
Eisele et al.

REVIEW

Embedded Fuzzing: a Review of Challenges, Tools,
and Solutions
Max Camillo Eisele 1*, Marcello Maugeri 2, Rachna Shriwas 3, Christopher Huth 1 and Giampaolo Bella 2

Abstract
Fuzzing has become one of the best-established methods to uncover software bugs. Meanwhile, the market of
embedded systems, which bind the software execution tightly to the very hardware architecture, has grown at a
steady pace, and that pace is expected to become yet more sustained in the near future. Also embedded systems
benefit from fuzzing, but the innumerable existing architectures and hardware peripherals complicate the
development of general and usable approaches, hence a plethora of tools have recently appeared.

Here comes a stringent need for a systematic review in the area of fuzzing approaches for embedded systems,
which we term “embedded fuzzing” for brevity. The inclusion criteria chosen in the present article are
semi-objective in their coverage of the most relevant publication venues as well as of our personal judgement.
The review rests on a formal definition we develop to represent the realm of embedded fuzzing. It continues by
discussing the approaches that satisfy the inclusion criteria, then defines the relevant elements of comparison and
groups the approaches upon the basis of how the execution environment is served to the System Under
Test (SUT). The resulting evaluation produces a table with 42 entries, which in turn supports discussion
suggesting vast room for future research due to the limitations currently noted.
Keywords: embedded systems; dynamic analysis; vulnerability mining; embedded security; software security

1 Introduction
Fuzzing is an increasingly popular technique for soft-
ware testing, namely for findings bugs that could either
represent functional problems and vulnerabilities that
could be exploited by a malicious attacker. It uses ran-
domness to generate test data for a target with the goal
of triggering faults. Faults indicate bugs and can po-
tentially pose a security vulnerability. Because fuzzing
is a dynamic method, it analyzes the software while it
is executed. By design, dynamic analysis only allows
us to find faults that actually occur during execution.
Consequently, it is necessary to exercise as many parts
of the code and interleaving of branches as possible.

Since fuzzing with pure random input has a small
chance to reach large parts of the code, sophisticated
fuzzing tools make use of additional information, such
as input structure or code-coverage, to generate inputs.
A simple but effective approach is to gather code cov-
erage information during input processing of the SUT
and collect inputs that trigger previously unreached
code parts. This growing collection of inputs, called
corpus, is used continuously to generate further inputs.
*Correspondence: MaxCamillo.Eisele@de.bosch.com
1Safety, Security and Privacy, Robert Bosch GmbH, Renningen, Germany
Full list of author information is available at the end of the article

Despite its simple underlying principles, fuzzing has
proved as an effective method for system and software
testing and is recommended by several industry stan-
dards. For example, in the ISO 26262 - Road vehicles -
Functional Safety [1], fuzzing is advocated as one of the
testing methods to ensure robustness. Fuzzing can also
be found as a recommendation in the ISA/IEC 62443-4-
1 - Secure product development lifecycle requirement [2].
The recently released ISO/SAE 21434 - Road vehicles
- Cybersecurity [3] recommends fuzzing as a testing
method, too. Additionally, fuzzing can be used in pene-
tration testing, which is recommend in ISO/IEC/IEEE
291119 - Software and systems engineering — Software
testing [4], ISO/IEC 12207 - Systems and software en-
gineering — Software life cycle processes [5], ISO 27001
- Information technology - Security techniques [6], ISO
22301 - Security and resilience [7].

Fuzzing user (software) applications perhaps is the
best-established use of fuzzing, and there are several
consolidated techniques for gathering feedback from a
target process. For example, the OSS-Fuzz [8] project
revealed over 30,000 bugs in 500 open source projects
by using coverage-guided fuzzers such as libFuzzer [9],
AFL++ [10], and honggfuzz [11].

Another important, growing area for fuzzing pertains
to embedded systems, which are microcontroller-based

mailto:MaxCamillo.Eisele@de.bosch.com

Eisele et al. Page 2 of 16

devices in conjunction with their dedicated software.
Typically developed for specific purposes, embedded
systems are used pervasively in modern society, and
innumerable examples could be made, including smart
meters, pacemakers, and factory robots, to just name
a few. The market of embedded computing has been
growing constantly and is forecasted to keep this trend
in the near future [12]. Notably, embedded systems
are key components for the Internet of Things (IoT)
and for Cyber Physical Systems (CPSs). Therefore, the
motivation for fuzzing embedded systems is remarkable.

A first essential feature of embedded systems is that
that their firmware is tightly coupled with the specific
hardware, including connected peripherals. For exam-
ple, the firmware of a smart light bulb or of a central
heating control panel are both extremely unlikely to
work seamlessly on different hardware. A second es-
sential feature of embedded systems is their inherent
diversity, which is reflected on the operating systems,
CPU architectures, communication mechanisms, and
hardware peripherals adopted. For example, while some
embedded systems may run Linux-based operating sys-
tems, there are some without any operating system at
all. Also, while desktop and server systems mainly rely
on a few CPU architectures and Operating Systems,
these may vastly vary for embedded systems.

We contend that these two features also form the
two essential reasons why fuzzing embedded systems
is still an open challenge at present [13]. For example,
compiling distinct modules, like libraries, into common
user applications and exercise fuzzing on them does
not work well to test code portions that interact di-
rectly with the hardware; incidentally, because of the
diverging compiler and environment, this would not
test the exact code that ends up on the actual device. It
becomes apparent that a reliable, holistic fuzz testing
of embedded systems ought to cover both the firmware
code as well as the appropriate environment for that
firmware. Moreover, the aforementioned diversity poses
the biggest challenge due to the need for the fuzzer
to scale up to innumerable variants of hardware and
firmware that are often poorly documented.

Therefore, we hypothesize that a golden tool and so-
lution for fuzzing embedded systems (embedded fuzzing
for short) do not exist yet. To verify this hypothesis,
we formulate the following research question: what are
the main features and limitations of current tools for
fuzzing embedded systems? To address this question,
the present article makes a systematic review of the
state of the art on approaches to embedded fuzzing.
Our review rests on a formal description of fuzzing
for embedded systems and leverages it to advance a
clustering of the reviewed works upon the basis of their
underlying mechanisms.

The treatment highlights that emulation-based ap-
proaches work well for academic examples but may fail
on real-world use cases. By contrast, hardware-based
approaches with all their incarnations may yield best re-
sults albeit not without limitations. Hybrid approaches
seem to bear disadvantages from both worlds. Through
the presentation of the whole picture on fuzzing for
embedded systems, this article draws features as well
as limitations of each reviewed work, ultimately demon-
strating what kind of future research is needed and
deriving directions on how to pursue it.

Section 2 defines the criteria for a piece of research to
be included in our review, and Section 3 introduces our
extended model for fuzzing embedded systems. After
that, we review related work of hardware-based and
emulation-based embedded fuzzing in Section 4 and
Section 5, respectively. Abstraction-based approaches
are reviewed in Section 6. In Section 7 we evaluate the
reviewed work, discuss related work in Section 9 and
discuss future trends for embedded fuzzing in Section 8.
We conclude the paper in Section 10.

2 Inclusion criteria
The inclusion criteria for published material to be in-
cluded in the present review are:
C1 Research papers that are published in the top

five venues in the category “Engineering & Com-
puter Science”, sub-category “Computer Security
& Cryptography” according to Google Scholar [14].

C2 Research papers that are published during the five
years between 2017 and 2021.

C3 Research papers that mention “fuzzing” and
“firmware” or, alternatively, “fuzzing” and “em-
bedded”.

C4 Research papers or tools that we feel convey rele-
vant approaches to embedded fuzzing.

The first two criteria are objective, as Scholar offers
convenient selection and sorting facilities for research
venues. The chosen area of security is the one that we
found most relevant to fuzzing in general, considering
fuzzing as a technique for unveiling software vulnerabil-
ities that an attacker could exploit. To confirm this, we
also tried subcategories “Software Systems” and “Com-
puting Systems” but then none of their papers survived
the criterion C4. The five venues arising through the
first criterion are:
V1 ACM Symposium on Computer and Communica-

tions Security.
V2 IEEE Transactions on Information Forensics and

Security.
V3 USENIX Security Symposium.
V4 IEEE Symposium on Security and Privacy.
V5 Network and Distributed System Security Sympo-

sium.

Eisele et al. Page 3 of 16

Also criterion C3 is objective. Scholar offers a con-
venient search facility over the contents of published
papers, we queried it with the string “fuzzing AND
(firmware OR embedded)” over each of the five iden-
tified venues. However, many papers identified this
way were not relevant to our purposes for a variety
of reasons, ranging from fuzzing being treated only
marginally or being mentioned only in the paper ref-
erences. Here is where criterion C4 comes into place,
indicating that we had to exercise manual scrutiny to
further select the very contributions that would convey
relevant approaches and tools for embedded fuzzing.

Moreover, we decided to appeal to an additional,
purposely subjective, inclusion criterion in order to
freely represent our experience through the review. It
is apparent that criterion C4 does not deliberately refer
to a specific time window or venue, hence applying it in
isolation from the previous criteria provides us with the
freedom of selection we also wanted to have. Therefore,
our resulting inclusion criteria can be represented as a
sentence in propositional logic:

(C1∧C2∧C3∧C4) ∨ (C4 ∧¬(C1∧C2∧C3)).
Clearly, this sentence is logically equivalent to C4 be-
cause our personal judgement had to be applied to all
possible candidates. However, its construction allows
us to represent the numbers of papers for the meaning-
ful combinations of criteria and venue as well as the
papers that we freely decide to consider. Such numbers,
in particular for the two main disjuncts in the sentence,
can be found in Table 1. It can be understood why our
review features a total of 42 papers.

