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Whiteflies of the Bemisia tabaci species complex are among the most damaging insect pests in agriculture 
worldwide, causing damage by feeding on crop plants and by vectoring plant viruses. The species complex 
consists of over 35 cryptic species that differ in many aspects of their biology including the optimal environ-
ment, geographic distribution, and host range. Global warming and associated climate change resulting from 
human activities is expected to contribute to biological invasions. Bemisia tabaci species show fast adapta-
bility to changes in agroecosystems and have a long record of biological invasions. Climate change driven 
increase in B. tabaci importance in agricultural systems of Europe has been predicted, but so far not experi-
mentally tested. The present study evaluates the development of B. tabaci MED (=Mediterranean) in a climatic 
chamber simulation of the future climate in Luxembourg, chosen as a representative region for the Central 
Europe. Future climate predictions for the period 2061–2070 were derived from a multimodel ensemble of 
physically consistent regional climatic models. Results show a 40% shorter development time of this impor-
tant pest in future climatic conditions, with an increase in fecundity by a third, and insignificant difference in 
mortality. Accelerated development, combined with its already established year-round presence in European 
greenhouses and predicted northward expansion of outdoor tomato production in Europe, means faster pop-
ulation build-up at the beginning of the outdoor cropping season with the potential of reaching economic im-
portance. Benefits of simulating hourly diurnal cycle of physically consistent meteorological variables versus 
previous experiments are discussed.
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Introduction

Bemisia tabaci species complex is a highly invasive and devastating 
sap-sucking pest group feeding on of hundreds of plant species in-
cluding ornamentals and many crops such as tomato, pepper, egg-
plant, cucumber, cotton, sweet pepper, and tobacco (Byrne and 
Bellows Jr 1991). Whitefly feeding causes direct damage in form of 
chlorosis, stunted growth, and even wilting (Byrne and Bellows Jr 
1991). More importantly, feeding is associated with the transmission 
of numerous plant viruses (Byrne and Bellows Jr 1991, Brown 1994, 
Rajinimala et al. 2005, Jacobson et al. 2018). While the species com-
plex has global presence, the species within differ in their geographic 

distribution, host preferences, and apparent aggressiveness and inva-
sion potentials (Brown 2009). Among the numerous species of this 
complex, B. tabaci MED (=Mediterranean) is characterized by its 
higher level of resistance to many classes of insecticides and a wider 
host range (Iida et al. 2009, Ran et al. 2018, Wang et al. 2018, Xie 
et al. 2018, Horowitz et al. 2020, Park et al. 2021). Furthermore, 
it is more aggressive as witnessed in China, where MED introduc-
tion led to displacement of MEAM1 (=Middle East Asia Minor 1), 
that was already established in the area (Xie et al. 2018). In Europe, 
two most dominant B. tabaci species, MEAM1 and MED, present in 
protected crops across all Europe, while restricted to warmer areas 
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of Mediterranean in the open field (Bertin et al. 2018). While the two 
species can coexist in certain areas, superior insecticide resistance of 
MED often makes it dominant in highly intensive agricultural sys-
tems (Bertin et al. 2018). In the EU, non-European populations of B. 
tabaci are considered as a A1 quarantine pest (Annex II A), and in 
the United Kingdom, Sweden, and Ireland, it is classified as protec-
tive zone quarantine pest (Annex III) (The European Commission 
2019, 2021). With its presence in protected cropping systems, there 
is a danger of easy spread of B. tabaci MED to the open field if, or 
rather when, climatic conditions become suitable enough (Nauen et 
al. 2002).

With ongoing climate change and predicted warming of European 
climate (Allan et al. 2021), accurate assessment of this risk is crucial 
for the development of sustainable climate change adaptation, and 
plant protection strategies. Development of B. tabaci (sensu lato) 
has been shown to be primarily determined by temperature, with 
relative humidity at both extremes causing reduced survival (Byrne 
and Bellows Jr 1991, Aregbesola et al. 2019). Investigations into the 
effects of elevated CO2 levels indicated little to no effect on whitefly 
development (Curnutte et al. 2014). Whiteflies compensate for the 
lower nutritional value of the phloem sap of the plants grown under 
elevated CO2 by longer phloem ingestion feeding phase (Peñalver-
Cruz et al. 2020).

