Moreover, inaccuracies in the evaluation of the power factor have a big
impact on the final estimation of the electric power. This paper presents a simple but effective way to
calculate the electric power, overcoming the need for a direct measurement of the phase shift and
frequency. In particular, it is shown that the active power can be easily calculated as the difference
between the peak value of the instantaneous power and apparent power. The reactive power and
power factor are evaluated by exploiting the same quantities. The practical implementation of the
proposed formulation in power analyzers guarantees several benefits without reducing accuracy.

Keywords: electric power measurement; active power; instantaneous power; power analyzers

1. Background

Power metering is crucial in modern electric systems. The optimal management of
AC grids requires the accurate estimation of active power. This is especially true in the
case of bidirectional power flows for smart grids where renewable power plants, loads,
and storage systems are present at the same time [1–3]. Power metering also plays a key
role in many other fields, such as power converters, electrical machines, drive systems,
electromagnetic compatibility, energy saving, etc. [4–7].

A wide number of devices designed for measuring active power are available on the
market. Some reviews about mainstream measurement technologies are in [1,4,8].

In [8], the authors present a detailed survey on the existing types of power and energy
measurement devices while also considering traditional technologies such as electrody-
namo wattmeters, thermal wattmeters, induction-type energy meters, and so on. The
working principles of these devices and their typical applications are discussed in order to
highlight their merits and drawbacks.

Nowadays, electronic power analyzers integrate many functions, providing the mea-
surement of active and reactive power, power factor, THD, etc. They are suitable for
steady-state, as well as for transient, conditions. These systems acquire simultaneous
samples of voltage and current waveforms, digitize these values, and carry out arithmetic
multiplication and averaging using digital techniques to obtain the power measurement [4].
The high-speed acquisition of voltage and current using modern analog-to-digital con-
verters, along with powerful elaboration devices, makes digital analyzers the dominant
technology for power metering. This work refers to such systems.
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To evaluate the active power, a standard electronic wattmeter calculates both the rms
value of voltage and current and the power factor. Focusing on the latter, the traditional
approach consists of the evaluation of the phase shift between the voltage and current
waveforms. This implies the necessity to directly measure the time shift between the voltage
and current waveforms. In principle, it is necessary to detect specific points of waveforms
(e.g., using a trigger or a zero-crossing detection technique) and get the period between such
points [9,10]. It is also required knowledge of the actual value of the frequency, especially
if some variations were expected to take place. The presence of noise or distorted waves
could imply a significant error in final estimation for all the applications requiring a precise
synchronization [9,11,12].

With the purpose to overcome the need for a direct measurement of phase shift and
frequency, this paper presents an alternative way for the evaluation of active power. In
particular, this work proves that active power can be expressed as the difference between
the peak value of instantaneous power and the apparent power. The reactive power and
power factor are calculated by exploiting the same quantities.

In comparison to the traditional approach, the new one is simpler in terms of practical
implementation, especially when the voltage and current are pure sine waves. Moreover,
in most cases, accuracy is very high even in the presence of noise or distorted waves.

Section 2 reports the main relationships representing the core of this work. Section 3
provides the analytical proof of the new formulation. In Section 4, validation is discussed,
with additional information about measurement errors, three-phase systems, and harmonic
disturbances. Section 5 lists the main advantages of the proposed method.

All the results reported in this paper do not take into account the presence of harmonics
in voltage and current waveforms, except for Section 4.3, which provides some brief
information about harmonic distortion. A comprehensive analysis about the calculation of
electric power in the case of harmonics is out of the scope of this work.

Although this study deals with AC electric systems, it is worth noting that there are
other possible fields of application, for example, mechanical vibrations, complex analysis,
and so on.

2. Introducing the New Method for Measuring Electric Power

For the sake of simplicity and clarity, this section refers to a single-phase electric circuit
in a steady-state condition.

The core of this paper consists of the following three equations:

cos ϕ =
pM
S
− 1 (1)

P = pM − S (2)

|Q| =
√

pM·(2·S− pM) (3)

where ϕ is the phase difference between the voltage and current, cosϕ is the power factor,
P is the active power, Q is the reactive power, S is the apparent power and pM is the peak
value of the instantaneous power.