Table 1 Numbers of papers per criterion and venue
C1∧C2 C1∧C2∧C3 C1∧C2∧C3∧C4

V1 1400 61 2
V2 1350 12 1
V3 716 79 15
V4 518 38 2
V5 315 29 4

C4 ∧¬(C1∧C2∧C3)
18

3 Background and Notation
In this section, a formal description of embedded
fuzzing is proposed to mathematically describe fuzzing
as a stochastic process. Thereby, the distinct tasks an
embedded fuzzer must fulfil are described in an algo-
rithmic manner. We use the notation introduced by
Böhme [15] and transform it to fuzzing systems.

Let a system S be our target that we fuzz. The sample
space for system S is the input space D. Fuzzing is
then a stochastic process (D,F , P) of selecting inputs
ti from the input space D. The event space F , or

fuzzing campaign, is then the collection of all drawn
input, i.e.

F = {ti|ti ∈ D}N
i=1 (1)

The probability function P dictates the selection of
an input ti with probability pi to be part of the fuzzing
campaign F . Note that we leave out the often used but
poorly specified terms black-box, gray-box, or white-
box fuzzing. The degree of smartness is modeled by
adjusting probability function P , i.e. probability pi for
each drawn test input. A tool that implements the
sampling function of (D,F , P) is called a fuzzer.

The probability function P can depend on obser-
vations of the system S. If no observations influence
the probability pi for selecting a new input ti (all pi’s
are equal), the fuzzing campaign is a uniform random
tester[1].

Sampled inputs ti are processed by system S with
its configuration C, as in equation 2. The configura-
tion C describes the static environment of the system,
including hardware properties.

In contrast to existing formal definitions, we intro-
duce an observing mechanism that can observe system
S in desired, not further specified, dimensions. The ob-
servation of the system’s behavior on processing input
ti is then described by Oti ∈ O and is obtained by

Oti

observe←−−−−− SC(ti), 1 ≤ i ≤ N, (2)

where observe←−−−−− describes the observations of the sys-
tem during the execution. This construction allows for
example to gather code coverage of a system or to
observe whether exceptional states of the system have
been reached. It also allows for monitoring emitted
physical side-channel data or doing liveness checks of
the system after a processed input. Further observa-
tions can be execution time or the output of a system.
The specific observation space depends on the actual
device and observer.

For fuzzing, algorithm 1 is built around equation
2, which is called in line 4, where Oti

is the concrete
observation of system SC on processing input ti.

The algorithm continuously samples inputs ti ∈ D on
behalf of the probability function P that are then pro-
cessed by system S. The observation Oti

is inspected for
unspecified behavior in function specified. For exam-
ple, the specification can contain maximum execution
[1]Even a non-deterministic black-box fuzzer could have
some non-empty observations or some non-uniform
probabilities.

Eisele et al. Page 4 of 16

Algorithm 1: System fuzzing algorithm
Input: System S with configuration C, initial seed corpus

C, probability function P
Output: Inputs leading to unspecified behavior T×

1 T× = ∅
2 while ¬(Timeout() ∨ Abort()) do // fuzzing loop
3 Pick ti ∈ D with probability pi // sample input

4 Oti

observe←−−−−− SC(ti)
5 if ¬ specified(Oti) then
6 T× = {ti} ∪ T× // preserve input
7 end
8 P = adjust(P ,Oti) // may benefit from Oti

9 end

durations or illegal states of the system. If unspeci-
fied behavior is discovered, the (hopefully) responsible
input ti is preserved in T×.

Finally, the probability function P may be adjusted
by function adjust, based on the new observation Oti

.
For example, mutation-based coverage-guided fuzzers
implicitly alter their probability function, when a new
execution path has been discovered by adding the re-
sponsible input to an input corpus. On each iteration,
a seed is picked from the input corpus and mutated
randomly to generate a new input – so the seeds di-
rectly influence the probability space of newly sampled
inputs.

Differential Fuzzing [16–18] refers to fuzzing of differ-
ent programs with respect to differences between the
observations Oti

, such as coverage or execution time.
With an adaption of algorithm 1, systems can be fuzzed
differentially, e.g. to test two implementations of the
same algorithm for a deviating behavior.

We model stateful fuzzing by allowing ti to contain
multiple inputs, ti = 〈t1

i , t2
i , . . . , tm

i 〉. Executing such a
sequence on system S brings it to a state s, which we
collect as part of S’s observation Oti

.
Ensemble Fuzzing, as introduced by Chen et al. [19],

is when multiple fuzzers execute algorithm 1. The main
idea is that the different tools synchronize their obser-
vations. The same system S can be run with different
configurations C and C′. For example, configuration
C′ can have the input validation, such as a checksum,
turned off to allow a fuzzer to get deeper into the SUT
more quickly. The original configuration C is then used
to validate inputs from configuration C′ to reduce false
positives.

Fuzzing Harness, or Fuzz Wrapper, is an adapter
between a fuzzer and a specific target. Applications
that process data directly from a file or console input
channel can most likely be fuzzed without any adapter
in between. For all other cases – a typically lightweight
– fuzzing harness is necessary to route input data from
the fuzzer to the target’s interface.

4 Hardware-based Embedded Fuzzing
The high coherency of software and hardware in em-
bedded systems suggests that fuzz testing is to be per-
formed on the actual device. However, already the ob-
serving of the device, i.e. implementing observe←−−−−−, poses a
challenge. In this section, we present projects that aim
to run the target application in its designed hardware
environment.

Fan et al. [20] ported the popular fuzzer AFL to
ARM-based IoT devices. Within their project ARM-
AFL they developed a code instrumentation strategy
for ARM assembly and implemented a lightweight heap
memory corruption detector. The whole fuzzing pro-
cess runs on the target device itself, leading to a high
throughput. In principle, the fuzzing process works ex-
actly like fuzzing on a desktop PC. The target process
is observed on crash signals and code-coverage in each
Oti

. ARM-AFL requires Linux as operating system
and the source code of the target program.

Frida [21] is a dynamic code instrumentation toolkit
that can hook into arbitrary user processes enabling
transparent access of the execution. It can also be con-
trolled remotely, allowing for hooking into Linux, QNX,
Android and iOS applications. Frida offers to collect
code coverage data from the hooked process to enable
coverage guided fuzzing. However, the Frida server ap-
plication must be executed on the target device, which
can be challenging on closed/commercial devices.

Bogdad and Huber [22] developed Harzer Roller –
a linker-based instrumentation tool for embedded secu-
rity testing. They address the problem that embedded
firmware often needs closed-source libraries in order
to communicate with the hardware, which cannot be
instrumented by the compiler. These libraries are usu-
ally shipped as an object file and are integrated into
the firmware by the linker. To be able to generate call
traces, all functions within the object file are renamed
and appropriate proxy functions are generated. For de-
tecting stack overflows, a stack canary can be generated
by the framework before calling the original function.
The authors state that this technique is meant for sim-
ple embedded devices with limited debug capabilities.
The instrumentation of an object file increases its size
up to 150%, which usually makes it impossible to in-
strument all libraries on memory-limited targets. The
framework has been used for fuzzing an ESP8266 using
Boofuzz [23] as black-box fuzzer.

Oh et al. [24] present a simple Dynamic Binary Instru-
mentation (DBI) method for embedded systems with-
out any dependency on the operating system. They con-
nect the target device with a debugger and insert soft-
ware breakpoints at manually chosen locations. When a
breakpoint is reached, the instrumentation framework
is notified, and the breakpoint is removed for further

Eisele et al. Page 5 of 16

execution. This method enables to observe manually se-
lected, executed code parts in Oti

and could be used for
coverage guided fuzzing of any embedded system, which
provides a suitable debugger. According to the mea-
surements of the authors, the overhead of this method
is only around 1%. However, the measurements have
only been done on one device.

Börsig et al. [25] present a method to instrument code
for ESP32 microcontrollers, whereby the coverage data
is returned to the fuzzer’s host via a JTAG connection.
For this, the source code must be available and the
GCC coverage instrumentation mechanism is used. The
input data is sent to the target via the original channel,
e.g. WiFi. However, the transfer of the coverage data
via the JTAG interface slows down the fuzzing process
roughly by a factor of ten.

Tychalas et al. [26] investigate security evaluation
of Programmable Logic Controllers (PLCs). Although,
PLC binaries are not regular programs, the authors
show that they can introduce vulnerabilities into sys-
tems. To reveal such vulnerabilities, they propose
a method to instrument PLC binaries, and enable
coverage-guided fuzzing on them.

Song et al. [27] presented PERISCOPE to exam-
ine communication between devices and drivers over
Memory-Mapped IO (MMIO) and Direct Memory Ac-
cess (DMA). The extension PERIFUZZ allows fuzzing
on this hardware-OS boundary. PERISCOPE needs to
be compiled directly into the target’s kernel. Analysis
and fuzzing can then be performed directly on present
MMIO and DMA regions. For demonstration, AFL is
used, but the actual fuzzer is interchangeable.

Delshadtehrani et al. [28] designed the programmable
hardware monitor PHMon for debugging, assisting
vulnerability detection, and enforcing security policies.
A prototype of the hardware monitor has been de-
ployed on an Field Programmable Gate Array (FPGA)
in conjunction with a RISC-V processor. It can be
used to generate coverage feedback directly from the
execution on the hardware. The authors state that
coverage-guided fuzzing with PHMon and AFL is 16
times faster, than fuzzing in a full system emulator.
However, the hardware monitor module needs to be
included on the hardware chip directly, to enable this
performance advantage.

Sperl et al. [29] present a side-channel approach of
gathering code coverage from embedded systems by pre-
cisely monitoring the power consumption of the target
device during execution. Therefore, an oscilloscope is
used to record power traces, which are processed further
on a host PC to recognize the different executed basic
blocks. The recognition is realized by machine learning
classification algorithms. With this technique, they are
able to approximate the Control Flow Graph (CFG)

with correlation coefficients of up to 0.9. For correct
results the setup needs to be calibrated and trained on
the actual Device under Test (DUT).