Numerous studies have focused on creating detailed models of 
whitefly’s temperature-dependent development (Butler Jr et al. 1983, 
Bethke et al. 1991, Powell and Bellows Jr 1992, Drost et al. 1998, 
Muñiz and Nombela 2001, Musa and Ren 2005, Bonato et al. 2007, 
Aregbesola et al. 2020, Chandi et al. 2021). The input data for these 
models are experimentally determined developmental parameters at 
a range of constant temperature/humidity values. The outcome is 
therefore a very precise characterization of the development at given 
constant conditions. These models however do not consider the ef-
fect of the diurnal cycle of environmental parameters on the insect 
development. By extension, these models might not be representa-
tive of the development under natural conditions. Traditionally, the 
insect development models are then combined with climate data to 
produce a model of insect performance in different climates, which 
further approximates and simplifies the complex interactions be-
tween the insect and the environment (Gilioli et al. 2014, Ramos 
et al. 2018, Bradshaw et al. 2019). No studies so far have tried to 
model or experimentally simulate jointly the effect of changing tem-
perature, relative humidity, and CO2 concentrations on whiteflies.

The present study assesses the B. tabaci MED development on to-
mato under projected Central European future climate conditions in 
a more realistic way by simulating the climate in a climate chamber 
based on hourly data of relevant atmospheric variables. Physical cli-
mate simulation allows whitefly development to be measured rather 
than simulated in silico. Therefore, we used present time series from 
historical observation data, and future time series from physically 
consistent, regionally downscaled multi-model climate projections to 
control the climate chamber experiments.

Materials and Methods

Plant Material
Tomato plants of the cultivar “Moneymaker”, grown from seed 
(Kiepenkerl, Bruno Nebelung GmbH, Everswinkel, Germany) were 
used for whitefly rearing and climate simulation experiments. Plants 
used for maintaining laboratory colony of B. tabaci were grown in 
an insect-proof cage (50 × 50 × 50 cm) at 22°C, 50% RH, and pho-
toperiod of 12:12 (L:D) h under Valoya C65 (Valoya Ltd., Helsinki, 
Finland) lights with NS12 spectrum. Soil moisture content was 

maintained at 70–80% field capacity, and once plants reached the 
5th leaf stage, they were fertilized weekly by irrigating with 200 ml 
of Peters Professional Allrounder (Dublin, OH, United States) wa-
ter-soluble fertilizer at the concentration of 2 g/liter. Plants used in 
the climate simulation experiment were grown from seed at both 
environmental conditions described below, with the same irrigation 
and fertilization regime as the one reported above.

Insect Material
The previously characterized laboratory whitefly colony of B. tabaci 
MED was used as a source of insect material (Milenovic et al. 2022). 
The population harbors primary endosymbiont Portiera (group 
P1), and two secondary endosymbionts, Rickettsia (group R1, with 
scattered phenotype), and Arsenophonus (group similar to A2c, with 
bacteriocyte confined phenotype) (Milenovic et al. 2022).

Climate Simulation
To assess the development of whiteflies under present and future 
environmental conditions, a climate change experiment was carried 
out in Bronson Incrementum 1400 and 1500 (Bronson Climate b.v., 
Zaltbommel, The Netherlands) climatic chambers equipped with 
Valoya NS12 luminaries, set to deliver 480 µmol/m2 s photosynthetic 
photon flux density (PPFD) at 20 cm distance. The CO2 concentra-
tion was maintained at 410 ppm and 700 ppm for the present and 
future conditions, respectively.