The main result is the calculation of the active power P in Equation (2) as the difference
between the peak value of the instantaneous power pM and the value of the apparent power
S. In this way, no physical measurement of frequency or phase shift is required because the
evaluation of the power factor becomes unnecessary for the determination of the active
power. At the same time, the calculation of the power factor and reactive power in the new
approach comes from the peak value of the instantaneous power.

We note that in Equation (3), the reactive power Q is an absolute value since it is
expressed as a square root. Alternatively, for the range ϕ ∈ [0, π], one can calculate ϕ from
the power factor in Equation (1) and then calculate Q using sinϕ.
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From a practical point of view, in comparison to the traditional measurement process,
the proposed formulation provides a simpler way to get the electric power, as highlighted
by the flow chart in Figure 1.
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The main advantage is the opportunity to avoid the direct measurement of the time
interval tϕ and of the frequency f, which are required in the traditional formulation to
evaluate cosϕ, as follows:

ϕ = w·tϕ = 2·π· f ·tϕ ⇒ cos ϕ (4)

where ω is the angular frequency.
This means that common algorithms used by power analyzers, scopes, etc. for mea-

suring phase shift could be no longer required, especially when the final target is the
evaluation of the active or reactive power.

At the same time, the issues linked to traditional algorithms become irrelevant. An
example is the uncertainty in zero-crossing detection in the case of noise superimposed
to the voltage or current waveform. This uncertainty can cause a significant error in the
evaluation of the phase shift and, consequently, in the final value of the active power. On
the contrary, the new method does not require any zero-crossing.

Measurement of voltage and current peak values can be carried out using one of the
common methods in the literature. The calculation of rms values is immediate in the case
of pure sine waves, and so it is easy to get the value of S.

More details about the advantages of the proposed approach are discussed in Section 5.

3. Analytical Proof

Considering a standard single-phase electric circuit in a steady-state condition where
the voltage and the current are pure sine waves, the phase difference between such signals
is the angle ϕ:

0 ≤ ϕ < 2π (5)
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The basic equations in the time domain are:

v(t) = VM· cos(ω·t)
i(t) = IM· cos(ω·t + ϕ)

(6)

where VM and IM are the peak values of voltage and current, respectively.
By definition, the instantaneous power is:

p(t) = v(t)·i(t) (7)

thus:
p(t) = VM·IM· cos(ω·t)· cos(ω·t + ϕ) (8)

For the sake of example, Figure 2 shows voltage, current, and instantaneous
power waveforms.
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Figure 2. Example of waveforms where the frequency is 50 Hz, time delay is 0.0025 s, and phase shift
is 0.25π rad.

Using Werner formulas, Equation (8) becomes:

p(t) = VM·IM· 12 ·[cos(2·ω·t + ϕ) + cos(−ϕ)]
= 1

2 ·VM·IM·[cos(2·ω·t + ϕ) + cos(ϕ)]
(9)

since:
cos(−ϕ) = cos(ϕ) (10)

Focusing on the peak value of the instantaneous power and searching for its analytical
expression, it is necessary to calculate the time derivative of p(t) from Equation (9) and set
such derivative equal to zero:

dp(t)
dt

=
1
2
·VM·IM·[− sin(2·ω·t + ϕ)·2·ω] = 0 (11)

To identify the maximum points while excluding the minimum ones, the graph of
p(t) and its time derivative can be useful, as seen in Figure 3. The argument of sine in
Equation (11) is in the horizontal axis.
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The time derivative of the instantaneous power in (11) is positive when:

− sin(2·ω·t + ϕ) > 0 (12)

or:
sin(2·ω·t + ϕ) < 0 (13)

This is true in the range:
π < 2·ω·t + ϕ < 2π (14)

Looking at Figure 3, the maximum point for the instantaneous power occurs at 2π or
0, and thus when the argument of the sine is:

2·ω·t + ϕ = 2π = 0 (15)

Considering this point, a further confirmation comes from the calculation of the second
derivative of the instantaneous power:

d2 p(t)
dt2 = −ω·VM·IM· cos(2·ω·t + ϕ)·2·ω (16)

that is negative:
d2 p(t)

dt2 = −ω·VM·IM·2·ω < 0 (17)

because, from Equation (15):

cos(2·ω·t + ϕ) = cos(2π) = cos(0) = 1 (18)

The second derivative is negative, confirming the detection of the maximum point for
the instantaneous power.