Garćıa et el. [30] utilized timing and electromagnetic
emanation side channels from embedded devices for
analyzing implementations of cryptographic algorithms.
They use these side channels in a specialized feedback-
driven fuzzing algorithm to recover cryptographic pri-
vate keys.

Chen et al. [31] present IoTFuzzer, which aims
for fuzzing IoT devices that are controlled by mobile
phone applications – in this case Android apps only.
It makes use of the fact that accompanying mobile
apps of IoT devices are aware of the exact protocol
and encryption for controlling the device. The idea is
to reuse the mobile app to send correct messages to
the target device and thereby enabling protocol-aware
fuzzing. For this, the mobile app is initially scanned
for functions that consume user input and forward it
to the IoT device. These functions are then re-used to
send fuzzing messages to the target device. This way,
the generation of syntactically and semantically correct
fuzzing messages is ensured. Crashes are detected by
observing the communication or doing liveness checks.

Redini et al. [32] have refined this method in their tool
DIANE. In contrast to IoTFuzzer, DIANE tries not
to hook into the function that consumes user input first,
but the last possible one, before the message is encoded
and send to the SUT. Thereby, eventual sanitization of
the user input within the mobile application is bypassed
and the possible input space is enlarged.

Snipuzz [33], also aims to fuzz test IoT devices with
accompanying mobile applications. Unlike IoTFuzzer
and DIANE, it additionally analyzes responses from
the target device to enable feedback-driven fuzzing. Ap-
propriate message sequences are gathered by reading
the public API, when it is available, or from analyzing
the communication between the accompanying mobile
application and the target device. As an alternative,
the accompanying mobile application can also be disas-
sembled, but this mostly requires more effort. Although
Snipuzz aims to be lightweight, it requires some man-
ual analysis to gather valid initial seeds and select the
right message sequences for fuzzing.

Aafer et al. [34] present a technique to perform
feedback-driven fuzzing of Android TV boxes based
on logging outputs. First, static analysis is applied to
extract logging statements within the target’s firmware.
With taint analysis, the collected logging statements
are classified on whether they are related to input
validation. This labelled collection of logging state-
ments is then used to train a Convolutional Neural
Network (CNN) model, that serves as a classifier for
logging outputs. During fuzzing, output logs are ana-
lyzed by using the model to detect diverging behavior

Eisele et al. Page 6 of 16

of the target and to provide feedback to the fuzzer. In
addition, they introduce an external component that
detects visual and auditory anomalies by capturing and
comparing video and audio signals before and after each
fuzzing step. This method generates a coarse-grained
feedback, compared to branch code coverage, and is des-
ignated for rather talkative devices, that give feedback
via logs.

5 Emulation-based Embedded Fuzzing
Emulators offer transparency and control of the emu-
lated subject and enable a precise observation Oti

of
internal operations in manifold dimensions. Further-
more, multiple instances of an emulator can be created
easily, enabling horizontal scaling of the fuzzing process.

However, there are several challenges of running
firmware of embedded devices in an emulator, which
are carved out well by Wright et al. [35]. Most notable
for fuzzing is the fidelity and the effort needed to adapt
an emulator to a specific target.

Application

System
Software

HW

Figure 1 Embedded systems architecture model according to
Noergaard [36].

Figure 1 shows an architecture model for embedded
systems. While the application logic is contained in the
application layer, potential operating systems are lo-
cated within the system software layer. However, there
are embedded systems without a dedicated operating
system, often referred to as bare-metal systems. The
system software layer then may contain bootloader,
drivers, and Hardware Abstraction Layer (HAL) mod-
ules. Executing the application within an emulator can
be realized by either replacing the hardware layer with
a system emulator or move only the application into a
user-mode emulator.

In this section, the most notable approaches are pre-
sented that enable embedded fuzzing in an emulator.

5.1 User Mode Emulation Fuzzing
User applications that are built for running in an op-
erating system can potentially be executed very easily
in an emulator, because of the well-defined operating
system interfaces at the application layer. User mode
emulation enables fuzzing of binary-only applications
with coverage guidance.

It is also possible to transfer user applications from
(in particular Linux-based) embedded systems into a
user mode emulator like QEMU to perform coverage
guided fuzzing, independently from the instruction set
architecture. However, accesses to the hardware that
embedded applications normally rely on need to be
treated adequately by the emulator.

Application

Custom
Kernel

EMUFuzzer Harness

Figure 2 Scheme of Fuzzing Applications in a User-Mode
Emulator

All investigated fuzzing frameworks in this category
utilize a custom kernel for this purpose, also depicted
in Figure 2. The thick boxes depict the parts that
originate from the actual target.

Chen et al. [37] developed the Firmadyne frame-
work, which allows for automated dynamic analysis
of Linux-based embedded firmware images. It extracts
the root filesystem from a binary firmware image and
utilizes a custom kernel to run the image within the
QEMU full-system emulator. With this setup, dynamic
analysis of the user applications in the firmware can be
performed, which is demonstrated by providing a set
of known exploits that can be tried on the emulated
device. Even though the full-system mode of QEMU
is used, Firmadyne should be considered to enter at
the application layer, because it deploys its own cus-
tomized kernel and only the user space applications
from the firmware are executed. The custom kernel
partially compensates for missing hardware emulation,
for example by providing an emulated NVRAM that
embedded devices often use.

The Firmadyne framework is enhanced by Kim et
al. in FirmAE [38]. They claim that the Firmadyne
framework could only get 16.28% of their tested set of
firmware images up and running for dynamic analysis.
To solve this problem, they introduced heuristics to
configure boot parameters, kernel parameters, network
interfaces and file systems correctly. With these modi-
fications they were able to automatically run 79.36%
of the aforementioned set of firmware images within
QEMU.

FirmFuzz [39] is an automated introspection and
analysis framework for IoT firmware. It aims for embed-
ded devices that offer user interfaces through a webpage

Eisele et al. Page 7 of 16

and are based on Linux. The QEMU system emula-
tor is set up with a customized kernel in conjunction
with fake peripheral drivers to compensate for potential
missing hardware emulation. A headless browser is used
to communicate with the device automatically through
a virtual network interface to find user interfaces. After
the static analysis of the firmware, a generation-based
fuzzer is set up. Seed input data is generated, using
the contextual information that is gathered from the
firmware image. The target is monitored for faults by
the modified Linux kernel within the emulator.

FIRM-AFL [40] is based on AFL and Firmadyne.
The idea is to speed up fuzzing within QEMU by let-
ting the target user process run in the user-mode as
long as possible. When necessary, the user process is
translated to the full system emulator of the appropri-
ate device hardware. Thereby the overhead of a full
system emulation is vastly omitted. The authors state
that with this mechanism, the fuzzing process can be
sped up by a factor of ten. However, it is required that
the target device runs a POSIX-compatible operating
system and the hardware can be emulated by QEMU.

Transferring embedded applications from Linux-
based devices into an emulator by providing a cus-
tomized kernel can be successful in some cases, in
particular when the target application does not rely
on special hardware peripherals. Nevertheless, there
remain many embedded systems to which this does
not apply, and which demand a different approach for
emulation-based fuzzing.

5.2 Full-System Emulation Fuzzing
Once an embedded system can be emulated adequately,
code coverage, fault states, and other meta informa-
tion of the execution can be obtained easily. The next
section is about methods that enable the full-system
emulation of embedded devices. For a correct emulation
of embedded firmware, all hardware peripheral accesses
must be treated in the emulator.

5.2.1 Peripheral Emulation

Application

System
Software

EMUFuzzer Harness

Figure 3 Scheme of Fuzzing Embedded Applications in a
Full-System Emulator

A hardware access manifests itself in read and write
operations on the hardware address space. Additionally
hardware interrupts are a mechanism to let hardware
peripherals trigger code areas from the firmware. Imple-
menting software equivalents of hardware peripherals
and providing them on their expected locations in the
hardware address space is a way to enable emulation.
When all peripherals from a target device can be emu-
lated, an unmodified firmware image can be executed
and fuzzing can be enabled with little effort as depicted
in figure 3.

The QEMU system mode is a popular full-system
emulator, which already provides configurations for
several microcontrollers and peripherals and supports
a large variety of architectures. TriforceAFL [41]
combines AFL with QEMU and enables emulation-
based coverage-guided fuzzing for targets that can be
emulated with QEMU. When the desired target device
is not supported, the implementation and configuration
can be very laborious and requires deep knowledge of
the hardware.

Herdt et al. [42] present a different solution for em-
ulating the whole hardware of an embedded system.
They apply libFuzzer to a SystemC virtual proto-
type. SystemC is defined as IEEE-1666 standard [43]
and provides a set of C++ libraries to define virtual
prototypes. Virtual prototypes are models of the en-
tire hardware system and allow an accurate simulation.
They are an established way of testing systems during
their development in the industry. Fuzzing is performed
on the virtual hardware by using a fully booted state of
the system, which is preserved by a fork-server mecha-
nism. However the complete system must be described
in SystemC, which requires deep insights into the SUT
and can cause a lot of manual work again.

Clements et al. [44] present HALucinator to ad-
dress the problem of emulating peripherals by using
the HAL as an entry point. First, it locates HAL func-
tions in the firmware through binary analysis. Second,
it intercepts the execution of the HAL functions and
instead mimics its expected behavior. Handlers for each
HAL function must be implemented manually once. Be-
side correct emulation, HALucinator can intercept
functions that provide random values and is able re-
place them by deterministic functions, which can render
fuzzing more efficient.