Diurnal courses of temperature and relative humidity for present 
condition were obtained from an automatic weather station (AWS) of 
the official agrometeorological network of Luxembourg (Obercorn, 
49° 51ʹ N, 5° 90ʹ E, 378 m above mean sea level). Luxembourg was 
selected as an example of Central European country where B. tabaci 
MED is currently absent but could be introduced and potentially es-
tablished in the future. Long-term hourly values (2006–2015) of air 
temperatures and relative humidity for that AWS were retrieved from 
the data archive operated by Administration des services techniques 
de l’agriculture (ASTA). A long-term (2006–2015) diurnal course of 
mean July air temperatures based on hourly values was calculated. 
Based on the daily mean air temperature of that long-term daily 
course, a representative day was selected from the original data set 
of the AWS (19.07.2007).

Results of regional climate change projections for Luxembourg 
were used for the climate change impact assessment (Goergen et 
al. 2013, Junk et al. 2019). The future climate time series to drive 
the climatic chamber simulations were derived from regional cli-
mate projections, taken from the Coordinated Regional Climate 
Downscaling Experiment project (CORDEX, http://www.cordex.
org). However, climate projections of regional climate models still 
have biases when compared to observational data (Kotlarski et al. 
2014) which precludes their direct usage in climate impact studies 
based on absolute values. A common approach is the use of bias-
adjustment methods to reduce those biases. In the current study, 
CORDEX data was corrected using a state-of-the-art quantile map-
ping method for the time series of air temperature and humidity. 
Besides the correction of the mean of the distribution, also the width 
and the shape of the distribution were corrected. The method is 
described in detail by Themeßl et al. (2011) and Wilcke et al. (2013). 
A multi-model ensemble of regional climate models (eight ensemble 
members) forced with the RCP8.5 emission scenarios (Representative 
Concentration Pathway) delivered physical consistent future meteor-
ological variables and CO2 levels for the time-span 2061–2070. An 
hourly multi-model mean of the daily long-term July air temperatures 
and humidity projections was calculated and the differences were 
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added to each hour of the original hourly time series obtained from 
the AWS at Obercorn.

Daily courses of meteorological parameters used to program the 
climate chambers for current and future experimental conditions 
are presented in Fig. 1 and in the Table S1 of the Supplementary 
Material.

Whitefly Development
Tomato plants were grown from seed in the simulated present and 
future environmental conditions. Each of the two climatic cham-
bers contained two insect-proof cages (50 × 50 × 50  cm, W:D:H) 
with three plants per cage. Plants were first sown in a container 
(3 × 3 × 6 cm) and transplanted to 5-liter pots at the one leaf stage. 
When plants reached the 10th leaf stage, 250 unsexed B. tabaci 
adults were introduced per plant (e.g., 750 adults per cage). After 
10 days introduced adults were removed and 100 eggs (50 per cage) 
spread across all plants were selected for monitoring of whitefly de-
velopment. Each day (with the exception of weekends) the number 
of individuals per development stage (egg, 1st–4th instar nymphs, 
eclosed pupa cases) deriving from the marked eggs was recorded. 
Before the first adults have eclosed, leaves hosting individuals under 
study were placed in a clip cage (Fig. 2) to allow monitoring lon-
gevity of the eclosing adults. When half of the monitored nymphs 

have eclosed, 24 additional, freshly hatched, male–female pairs were 
collected from other, nonmonitored leaves for fecundity monitoring. 
Of those, four male–female pairs were placed inside a clip cage (Fig. 
2), one cage per plant for the total of six cages, representing six 
replicates. The number of oviposited eggs was monitored as long as 
the adults were alive.

Data Analysis
Raw counts of individuals in each stage were summed with counts 
of individuals in all later stages. This way counts per each stage are 
inclusive of those individuals that might have already progressed to 
a later stage. As time needed to reach any given development stage 
follows unimodal distribution, an S-shaped curve can be fitted and 
the time to 50% of individuals reaching a particular stage can be 
calculated. In other words, a dose–response model can be applied 
where “dose” is the time, and response is the number of individuals 
reaching a particular development stage. Curve fitting and param-
eter estimates were done using “drc” package v3.0-1 in R Studio 
v1.2.5001 with R v.4.1.1. Best model was selected using “mselect” 
function of the “drc” package testing from the following models: 
LL.5, LL.4 LL.3, LL.2, W1.3, W1.4, W2.4, Quan, Cubic, and Lin. 
According to the “mselect” output presented in Supplementary Table 
S2, a five-parameter log-logistic model (LL.5) was selected and fitted 
to the data. The model summary is available in Supplementary Table 
S3. ED (effective dose) function was used to estimate time it takes for 
a certain percent of individuals to reach each developmental stage. 
Function “compParm” of the same package was used to perform sta-
tistical comparison of ED50 for each developmental stage between 
two climatic conditions.