Coming back to Equation (9), the instantaneous power at the maximum point is
expressed as:

p(t) =
1
2
·VM·IM·[cos(2·ω·t + ϕ) + cos(ϕ)] =

1
2
·VM·IM·[1 + cos(ϕ)] (19)

or:
pM =

1
2
·VM·IM·[1 + cos(ϕ)] (20)

then the power factor cosϕ is:

cos ϕ =
pM

VM·IM
·2− 1 (21)

Peak values of voltage and current can be rewritten in terms of rms values, as follows:

VM =
√

2·Vrms IM =
√

2·Irms (22)
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so that:
cos ϕ =

pM
Vrms·Irms

− 1 (23)

or:
cos ϕ =

pM
S
− 1 (24)

From a mathematical point of view, these relations are undefined in the case of zero
value for Vrms or Irms. Regardless, in this case, the electric power is null for certain, and no
further calculations are necessary.

Finally, multiplying each term of Equation (24) by S and considering that the active
power P is the product of S and cosϕ, the new formulation for the evaluation of the active
power is obtained by:

P = pM − S (25)

Thus, the active power can be easily calculated as the difference between the peak
values of the instantaneous power and apparent power. The last equation suggests that the
active power can be computed without measuring the phase shift and frequency.

From power triangle formula:

S2 = P2 + Q2 (26)

the absolute value of the reactive power is easily obtained by the following:

|Q| =
√

pM·(2·S− pM) (27)

Alternatively, in the range ϕ ∈ [0, π], one can calculate ϕ from the power factor in
Equation (24) and then calculate Q using sinϕ.

The final results remain the same in the case of voltage or current expressed in terms
of sine, as in Equation (6). An analytical proof is in Appendix A.

4. Validation

It is easy to verify that the proposed formulas used to calculate the active and reactive
power lead to the same values achieved by using traditional equations.

To validate this statement, readers can implement a simple code in Matlab environment
as the one reported in the following, confirming the correctness of the proposed formulation.
This example refers to a pure sine waves condition.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
t = 0:1e-6:0.05; % time samples
f = 50; % frequency
w = 2*pi*f; % angular frequency
phi = 1/4*pi; % phase shift between voltage and current
VM = 325; % voltage peak value
IM = 15; % current peak value
Vrms = VM/sqrt(2); % voltage rms value
Irms = IM/sqrt(2); % current rms value
v = VM*cos(w*t); % instantaneous voltage
i = IM*cos(w*t + phi); % instantaneous current
p = v.*i; % instantaneous power
pM=max(p); % power peak value
plot(t,v,t,i,t,p); % plot waveforms
S = Vrms*Irms; % apparent power
cosphi_standard=cos(phi) % power factor
P_trad = S*cos(phi) % active power, traditional calculation
Q_trad = S*sin(phi) % absolute value of reactive power, traditional calculation
cosphi_new = pM/S-1 % power factor calculation, new approach
P_new = pM-S % active power calculation, new approach
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Q_new = sqrt(pM*(2*S-pM)) % absolute value of reactive power calculation, new approach
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
The following sections report information about:

• An analysis of measurement errors in the case of noise;
• The implementation of the proposed method for three-phase systems; and
• The implementation in the case of harmonic distortion.

The theoretical analysis for each of these cases can be easily confirmed by simulating
different scenarios and comparing the results coming from the new method to the ones
obtained with the standard approach.