Kim et al. [45] proposed RVFuzzer for detecting
input validation bugs in robotic vehicles. Robotic vehi-
cles are cyber-physical systems managed in real-time
by a microcontroller. It needs to control actuators, pro-
cess sensor data, and react to control commands. A
careful validation of incoming control commands is
thereby required, especially if they are received from
an unencrypted broadcast medium. RVFuzzer tries to

Eisele et al. Page 8 of 16

detect (sequences of) control commands, that bring the
robotic vehicle into an unstable state. Therefore, the
control program is connected to a physical simulation
of the robotic vehicle and input commands as well as
environment parameters are mutated. Instabilities are
detected by observing whether the presumed state in
the control program deviates to much from that in the
simulation.

5.2.2 Peripheral Proxying

Application

System
Software

EMUFuzzer Harness Proxy

HW

Figure 4 Scheme of Embedded Fuzzing with Peripheral
Proxying

When deep knowledge about the SUT is missing,
hardware accesses of the firmware must be treated
differently. An alternative solution is to forward each
hardware access to the real device. Therefore, a proxy
application is introduced to route appropriate values
and triggered interrupts between the actual hardware
and the emulation, as shown in figure 4.

PROSPECT [46] uses TCP/IP connection to for-
ward hardware accesses, Avatar [47] a debugging con-
nection, and SURROGATES [48] routes hardware
accesses through a dedicated FPGA to the actual hard-
ware.

Regarding mobile system drivers, Talebi et al. [49]
developed Charm that enables fuzzing device drivers
by forwarding hardware peripheral accesses through
a USB-based connection. Since the drivers need to be
modified for this method, Charm works with open
source drivers only.

Avatar has a successor, Avatar2 [50], which is not
only intended for hardware access rerouting, but more
for orchestrating different frameworks to enable dy-
namic analysis. Its flexibility is proven by Muench et
al. [13].

They enable coverage-guided fuzzing on a wide va-
riety of devices by using PANDA [51] as emulator,
Avatar2 [50] for forwarding non-emulatable hardware
accesses, and Boofuzz [23] as fuzzer. Furthermore,
they uncover the issue of silent memory corruptions
that can occur in embedded devices without Memory
Management Units (MMUs) or operating systems that

take care of memory accesses. These are memory cor-
ruptions that do not result in a crash of the device
upon occurrence and are therefore are not easily ob-
servable. To detect silent memory corruptions, they
present heuristics that can be applied to an emulator,
independent from the way of hardware access treat-
ment. When using these heuristics all occurring memory
corruptions of a device can be discovered.

Peripheral proxying offers a solution to emulate an
embedded device without too much implementation
efforts. However, the forwarding of peripheral accesses
to the real hardware can depict a bottleneck, depending
on the number of requests to the hardware. Addition-
ally, manual configuration and setup of the proxying
mechanism is required.

5.2.3 Peripheral Modeling

Application

System
Software

EMU

MMIO

Fuzzer
Peripheral
Model

Figure 5 Scheme of Embedded Fuzzing with Peripheral
Modeling

When implementing virtual hardware takes too much
effort and peripheral proxying is too slow for fuzzing,
the automated hardware modeling can be a solution.
The idea is to learn how to respond to hardware accesses
such that the firmware continues its execution. The
peripheral model is thereby directly connected to the
MMIO address space and can be supported by the
fuzzer, as depicted in figure 5.

Gustafson et al. [52] present a semi-automated re-
hosting framework, called PRETENDER. They solve
the modeling of hardware peripherals by preliminary ob-
serving and recording of the behavior of the real device
with Avatar2. Hereby not only accesses to the hard-
ware are recorded, but also the timings and orders of
interrupts. Next, a rather complex step of categorizing
MMIO registers and initializing State Approximation
model occurs. This should allow for smart responses
to hardware accesses of the firmware. Finally, human
interaction is needed to define the entry point of the
fuzzing data. The authors state, that PRETENDER
allows for a survivable execution, which can just be
sufficient for a dynamic analysis of the device.

Eisele et al. Page 9 of 16

Spensky et al. refined this approach with Con-
ware [53], which can also learn hardware peripheral
behavior by first recording interactions between the
firmware and the real hardware peripheral and sub-
sequently extracting models for each of them. The
extracted models can then be used for a full system
emulation. In contrast to PRETENDER, Conware
claims to be more generic and even can model periph-
eral behavior that has not been recorded directly.

Another hardware agnostic approach for embedded
fuzzing is presented by Feng et al. [54]. Their frame-
work P2IM responds to each peripheral accesses (a
read from the MMIO address space) with input data
from the fuzzer. Therefore, the MMIO registers are cat-
egorized into Control Registers, Status Registers, Data
Registers and Control-Status Registers by observing
how the firmware accesses the registers. According to
the category, interaction with the registers is treated
differently. Most important is the treatment of Data
Registers, where P2IM directly injects input data from
the fuzzer. Thereby, the fuzzer itself models all of the
peripheral input generically, omitting the need for find-
ing and choosing the correct input vector for the target.
The interrupt emulation is implemented quite prag-
matically by sequentially firing one interrupt per 1000
executed basic blocks. When the initially supplied fuzz
input buffer is exhausted, the execution is terminated
and the code coverage is fed back to the fuzzer. The
explorative nature of the fuzzer is used to improve
the hardware peripheral modeling successively. The
framework supports existing fuzzers to be added as a
drop-in component, offering AFL as default. However,
peripherals that use DMA are not modeled by P2IM,
as this would need insights on the internal design of
the target device.

For automatic emulation of DMA input channels in
P2IM, Mera et al. [55] present the drop-in solution
DICE. It observes the behavior of a running firmware
in the emulator and recognizes candidates for DMA
input channels heuristically. In principle, it searches
for pointers to the internal RAM that are written to a
memory-mapped IO-registers. The authors claim, that
during their tests DICE did not create any false posi-
tive categorization and successfully detected 21 out of
22 actively used DMA input channels. With negligible
overhead it enables fuzzing of DMA input processing
firmwares without further hardware knowledge.

Johnson et al. [56] present a more targeted periph-
eral modeling approach with Jetset. Thereby, an an-
alyst manually defines a goal address in the firmware
that should be reached and Jetset tries to derive the
necessary hardware peripheral responses to reach this
address with symbolic execution. For instance, the tran-
sition from kernel space to user space can be used as

such a goal address. The explicit goal address allows
Jetset to mitigate path explosion during symbolic
execution.

Zhou et al. [57] enable peripheral modeling in their
tool µEmu, by mixing symbolic and concrete execution
to calculate appropriate responses to a hardware ac-
cesses. First, all hardware peripheral dependent inputs
are treated symbolically. To avoid path explosion, sym-
bolically calculated values are cached and reused during
concrete execution. When invalid execution states are
reached, the responsible cached values and the state
itself is marked as invalid and different paths are taken
by future symbolic executions. This way, the hardware
peripherals are enhanced iteratively.

Scharnowski et al. [58] refine the mechanism of P2IM.
Instead of putting a memory-mapped register into a
category, their framework Fuzzware handles each
individual access to a memory-mapped register by ad-
ditionally considering the program counter on each
access. On the first occurrence of an access, the emu-
lator is reset to the instruction right before accessing
the memory-mapped register and Dynamic Symbolic
Execution (DSE) is used to determine whether and
how the value affects the further execution. Accord-
ingly, the individual memory-mapped register access
gets just enough random input bits assigned, such that
all dependent branches can be reached. This leads to
a minimal consumption of input bits from the fuzzer,
while fuzzing the whole peripheral interaction. The
authors claim, that DMA could also be modeled with
further effort as well, but is considered out of scope of
their work.

5.3 Sandbox Emulation Fuzzing

Firmware

Sandbox

ContextHarness

F
u
n
ct
io
n

Fuzzer

Figure 6 Scheme of Embedded Fuzzing through Sandbox
Emulation

Eisele et al. Page 10 of 16

In cases, where a full system emulation is not feasi-
ble, lightweight sandbox emulation can be a solution.
Thereby, the binary code is executed from a manually
chosen point with a manually created context. The
idea is, to fuzz functions that do not communicate with
peripherals at all, thus the hardware peripherals do not
need to be emulated. This technique is almost hardware
independent, only the instruction set needs to be simu-
lated. Fuzzing a function from a binary firmware file
within a sandbox can be realized as shown in figure 6.

Miasm is a reverse engineering tool to analyze, modify
and partially emulate binary programs. It offers features
like assembling and disassembling for various architec-
tures, emulation with Just-In-Time (JIT) and symbolic
execution. In combination with Python-AFL, Mi-
asm can be used to perform fuzzing [59]. Therefore, a
sandbox is created by Miasm, input data needs to be
mapped to appropriate memory addresses and regis-
ters need to be initialized correctly. This technique is
mainly interesting for penetration testers, who reverse
engineer binaries and want to perform fuzzing of in-
teresting functions in this way. If the source code is
available, it is easier to perform fuzzing of hardware
independent functions by compiling them into a user
application and using a general purpose fuzzer.

The Unicorn CPU Simulator [60] was used by
Nathan in [61] in a similar way.

Maier et al. present BaseSAFE in [62], where they
also used the Unicorn CPU Simulator to fuzz differ-
ent layers of a smartphone baseband chip on manually
selected target functions and manually created memory
contexts. The downside of these sandbox emulation
fuzzing approaches is the constrained and manual se-
lection of the target function and manual creation of
the execution context.

A semi-automated approach of supplying an execu-
tion context to the target code is presented by Harrison
et al. [63] with their tool PartEMU. They present re-
quired steps, that allow experts to setup and configure
an emulator to enable dynamic analysis of TrustZones
from embedded systems. Therefore it is explained, when
hard and software components should be emulated or
reused, and how specific emulation stubs can be im-
plemented. Nevertheless, developing such a emulation
based execution context can cause huge manual effort
and requires expert knowledge.