Results

The development of B. tabaci MED is significantly accelerated 
under projected future climatic conditions. In present conditions, 
50% of whiteflies reached the first instar stage 21.2 days after ovi-
position, the second after 29.9 days, the third after 36.5 days, the 
fourth after 43.2, followed by adult eclosion after 57.3 days (Fig. 
3). The adult longevity was 33.9 days in present conditions (Fig. 
4). In future conditions, first, second, third, and fourth stage were 
reached after 14.2, 19.9, 23.9, and 25.5 days, respectively (Fig. 3). 
Adults eclosed after 31.3 days and had a 26.5 days longevity (Figs. 
3 and 4). The differences in the development times between present 
and future conditions were statistically significant (P < 0.01) for all 
developmental stages. Faster development resulted from the shorter 

Fig. 1. Daily courses of air temperature, relative humidity, CO2 concentration, and light intensity used to drive climate chambers for present and future conditions. 
Solid and dashed lines represent the data for present and future conditions, respectively.

Fig. 2. Tomato plant with four clip cages demonstrating the clip cage design 
and experimental setup. Cage glass cylinder diameter and length are 46 mm 
and 40 mm, respectively.
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duration of each developmental stage as presented in Fig. 4 and 
Supplementary Table S4. Statistical parameters including P-values 
are available in Supplementary Table S5. Fecundity of females was 
also on average higher under future climate conditions, with 85.5 
egg per female, compared to 63.7 days per female under present 
climate conditions (Table 1). Mortality was very similar in present 
and future climate conditions both in terms of cumulative mor-
tality from egg to adult, as well as for each developmental stage 
(Table 2).

Discussion

The present study is the first comprehensive climate chamber 
simulation of whitefly development under physically consistent 

daily variation of air temperature, relative humidity, and CO2 
concentrations for present and future climate conditions. The sim-
ulation reveals a 40% shorter time needed for egg to adult develop-
ment of B. tabaci MED in the future climate (2061–2070, RCP8.5 
scenario) compared to the present climate (2006–2015). This accel-
eration of development will increase the impact of B. tabaci MED 
on the agricultural economy of Central Europe, by building up to 
significant population levels also in the field during the cropping 
season. Besides a faster development, a 34% increase in fecundity, 
without significant change in mortality, will further contribute to 
faster population increase. Although a study with higher number 
of individuals under observation would be needed to evaluate the 
differences in mortality in finer detail, our data shows that the 
eventual difference is unlikely to counteract increased fecundity.

Fig. 3. Raw daily counts of B. tabaci MED individuals per each developmental stage with fitted dose–response curves for present (A) and future (B) climatic 
conditions.
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The year-round establishment of B. tabaci MED in the open 
fields of Central Europe is still unlikely due to the limiting low 
winter temperatures which interrupt its lifecycle, as shown by 
life table experiments and reflected in global future distribu-
tion models for this pest (Butler Jr et al. 1983, Drost et al. 1998, 
Muñiz and Nombela 2001, Gilioli et al. 2014, Chandi et al. 
2021). However, the year-round establishment is not necessary 
for B. tabaci MED to become an economically important pest of 
open-field crops in Central Europe since it is already present in 
the nearby greenhouses, ready to expand as soon as the climatic 
conditions allow, and able to reach high population levels in only 

a few generations and a very short time during the spring-summer 
cropping season.