In recent years, some experimental tests in different test benches have been carried
out. To this aim, specific prototypal boards for the sensing and conditioning of signals have
been developed to realize three-phase digital power meters for specific applications [13,14].
Control has been realized using different types of micro-controllers. In all scenarios, at
different voltage amplitude, frequency, noise, harmonics, etc., the results confirm the
validity of the theoretical analysis.

From a practical point of view, during laboratory activities, it has been observed that
the proposed method can be easily implemented by programming commercial, low-cost
micro-controllers. One of the main advantages consists in avoiding the use of any counter
subroutine for the evaluation of the frequency or phase shift.

4.1. Error Analysis

In many operating conditions, the relative error of the proposed method is expected
to be lower in comparison to the traditional approach for the following reasons.

The first reason deals with the number of elements whose relative error impacts the
overall inaccuracy. Active power is commonly expressed as:

P = Vrms·Irms· cos ϕ = Vrms·Irms· cos
(
ω·tϕ

)
= Vrms·Irms· cos

(
2·π· f ·tϕ

)
(28)

Based on the rules for the propagation of uncertainties, the relative error εP linked to
the final value of P is proportional to the relative error caused by each element:

εP ∝
(

εVrms , ε Irms , ε f , εtϕ

)
(29)

where each term is the ratio between the absolute error ∆ and the value of the physical quantity:

εVrms =
∆Vrms

Vrms
ε Irms =

∆Irms

Irms
ε f =

∆ f

f
εtϕ =

∆tϕ

tϕ
(30)

In the new approach, active power is calculated as in Equation (2):

P = pM − S = pM −Vrms·Irms (31)

so that:
εP ∝

(
εpM , εVrms , ε Irms

)
(32)

where:

εpM =
∆pM

pM
(33)

In comparison to Equation (29), which is referred to the traditional formula, the
number of relative error terms in Equation (32) is lower. In other words, the number of
elements that would lead to inaccuracies are reduced.

In most real applications, the power factor is close to 1, or it is compensated in order
to get high values for well-known reasons [15,16]. This means that the phase difference
between the voltage and current is usually close to 0 or very low. In this case, the value of
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pM in Equation (33) is very high, leading to the opportunity to neglect its relative error in
Equation (32).

A rigorous analysis of the measurement errors taking into account all possible sce-
narios, as well as the systematic and accidental errors, is out of the scope of this work.
Regardless, from the qualitative analysis reported above, it is clear that the proposed
method gives some benefits for accuracy. For the sake of example, Figure 4 shows voltage
and instantaneous power in the presence of white Gaussian noise [17], where the signal-to-
noise ratio is 30. Zoom windows highlight the issues encountered during the measurement
process, assuming that the instrument adopts the first sample that reaches the zero value
as the instant of the zero-cross of the waveform. In this numerical example, the rated
values are:

VM = 325.00 V, Vrms = 229.81 V

IM = 15.00 A, Irms = 10.61 A

tϕ = 0.00250 s, f = 50.00 Hz, ϕ = 0.25 π rad = 0.7854 rad

P = Vrms·Irms· cos ϕ = 1723.6 W

(34)Sensors 2022, 22, x FOR PEER REVIEW 9 of 13 
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Using the traditional formula, in the worst case the measurements, errors caused by
noise lead to:

VM = 348.50 V, Vrms = 246.43 V

IM = 15.95 A, Irms = 11.28 A

tϕ = 0.00258 s, f = 50.30 Hz, ϕ = 0.8154 rad

P = Vrms·Irms· cos ϕ = 1905.7 W, εP = 0.1057 ∼= 11%

(35)

Repeating the measurement with the proposed method and using for the calculation
the sample of p(t) with the highest recorded value, the final relative error in the worst case
is lower:

VM = 348.50 V, Vrms = 246.43 V

IM = 15.95 A, Irms = 11.28 A

pM = 4578.3 W

P = pM − S = pM −Vrms·Irms = 1798.5 W, εP = 0.0435 ∼= 4%

(36)
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This example confirms the effectiveness of the proposed approach for the final accuracy.