Ruge et al. present Frankenstein [64], a highly spe-
cialized framework for fuzzing wireless modem firmware
in an emulated environment. They run the firmware of
a Broadcom Bluetooth chip within QEMU user mode.
Through sophisticated reverse engineering, about 100
locations in the code have been determined, where
the execution needs to be redirected and substituted
manually. This so-called hooking is required to ensure

correct emulation of the firmware. With this setup they
were able to fuzz the Bluetooth modems of popular
mobile phones from Apple and Samsung and unveiled
several security problems. However, the setup is highly
customized and requires a lot of manual effort to adapt
it to other embedded firmware.

An automated sandbox-based fuzzing tool for IoT
Firmware is presented by Gui et al. with FIRM-
CORN [65]. First, the firmware image is disassembled
and detected functions are rated based on the memory
operations they contain and the use of predetermined
sensitive functions, like read, strcpy, and execve. For
high rated functions, a context dump (memory and
register values) at the starting point of the function
is gathered from the actual device. This allows spe-
cific fuzzing of potential vulnerable functions within
the CPU emulator Unicorn. An automated mecha-
nism detects crashes of the emulator, which results
from missing emulated hardware and skips these crash-
ing functions during further virtual execution. They
state that the tool is developed for Linux-based devices
only, but it should be possible to extend it for further
platforms.

6 Abstraction-based Execution
Environment

Symbolic execution is known since several decades [66]
and seems not to be located within the domain of
fuzzing at a first glance. It analyzes the target program
independently from its execution environment. The
core idea is to treat all input vectors of a program
symbolically (similar to a variable in a mathematical
formula) and derive input constraints for all possible
program paths. From these constraints, concrete inputs
can be extracted that are known to trigger all possible
program paths – which is exactly the goal of fuzzing.

However, for each conditional branch in a program,
each possible path must be considered in different states.
This can lead to the so-called state explosion problem
and normally prevents using pure symbolic execution
in real-life applications.

6.1 Symbolic Execution of Embedded Firmware
Symbolic execution does not execute the program code
directly, but rather interprets it. It is therefore a good
candidate to tackle the challenge of lacking hardware
peripheral emulation. All values from hardware periph-
erals can therefore be symbolized and possible program
paths can be calculated. However, the more hardware
values are symbolized, the more constraints and paths
are present (Usually growing exponentially).

Davidson et al. [67] implemented FIE, that allows
symbolic execution of firmware for MSP430 microcon-
trollers by using a modified version of KLEE [68].

Eisele et al. Page 11 of 16

They assume that software of embedded systems is
simple enough to allow symbolic execution. Therefore,
the target firmware is compiled into a representation
that can be symbolically executed with KLEE. FIE
includes two notable optimizations: state pruning and
memory smudging. State pruning detects whether the
current state has already reached before and prunes
it, instead of adding it to the set of active states. The
memory smudging function allows us to avoid an in-
tractable state e.g. an infinite loop with an increment
inside. In this case the state pruning cannot work be-
cause the state is not equivalent due to the presence of
the increased variable. The memory smudging sets a
threshold for consecutive states that differ only in one
memory location.

Corteggiani et al. [69] present Inception, a symbolic
execution engine for embedded firmwares, also based
on the KLEE engine. They added a mechanism to sym-
bolically execute assembly code, which is commonly
found in embedded firmware code. Additionally, they
enable hardware access forwarding for retrieving con-
crete values from the actual hardware to reduce the
symbolical input space.

6.2 Concolic Execution of Embedded Firmware
Concolic execution refers to the combination of CON-
Crete and symbOLIC execution. Thereby, traces are
used to analyze reached conditions during a concrete
execution, and related constraints are derived. +These
constraints can be used to generate new input data
that exercises a different path of the code. This idea is
also termed as hybrid or concolic fuzzing.

Several general purpose hybrid fuzzers, such as
QSYM [70], SymCC [71] are available. Needless to say,
that there are also frameworks that focus on concolic
execution for embedded firmwares. Herdt et al. [72]
present an approach to integrate concolic testing en-
gine with SystemC based virtual prototype for the
RISK-V architecture. This obviously comes with all
the requisites from virtual prototypes again.

Ai et al. [73] propose a concolic execution approach for
embedded devices that supports various architectures.
They perform the concrete execution on the physical
device and move the symbolic execution to the host
via a debugging connection.

Although concolic execution is a promising method to
test code, it faces similar challenges as other embedded
fuzzers, because it relies on concrete program traces.

7 Evaluation
Our compact evaluation of the embedded fuzzing ap-
proaches reviewed above can be found in table 2. For
each reviewed paper, the table columns show what we
feel are the relevant elements of comparison. One is

whether the fuzzer needs the source code of the SUT
to run, and it is clear that this is a major factor for
many application scenarios. Another one is whether any
prototype tool implementing the proposed approach
is readily available and functioning for anyone to use,
irrespectively of whether it is open source. Addition-
ally, the table presents the key features as well as the
limitations of each candidate approach.

Overall, the wide variety of approaches in the table
demonstrates the diversity in the steadily growing re-
search field of embedded fuzzing. Therefore, devising
meaningful categories for the existing approaches in
order to profitably group the lines in the table requires
care and consideration of existing attempts.

Notably, general principles for evaluating and bench-
marking traditional fuzzers exist, as proposed by Klees
et al. [74]. Fuzzers should be tested against a large
set of benchmark programs, like GCG [75] or LAVA-
M [76] multiple times for at least 24 hours, with the
performance plotted over time. The performance should
be ideally measured in number of detected bugs. The
reached code coverage can be used as a secondary per-
formance measure. Additionally, different sets of seeds
should be considered and documented. Arguably, a
transfer of these principles to embedded fuzzers would
be useful. However, current research on embedded
fuzzing still faces more fundamental issues of portabil-
ity and scalability, namely about enabling a fuzzing
approach over the widest possible variety of embedded
systems of any complexity.

Wright et al. [35] propose to compare different re-
hosting frameworks in particular on the amount of user
interaction needed for the setup, termed as applica-
tion effort. The application effort refers to the ease
of adapting a framework to new targets. Preferably, a
framework can be adapted with little knowledge of the
target and low configuration effort. It could be mea-
sured in the estimation of time needed for the setup,
but this would heavily depend on the developer hence
be seriously affected by subjectivity.

In light of the existing classification attempts, we
feel that the relatively young field of embedded fuzzing
may currently be profitably partitioned upon the ba-
sis of how the execution environment is served to the
SUT. Therefore, we build three essential categories:
Hardware-based approaches for those that use the very
hardware of the SUT to operate; Emulation-based ap-
proaches for those that re-host the firmware of the
SUT into an emulator; Abstraction-based approaches
for those that abstract away the details of the hard-
ware. We further classify each category according to
finer observations.

Hardware-based approaches let the target software
execute in its designated environment, therefore we de-
cide to further divide these approaches upon the basis

Eisele et al. Page 12 of 16

Table 2 Overview of reviewed embedded fuzzing works

Environment Framework So
ur

ce
Co

de
Ag

no
st

ic
Av

ai
la

bl
e

Key Contributions Limitations

H
ar

dw
ar

e-
ba

se
d Instrumentation

ARM-AFL [20] 7 7 static instrumentation for ARM code on-target fuzzing only
Frida [21] 3 3 dynamic instrumentation for various OSes application on the target required
Harzer Roller [22] 3 7 static instrumentation for object files only function traces
Os-less DBI [24] 7 7 dynamic instrumentation with breakpoints manual selection of breakpoint loca-

tions
ESP32 Fuzzing [25] 7 3 static instrumentation for ESP32 applications slow coverage data transmission
ICSFuzz [26] 3 3 static instrumentation for PLC binaries dedicated to PLCs
PERIFUZZ [27] 7 3 fuzzing at hw-os boundary, driver monitoring must be compiled into the kernel
PHMon [28] 3 3 hardware module for gathering coverage data specific hardware required

Side-Channel Side-Channel Aware
Fuzzing [29]

3 7 code-coverage derived from power analysis calibration needed

Certified Side Channels [30] 3 7 EM and timing side-channels for crypto libraries only

Message
Interface
Reusing

IoTFuzzer [31] 3 3 reuse of accompanying mobile applications not feedback driven, Android-only
DIANE [32] 3 3 enhanced IoTFuzzer mechanism not feedback driven, Android-only
Snipuzz [33] 3 3 communication analysis for feedback for unencrypted channels only
Android TV Fuzzing [34] 3 7 using log output for feedback detailed logs nedded, Android-only

Em
ul

at
io

n-
ba

se
d

User Mode
Emulation

Firmadyne [37] 3 3 custom kernel for emulation linux-based applications only
FirmAE [38] 3 3 enhanced Firmadyne mechanism linux-based applications only
FirmFuzz [39] 3 3 fuzzing of IoT configuration webpages linux-based applications only
Firm-AFL [40] 3 3 speedup by hybrid user and system emulation linux-based applications only

Full-System
Emulation

TriforceAFL [41] 3 3 coverage-guided fuzzing with QEMU target must be emulatable by QEMU
SystemC VP Fuzzing [42] 3 7 coverage-guided fuzzing on VP virtual prototype required
HALucinator [44] 3 3 re-hosting at HAL stubs for HAL libraries required
RVFuzzer [45] 3 7 fuzzing controller for robotic vehicles rich physical simulation required

Peripheral
Proxying

PROSPECT [46] 3 7 peripherals proxying through TCP/IP requires pthreads and TCP/IP support
on target

SURROGATES [48] 3 7 proxying through a custom FPGA JTAG connection required
Charm [49] 7 3 proxying through USB recompilation needed
Avatar2 [50] 3 3 flexible, multi-purpose orchestrating framework any access to device required