4.2. Three-Phase Systems

In a three-phase system, Equation (2) for the active power becomes:

P = pM,a − Sa + pM,b − Sb + pM,c − Sc (37)

where the terms pM and S are referred to the phases a, b, and c. In a symmetrical and
balanced three-phase system, a compact form is obtained as follows:

P = 3·(pM − S) (38)

where pM and S are again referred to a single phase. The power factor and reactive
power are:

cos ϕ =
pM
S
− 1 (39)

|Q| = 3·
√

pM·(2·S− pM) (40)

4.3. Harmonics

The increasing presence of renewable energy sources, storage systems, and power
electronics devices into the grid causes a significant harmonic distortion in the current
and voltage waveforms [18–20]. Modern power meters shall be able to measure the active
power in the presence of harmonics.

The proposed method also remains valid in this case. Equation (2) has to be applied
for each harmonic component h:

Ph = pM,h − Sh = pM,h −Vrms,h·Irms,h (41)

The total power is the sum of the active power contributions from all the H harmonics:

P = ∑
H

Ph (42)

or:
P = ∑

H
pM,h −Vrms,t·Irms,t (43)

where Vrms,t and Irms,t are the total rms values of voltage and current:

Vrms,t =

√
1
H
·∑

H
V2

rms,h Irms,t =

√
1
H
·∑

H
I2
rms,h (44)

5. Discussion

Below is a summary of benefits and other information related to the method presented
in this paper:

• Active power is calculated in a straightforward way by exploiting the peak values of
the instantaneous power and apparent power;

• The presented approach is similar to the traditional one, but its practical implementa-
tion is simpler;

• A direct measurement of the phase shift between signals (i.e., the direct measurement
of their time delay) is no longer required;

• A direct measurement of frequency is no longer required;
• In the case of frequency or amplitude variations, the estimation of the active power is

automatically updated after a brief settling time;
• In comparison to the traditional procedure, the proposed method ensures the reduction

of measurement errors thanks to the reduced number of elements impacting the overall
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inaccuracy and to the opportunity to neglect the relative error of pM in most cases, as
described in Section 4.1;

• It is easy to apply the same formulation to get the active power in three-phase electric
systems, as well as in presence of harmonic distortion;

• Taking into account the measurement of the reactive power at the grid level [18], the
contribution of this work is a bit limited because Q is not calculated in a direct way
since it depends on the preliminary assessment of P;

• The proposed approach has general validity, and it can be extended for all cases in
which it is relevant to analyze the correlation between two or more periodic signals
having a time delay; and

• Although this study deals with electric systems, there are other possible fields of
application, for example, mechanical vibrations, complex analysis, and so on.

Future works will regard the extension of this study for the cases listed in the last
points, including further investigation on the measurement of reactive power.

6. Patents

A utility model patent is pending.
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Appendix A

This appendix reports the equations representing the analytical proof of the proposed
method in the case of voltage and current expressed as sine waves. Figure A1 shows
the graph of p(t) and its time derivative. The argument of sine in Equation (A3) is in the
horizontal axis.

It is worth noting that the final results are identical to the ones presented in Section 3.

v(t) = VM· sin(ω·t)
i(t) = IM· sin(ω·t + ϕ)

(A1)

p(t) = v(t)·i(t) = VM· sin(ω·t)·IM· sin(ω·t + ϕ)

= 1
2 ·VM·IM·[− cos(2·ω·t + ϕ) + cos(−ϕ)]

= 1
2 ·VM·IM·[− cos(2·ω·t + ϕ) + cos(ϕ)]

(A2)

dp(t)
dt

=
1
2
·VM·IM·[sin(2·ω·t + ϕ)·2·ω] > 0 (A3)

sin(2·ω·t + ϕ) > 0 (A4)

0 < 2·ω·t + ϕ < π (A5)

d2 p(t)
dt2 = ω·VM·IM· cos(2·ω·t + ϕ)·2·ω (A6)
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d2 p(t)
dt2

∣∣∣∣
2·ω·t+ϕ=π

= ω·VM·IM· cos(π)·2·ω < 0 (A7)
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