Peripheral
Modeling

PRETENDER [52] 3 3 peripheral modeling by recording and learning
of peripheral behavior

unseen peripheral behaviour is not mod-
eled

Conware [53] 3 3 additional modeling of unseen peripheral behav-
ior

program for recording must be executed
on the target

P2IM [54] 3 3 peripheral modeling by automated classification
of requests

missing DMA support

DICE [55] 3 3 modeling of DMA-based peripherals DMA buffer size not priorly identifiable
Jetset [56] 3 3 peripheral modeling by symbolic execution and

manual guidance
manual guidance required

µEmu [57] 3 3 peripheral modeling by concolic execution caching can cause false hardware mod-
eling

Fuzzware [58] 3 3 peripheral modeling by detailed classification not for complex systems

Sandboxing

MIASM [59] 3 3 multi-purpose reverse engineering tool reverse engineering required
BaseSAFE [62] 3 3 coverage-guided fuzzing of baseband chips manually assembled environment
PartEMU [63] 3 7 coverage-guided fuzzing of TrustZones manually assembled environment
Frankenstein [64] 3 3 coverage-guided fuzzing of wireless fimwares customized for one specific device
FIRMCORN [65] 3 3 automated sandboxing of functions linux-based applications only

Ab
st

ra
ct

io
n-

ba
se

d Symbolic
Execution

FIE [67] 7 3 symbolic execution for MSP430 microcontrollers complex programs lead to state explo-
sion

Inception [69] 7 3 symbolic execution, even for handwritten assem-
bly and binary libraries

complex programs lead to state explo-
sion

Concolic
Execution

Concolic Testing on VP [72] 3 3 Concolic testing of RISC-V virtual prototypes target must be prototyped
Concolic Execution on
Proxy [73]

3 7 symbolic execution on host combined with con-
crete execution on target

for unix-like systems only

Eisele et al. Page 13 of 16

of how they gather feedback from the hardware about
the execution of the software. As a result, the hardware
category features the three sub-categories Instrumenta-
tion, Side-Channel, Message Interface Reusing.

A defining feature for Emulation-based approaches
is the way they treat hardware peripheral accesses,
so we coherently decide the five sub-categories User
Mode Emulation, Full-System Emulation, Peripheral
Proxying, Peripheral Modeling and Sandboxing.

The last category features Abstraction-based ap-
proaches, hence the two sub-categories for enabling
the abstraction process are Symbolic Execution and
Concolic Execution. It should be remarked that con-
colic approaches usually need traces from the execution
environment and therefore a concrete execution envi-
ronment but (manually) selected input vectors can be
made symbolic. Therefore, we decide to keep these with
Abstraction-based approaches.

8 Discussion
Despite the growing attention and proliferation of em-
bedded systems, the research field of embedded fuzzing
still lacks generic solutions. Even comparing different
tools remains a big challenge. From our perspective,
most tools are evaluated on a small set of targets, cho-
sen by the authors themselves.

The effectiveness of embedded fuzzers can only be
evaluated when testing can be done on a large collec-
tion of test subjects. A benchmarking suite for embed-
ded fuzzers, could consist of open-source embedded
firmwares in conjunction with appropriate hardware
peripheral emulation solutions. In this way, different
fuzzing strategies could be evaluated on embedded sys-
tems instead of relying on the ones that are developed
for user applications.

Furthermore, the different characteristics of embed-
ded systems in contrast to user applications should
be considered. Traditional fuzzing origins from quickly
terminating data processing applications. Embedded
systems are rather continuously running systems that
usually do not terminate after processing a single input.
If the internal state of a system changes during se-
quences of inputs, it is called stateful. Recently, several
fuzzers for stateful software have been proposed [77–80].
Especially, Pham et al. [78] have shown that stateful
programs, like network servers, have to be fuzzed with
awareness of their state to be efficient. Since embed-
ded systems typically are stateful, stateful embedded
fuzzing approaches are needed as well.

Most reviewed papers are emulation-based and cur-
rently, emulators seem to be the preferred way of en-
abling embedded fuzzing. Beside their mentioned ad-
vantages, there is always the disadvantage of a lower
fidelity, which makes it necessary to validate all found

bugs on the actual hardware or at least an accurate
model of it. This process could be automated by putting
the actual device in the loop and testing input candi-
dates immediately.

The other disadvantage of emulators is their setup
and configuration effort, to imitate the whole execution
environment. However, with the actual hardware, there
is an environment already present in which the embed-
ded software runs fine. Therefore, we see more research
potential in performing fuzzing on the actual hard-
ware and extract feedback from existing functionalities
e.g. debug interfaces. Common embedded debugging
tools from Lauterbach [81] or SEGGER [82] provide
real-time tracing mechanisms for a wide variety of mi-
crocontrollers, that could be used for fuzzing feedback.

Another, yet rarely handled aspect is that an em-
bedded system does have multiple interfaces, which
can be highly entangled. Further research needed to
consider the whole system, and not only individual
functions, interfaces, or processes while fuzzing. Such a
fuzzer could fuzz on multiple interfaces simultaneously,
while observing the whole system. Multiple fuzzers or
harnesses would need to synchronize their observations,
similar to ensemble fuzzing.

Recently, plenty of automated peripheral modeling
approaches like P2IM [54], and FUZZWARE [58] have
been proposed. For now, they seem to target rather
simple embedded systems. Since they need to model all
hardware peripherals that are accessed by the firmware,
the approaches do not scale well for more complex sys-
tems. Nevertheless, automated peripheral modeling
remains one of the most promising method to enable
generic embedded fuzzing. Further research in this area
could enable emulation-based fuzzing with low applica-
tion effort for more complex embedded systems, too.

9 Related Work
Detailed summaries of the challenges of fuzzing em-
bedded systems [13] and security analysis of embedded
systems [35,83] have been published. However, these re-
views do concentrate almost solely on emulation-based
approaches. We agree that emulation-based approaches
are on the rise but to get the whole picture of embedded
fuzzing, hardware-based approaches in all their faces
need to be considered, too. We aim to draw such a
whole picture and especially want do show the diversity
and creativity of the reviewed methods in this paper.

10 Conclusion
In this paper we reviewed the current state of the art of
embedded fuzzing. To structure the field, we proposed
a formal definition of embedded fuzzing and suggested
a taxonomy for it. We carved out the additional chal-
lenges of embedded fuzzing compared to the research

Eisele et al. Page 14 of 16

field of traditional fuzzing. Furthermore, we have shown
that there is currently no easily applicable solution for
embedded fuzzing. As traditional fuzzing has already
found numerous vulnerabilities in non-embedded soft-
ware, efficient and easily applicable embedded fuzzing
would increase security and integrity of the ubiquitous
embedded systems people interact with every day.

Abbreviations
HAL Hardware Abstraction Layer
SUT System Under Test
DBI Dynamic Binary Instrumentation
JIT Just-In-Time
DSE Dynamic Symbolic Execution
CFG Control Flow Graph
DUT Device under Test
IoT Internet of Things
DMA Direct Memory Access
MMIO Memory-Mapped IO
MMU Memory Management Unit
CPS Cyber Physical System
CNN Convolutional Neural Network
PLC Programmable Logic Controller
FPGA Field Programmable Gate Array

Availability of data and materials
All research has been done on publicly available works.

Competing interests
The authors declare that they have no competing interests.

Funding
Not applicable

Authors’ contributions
Max Camillo Eisele proposed the categories, ordered all works accordingly,
developed the appropriate figures and tables, and wrote many summaries as
well as the evaluation, discussion, and conclusion. Marcello Maugeri
researched the state of the art on embedded fuzzing and summarized some
related tools and works. Rachna Shriwas collected and summarized parts of
the related works on embedded fuzzing. Christopher Huth extended the
model and algorithm in Section 3 and gave overall guidance for the paper.
Giampaolo Bella structured the introduction, defined the inclusion criteria
and provided academic advises.

Acknowledgements
We would like to acknowledge all persons who provided feedback and other
input to this work.

Author details
1Safety, Security and Privacy, Robert Bosch GmbH, Renningen, Germany.
2Dept. of Math and Computer Science, Università degli Studi di Catania,
Catania, Italy. 3RBEI, Robert Bosch GmbH, Bangalore, India.

References
1. Road vehicles — Functional safety. Standard, International Organization

for Standardization, Geneva, CH (December 2018)
2. Secure product development lifecycle requirements. Standard,

International Electrotechnical Commission, Geneva, CH (January 2018)
3. Road vehicles — Cybersecurity engineering. Standard, International

Organization for Standardization, Geneva, CH (August 2021)
4. Software and systems engineering — Software testing. Standard,

International Organization for Standardization, Geneva, CH (September
2013)

5. Systems and software engineering — Software life cycle processes.
Standard, International Organization for Standardization, Geneva, CH
(November 2017)

6. Information technology — Security techniques — Information security
management systems. Standard, International Organization for
Standardization, Geneva, CH (October 2013)

7. Security and resilience — Business continuity management systems.
Standard, International Organization for Standardization, Geneva, CH
(October 2019)

8. Serebryany, K.: Oss-fuzz-google’s continuous fuzzing service for open
source software (2017)

9. LLVM: libFuzzer – a library for coverage-guided fuzz testing.
https://llvm.org/docs/LibFuzzer.html. Accessed: 2021-11-22

10. Fioraldi, A., Maier, D., Eißfeldt, H., Heuse, M.: Afl++: Combining
incremental steps of fuzzing research. In: 14th {USENIX} Workshop on
Offensive Technologies ({WOOT} 20) (2020)

11. Swiecki, R.: honggfuzz - Security oriented software fuzzer.
https://honggfuzz.dev/. Accessed: 2021-11-22

12. Alsop, T.: Global Embedded Computing Market Revenue from 2018 to
2027 (in Billion U.S. Dollars). The Insight Partners. Accessed:
2021-03-09 (2019)

13. Muench, M., Stijohann, J., Kargl, F., Francillon, A., Balzarotti, D.:
What you corrupt is not what you crash: Challenges in fuzzing
embedded devices. In: NDSS (2018)

14. Scholar, G.: Top 20 Computer Security & Cryptography Conferences.
https://scholar.google.com/citations?view_op=top_venues&vq=
eng_computersecuritycryptography. Accessed: 2021-12-02

15. Böhme, M.: Stads: Software testing as species discovery. ACM
Transactions on Software Engineering and Methodology (TOSEM)
27(2), 1–52 (2018)

16. Nilizadeh, S., Noller, Y., Pasareanu, C.S.: Diffuzz: differential fuzzing for
side-channel analysis. In: 2019 IEEE/ACM 41st International Conference
on Software Engineering (ICSE), pp. 176–187 (2019). IEEE

17. Noller, Y., Păsăreanu, C.S., Böhme, M., Sun, Y., Nguyen, H.L.,
Grunske, L.: Hydiff: Hybrid differential software analysis. In: 2020
IEEE/ACM 42nd International Conference on Software Engineering
(ICSE), pp. 1273–1285 (2020). IEEE

18. He, S., Emmi, M., Ciocarlie, G.: ct-fuzz: Fuzzing for timing leaks. In:
2020 IEEE 13th International Conference on Software Testing,
Validation and Verification (ICST), pp. 466–471 (2020). IEEE

19. Chen, Y., Jiang, Y., Ma, F., Liang, J., Wang, M., Zhou, C., Jiao, X.,
Su, Z.: Enfuzz: Ensemble fuzzing with seed synchronization among
diverse fuzzers. In: 28th {USENIX} Security Symposium ({USENIX}
Security 19), pp. 1967–1983 (2019)

20. Fan, R., Pan, J., Huang, S.: Arm-afl: Coverage-guided fuzzing
framework for arm-based iot devices. In: International Conference on
Applied Cryptography and Network Security, pp. 239–254 (2020).
Springer

21. FRIDA Dynamic instrumentation toolkit for developers,
reverse-engineers, and security researchers. https://frida.re/.
Accessed: 2020-11-04

22. Bogad, K., Huber, M.: Harzer roller: Linker-based instrumentation for
enhanced embedded security testing. In: Proceedings of the 3rd
Reversing and Offensive-oriented Trends Symposium, pp. 1–9 (2019)

23. Pereyda, J.: boofuzz: Network protocol fuzzing for humans. Accessed:
Feb 17 (2017)

24. Oh, J., Kim, S., Jeong, E., Moon, S.-M.: Os-less dynamic binary
instrumentation for embedded firmware. In: 2015 IEEE Symposium in
Low-Power and High-Speed Chips (COOL CHIPS XVIII), pp. 1–3
(2015). IEEE

25. Börsig, M., Nitzsche, S., Eisele, M., Gröll, R., Becker, J., Baumgart, I.:
Fuzzing framework for esp32 microcontrollers. In: 2020 IEEE
International Workshop on Information Forensics and Security (WIFS),
pp. 1–6 (2020). IEEE

26. Tychalas, D., Benkraouda, H., Maniatakos, M.: Icsfuzz: Manipulating
i/os and repurposing binary code to enable instrumented fuzzing in
{ICS} control applications. In: 30th {USENIX} Security Symposium
({USENIX} Security 21) (2021)

27. Song, D., Hetzelt, F., Das, D., Spensky, C., Na, Y., Volckaert, S., Vigna,
G., Kruegel, C., Seifert, J.-P., Franz, M.: Periscope: An effective probing
and fuzzing framework for the hardware-os boundary. In: NDSS (2019)

28. Delshadtehrani, L., Canakci, S., Zhou, B., Eldridge, S., Joshi, A., Egele,
M.: Phmon: a programmable hardware monitor and its security use
cases. In: 29th {USENIX} Security Symposium ({USENIX} Security
20), pp. 807–824 (2020)

29. Sperl, P., Böttinger, K.: Side-channel aware fuzzing. In: European
Symposium on Research in Computer Security, pp. 259–278 (2019).

https://llvm.org/docs/LibFuzzer.html
https://honggfuzz.dev/
https://scholar.google.com/citations?view_op=top_venues&vq=eng_computersecuritycryptography
https://scholar.google.com/citations?view_op=top_venues&vq=eng_computersecuritycryptography
https://frida.re/

Eisele et al. Page 15 of 16

Springer
30. Garćıa, C.P., ul Hassan, S., Tuveri, N., Gridin, I., Aldaya, A.C., Brumley,

B.B.: Certified side channels. In: 29th {USENIX} Security Symposium
({USENIX} Security 20), pp. 2021–2038 (2020)

31. Chen, J., Diao, W., Zhao, Q., Zuo, C., Lin, Z., Wang, X., Lau, W.C.,
Sun, M., Yang, R., Zhang, K.: Iotfuzzer: Discovering memory
corruptions in iot through app-based fuzzing. In: NDSS (2018)

32. Redini, N., Continella, A., Das, D., De Pasquale, G., Spahn, N., Machiry,
A., Bianchi, A., Kruegel, C., Vigna, G.: Diane: Identifying fuzzing
triggers in apps to generate under-constrained inputs for iot devices. In:
42nd IEEE Symposium on Security and Privacy 2021 (2021)

33. Feng, X., Sun, R., Zhu, X., Xue, M., Wen, S., Liu, D., Nepal, S., Xiang,
Y.: Snipuzz: Black-box fuzzing of iot firmware via message snippet
inference. arXiv preprint arXiv:2105.05445 (2021)

34. Aafer, Y., You, W., Sun, Y., Shi, Y., Zhang, X., Yin, H.: Android
smarttvs vulnerability discovery via log-guided fuzzing. In: 30th
{USENIX} Security Symposium ({USENIX} Security 21) (2021)

35. Wright, C., Moeglein, W.A., Bagchi, S., Kulkarni, M., Clements, A.A.:
Challenges in firmware re-hosting, emulation, and analysis. ACM
Computing Surveys (CSUR) 54(1), 1–36 (2021)

36. Noergaard, T.: Embedded systems architecture 2nd edition, a
comprehensive guide for engineers and programmers (2012)

37. Chen, D.D., Woo, M., Brumley, D., Egele, M.: Towards automated
dynamic analysis for linux-based embedded firmware. In: NDSS, vol. 16,
pp. 1–16 (2016)

38. Kim, M., Kim, D., Kim, E., Kim, S., Jang, Y., Kim, Y.: Firmae:
Towards large-scale emulation of iot firmware for dynamic analysis. In:
Annual Computer Security Applications Conference 2020 (2020). ACM

39. Srivastava, P., Peng, H., Li, J., Okhravi, H., Shrobe, H., Payer, M.:
Firmfuzz: automated iot firmware introspection and analysis. In:
Proceedings of the 2nd International ACM Workshop on Security and
Privacy for the Internet-of-Things, pp. 15–21 (2019)

40. Zheng, Y., Davanian, A., Yin, H., Song, C., Zhu, H., Sun, L.: Firm-afl:
high-throughput greybox fuzzing of iot firmware via augmented process
emulation. In: 28th {USENIX} Security Symposium ({USENIX}
Security 19), pp. 1099–1114 (2019)

41. Hertz, J., Newsham, T.: TriforceAFL.
https://github.com/nccgroup/TriforceAFL. Accessed: 2021-02-09

42. Herdt, V., Große, D., Wloka, J., Güneysu, T., Drechsler, R.: Verification
of embedded binaries using coverage-guided fuzzing with systemc-based
virtual prototypes. In: Proceedings of the 2020 on Great Lakes
Symposium on VLSI, pp. 101–106 (2020)

43. Group, S.-S.C.S.W.: IEEE 1666-2011 - IEEE Standard for Standard
SystemC Language Reference Manual.
https://standards.ieee.org/standard/1666-2011.html (2011)

44. Clements, A.A., Gustafson, E., Scharnowski, T., Grosen, P., Fritz, D.,
Kruegel, C., Vigna, G., Bagchi, S., Payer, M.: Halucinator: Firmware
re-hosting through abstraction layer emulation. In: 29th USENIX
Security Symposium (USENIX Sec), pp. 1–18 (2020)

45. Kim, T., Kim, C.H., Rhee, J., Fei, F., Tu, Z., Walkup, G., Zhang, X.,
Deng, X., Xu, D.: Rvfuzzer: finding input validation bugs in robotic
vehicles through control-guided testing. In: 28th {USENIX} Security
Symposium ({USENIX} Security 19), pp. 425–442 (2019)

46. Kammerstetter, M., Platzer, C., Kastner, W.: Prospect: peripheral
proxying supported embedded code testing. In: Proceedings of the 9th
ACM Symposium on Information, Computer and Communications
Security, pp. 329–340 (2014)

47. Zaddach, J., Bruno, L., Francillon, A., Balzarotti, D., et al.: Avatar: A
framework to support dynamic security analysis of embedded systems’
firmwares. In: NDSS, vol. 23, pp. 1–16 (2014)

48. Koscher, K., Kohno, T., Molnar, D.: {SURROGATES}: Enabling
near-real-time dynamic analyses of embedded systems. In: 9th
{USENIX} Workshop on Offensive Technologies ({WOOT} 15) (2015)

49. Talebi, S.M.S., Tavakoli, H., Zhang, H., Zhang, Z., Sani, A.A., Qian, Z.:
Charm: Facilitating dynamic analysis of device drivers of mobile systems.
In: 27th {USENIX} Security Symposium ({USENIX} Security 18), pp.
291–307 (2018)

50. Muench, M., Nisi, D., Francillon, A., Balzarotti, D.: Avatar2: A
multi-target orchestration platform. In: BAR 2018, Workshop on Binary
Analysis Research, Colocated with NDSS Symposium, 18 February 2018,
San Diego, USA, San Diego, ÉTATS-UNIS (2018).

http://www.eurecom.fr/publication/5437
51. Dolan-Gavitt, B., Hodosh, J., Hulin, P., Leek, T., Whelan, R.:

Repeatable reverse engineering with panda. In: Proceedings of the 5th
Program Protection and Reverse Engineering Workshop. PPREW-5.
Association for Computing Machinery, New York, NY, USA (2015).
doi:10.1145/2843859.2843867.
https://doi.org/10.1145/2843859.2843867

52. Gustafson, E., Muench, M., Spensky, C., Redini, N., Machiry, A.,
Fratantonio, Y., Balzarotti, D., Francillon, A., Choe, Y.R., Kruegel, C.,
et al.: Toward the analysis of embedded firmware through automated
re-hosting. In: 22nd International Symposium on Research in Attacks,
Intrusions and Defenses ({RAID} 2019), pp. 135–150 (2019)

53. Spensky, C., Machiry, A., Redini, N., Unger, C., Foster, G., Blasband, E.,
Okhravi, H., Kruegel, C., Vigna, G.: Conware: Automated modeling of
hardware peripherals. In: Proceedings of the 2021 ACM Asia Conference
on Computer and Communications Security, pp. 95–109 (2021)

54. Feng, B., Mera, A., Lu, L.: P2im: Scalable and hardware-independent
firmware testing via automatic peripheral interface modeling. In: 29th
{USENIX} Security Symposium ({USENIX} Security 20), pp.
1237–1254 (2020)

55. Mera, A., Feng, B., Lu, L., Kirda, E., Robertson, W.: Dice: Automatic
emulation of dma input channels for dynamic firmware analysis. arXiv
preprint arXiv:2007.01502 (2020)

56. Johnson, E., Bland, M., Zhu, Y., Mason, J., Checkoway, S., Savage, S.,
Levchenko, K.: Jetset: Targeted firmware rehosting for embedded
systems. In: 30th {USENIX} Security Symposium ({USENIX} Security
21) (2021)

57. Zhou, W., Guan, L., Liu, P., Zhang, Y.: Automatic firmware emulation
through invalidity-guided knowledge inference. In: 30th {USENIX}
Security Symposium ({USENIX} Security 21) (2021)

58. Scharnowski, T., Bars, N., Schloegel, M., Gustafson, E., Muench, M.,
Vigna, G., Kruegel, C., Holz, T., Abbasi, A.: Fuzzware: Using precise
mmio modeling for effective firmware fuzzing

59. Guedou: Using Miasm to fuzz binaries with AFL.
https://guedou.github.io/talks/2017 BeeRump/slides.pdf (2017)

60. Nguyen, A.Q., Dang, H.V.: Unicorn: Next generation cpu emulator
framework. In: Proceedings of the 2015 Blackhat USA Conference
(2015)

61. Voss, N.: Fuzzing the Unfuzzable. https://hackernoon.com/
afl-unicorn-part-2-fuzzing-the-unfuzzable-bea8de3540a5.
Accessed: 2021-02-25

62. Maier, D., Seidel, L., Park, S.: Basesafe: baseband sanitized fuzzing
through emulation. In: Proceedings of the 13th ACM Conference on
Security and Privacy in Wireless and Mobile Networks, pp. 122–132
(2020)

63. Harrison, L., Vijayakumar, H., Padhye, R., Sen, K., Grace, M.:
{PARTEMU}: Enabling dynamic analysis of real-world trustzone
software using emulation. In: 29th {USENIX} Security Symposium
({USENIX} Security 20), pp. 789–806 (2020)

64. Ruge, J., Classen, J., Gringoli, F., Hollick, M.: Frankenstein: Advanced
wireless fuzzing to exploit new bluetooth escalation targets. In: 29th
{USENIX} Security Symposium ({USENIX} Security 20), pp. 19–36
(2020)

65. Gui, Z., Shu, H., Kang, F., Xiong, X.: Firmcorn: Vulnerability-oriented
fuzzing of iot firmware via optimized virtual execution. IEEE Access 8,
29826–29841 (2020)

66. King, J.C.: Symbolic execution and program testing. Communications of
the ACM 19(7), 385–394 (1976)

67. Davidson, D., Moench, B., Ristenpart, T., Jha, S.: FIE on firmware:
Finding vulnerabilities in embedded systems using symbolic execution.
In: 22nd USENIX Security Symposium (USENIX Security 13), pp.
463–478. USENIX Association, Washington, D.C. (2013).
https://www.usenix.org/conference/usenixsecurity13/technical-
sessions/paper/davidson

68. Cadar, C., Dunbar, D., Engler, D.R., et al.: Klee: unassisted and
automatic generation of high-coverage tests for complex systems
programs. In: OSDI, vol. 8, pp. 209–224 (2008)

69. Corteggiani, N., Camurati, G., Francillon, A.: Inception: System-wide
security testing of real-world embedded systems software. In: 27th
{USENIX} Security Symposium ({USENIX} Security 18), pp. 309–326
(2018)

https://github.com/nccgroup/TriforceAFL
http://dx.doi.org/10.1145/2843859.2843867
https://hackernoon.com/afl-unicorn-part-2-fuzzing-the-unfuzzable-bea8de3540a5
https://hackernoon.com/afl-unicorn-part-2-fuzzing-the-unfuzzable-bea8de3540a5

Eisele et al. Page 16 of 16

70. Yun, I., Lee, S., Xu, M., Jang, Y., Kim, T.: Qsym: A practical concolic
execution engine tailored for hybrid fuzzing. In: 27th USENIX Security
Symposium (Security 2018) (2018). Distinguished Paper Award Winner.
https://www.microsoft.com/en-us/research/publication/qsym-a-
practical-concolic-execution-engine-tailored-for-hybrid-fuzzing/

71. Poeplau, S., Francillon, A.: Symbolic execution with symcc: Don’t
interpret, compile! In: 29th {USENIX} Security Symposium ({USENIX}
Security 20), pp. 181–198 (2020)

72. Herdt, V., Große, D., Le, H.M., Drechsler, R.: Early concolic testing of
embedded binaries with virtual prototypes: A risc-v case study*. In:
2019 56th ACM/IEEE Design Automation Conference (DAC), pp. 1–6
(2019)

73. Ai, C., Dong, W., Gao, Z.: A novel concolic execution approach on
embedded device. In: Proceedings of the 2020 4th International
Conference on Cryptography, Security and Privacy. ICCSP 2020, pp.
47–52. Association for Computing Machinery, New York, NY, USA
(2020). doi:10.1145/3377644.3377654.
https://doi.org/10.1145/3377644.3377654

74. Klees, G., Ruef, A., Cooper, B., Wei, S., Hicks, M.: Evaluating fuzz
testing. In: Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, pp. 2123–2138 (2018)

75. 2014 Cyber grand challenge.
http://archive.darpa.mil/cybergrandchallenge/about.html. Accessed:
2020-11-13

76. Dolan-Gavitt, B., Hulin, P., Kirda, E., Leek, T., Mambretti, A.,
Robertson, W., Ulrich, F., Whelan, R.: Lava: Large-scale automated
vulnerability addition. In: 2016 IEEE Symposium on Security and
Privacy (SP), pp. 110–121 (2016). doi:10.1109/SP.2016.15

77. Yu, B., Wang, P., Yue, T., Tang, Y.: Poster: Fuzzing iot firmware via
multi-stage message generation. In: Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, pp.
2525–2527 (2019)

78. Pham, V.-T., Böhme, M., Roychoudhury, A.: Aflnet: a greybox fuzzer
for network protocols. In: 2020 IEEE 13th International Conference on
Software Testing, Validation and Verification (ICST), pp. 460–465
(2020). IEEE

79. Natella, R.: Stateafl: Greybox fuzzing for stateful network servers. arXiv
preprint arXiv:2110.06253 (2021)

80. Schumilo, S., Aschermann, C., Jemmett, A., Abbasi, A., Holz, T.:
Nyx-net: Network fuzzing with incremental snapshots. arXiv preprint
arXiv:2111.03013 (2021)

81. Lauterbach: Lauterbach Development Tools.
https://www.lauterbach.com. Accessed: 2021-11-22

82. Segger: Segger Debug & Trace Probes.
https://www.segger.com/products/debug-trace-probes/.
Accessed: 2021-11-22

83. Fasano, A., Ballo, T., Muench, M., Leek, T., Bulekov, A., Dolan-Gavitt,
B., Egele, M., Francillon, A., Lu, L., Gregory, N., et al.: Sok: Enabling
security analyses of embedded systems via rehosting. In: Proceedings of
the 2021 ACM Asia Conference on Computer and Communications
Security, pp. 687–701 (2021)

http://dx.doi.org/10.1145/3377644.3377654
http://dx.doi.org/10.1109/SP.2016.15
https://www.lauterbach.com
https://www.segger.com/products/debug-trace-probes/

	Abstract
	Introduction
	Inclusion criteria
	Background and Notation
	Hardware-based Embedded Fuzzing
	Emulation-based Embedded Fuzzing
	User Mode Emulation Fuzzing
	Full-System Emulation Fuzzing
	Peripheral Emulation
	Peripheral Proxying
	Peripheral Modeling

	Sandbox Emulation Fuzzing

	Abstraction-based Execution Environment
	Symbolic Execution of Embedded Firmware
	Concolic Execution of Embedded Firmware

	Evaluation
	Discussion
	Related Work
	Conclusion