Climate change will have an effect not only on whiteflies, but also 
on the distribution of their host plants. Ramos et al. (2018) projected 
that open-field tomato production will also move and expand fur-
ther north in Europe and that suitability for B. tabaci tightly follows 
the suitability of tomato in such a way that, by the time open-field 
production is possible, the risk of B. tabaci infestations will already 
be very significant.

The absence of other studies focused on B. tabaci (s.l.) per-
formance under controlled conditions with daily courses of air 

Fig. 4. Estimated time to 50% of B. tabaci individuals (ED50) reaching the next developmental stage in present and future climatic conditions expressed as 
development stage duration. Percentage above the “Future” bars represents the change compared to the “Present” bar of the same stage. Error bars represent 
lower and upper quantiles (ED25 and ED75).

Table 1. Fecundity of B. tabaci MED in present and future climate conditions across six clip cage replicates

Eggs/female

Clip cage replicate # 1 2 3 4 5 6 Mean Std. Err. 

Present 49 55 68 53 59 98 63.7 7.36
Future 103 68 64 85 76 117 85.5 8.48

Table 2. B. tabaci MED per-stage and cumulative mortality for present and future climatic conditions

 Eggs 1st 2nd 3rd 4th 

Present
 Dead individuals 4 5 5 3 1
 Mortality (per stage) 4.0% 5.0% 5.0% 3.0% 1.0%
 Mortality (cumulative) 4.0% 8.8% 13.4% 16.0% 16.8%
Future
 Dead individuals 2 5 5 2 2
 Mortality (per stage) 2.0% 5.0% 5.0% 2.0% 2.0%
 Mortality (cumulative) 2.0% 6.9% 11.6% 13.3% 15.1%

Per-stage mortality presents a percentage of individuals of a particular stage that never progressed to the next developmental stage. Cumulative mortality is 
number of individuals at each stage in relation to the total number of oviposited eggs at the start of the experiment.
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temperature and relative humidity makes it difficult to directly 
compare development times across the studies. Therefore, we are 
limited to comparing our results to the studies performed at a con-
stant temperature close to the mean daily temperature for present 
(19.8°C) and future (23.4°C) conditions from this study. The de-
velopment times observed in this study are generally slower than 
those previously reported in the literature at constant temperature 
for B. tabaci MED. Development in the present condition is slightly 
slower than reported by Bonato et al. (2007) at the constant tem-
perature of 17°C, which is the lowest the authors evaluated. In the 
same study, authors report time of 39.6 days at 21°C, and 25.6 
days at 25°C. When linearly interpolated to the mean temperature 
in the future conditions of the present study, the egg-adult devel-
opment is 32.6 days, which is within 2 days from the egg-adult 
time observed in the present study. On the other hand, results from 
Muñiz and Nombela (2001) tell a different story. At the lowest 
tested temperature of 17°C, B. tabaci MED had egg-adult devel-
opment in just 42.7 days, and 24.4 days at 23°C, which is 14.4 
and 9.7 days faster than in the present study, respectively. Similar 
variability of measured developmental parameters is present in 
other studies (Butler Jr et al. 1983, Drost et al. 1998, Chandi et 
al. 2021). The observed nonlinearity between constant conditions 
and realistic daily variation of environmental parameters points 
out the limits of extrapolating these results to the conditions in 
nature.

Further potential factors of uncertainty are different host 
plants, and the unknown composition of the secondary whitefly 
endosymbionts, both of which are known modifiers of whitefly bi-
ology in a context-dependent manner (Powell and Bellows Jr 1992, 
Drost et al. 1998, Musa and Ren 2005, Milenovic et al. 2021). 
Regardless of the source of uncertainty, the sheer variability in re-
ported developmental times at the same conditions indicates that 
obtaining a de facto measurement of B. tabaci life parameters is not 
trivial. Uncontrolled environmental variables, unreported nuances in 
experimental design, and unknown factors can render the absolute 
results of insect development incomparable, and by extension almost 
unverifiable with other studies (Koricheva et al. 1998, Couret and 
Benedict 2014).

The accelerated development of B. tabaci MED under future 
conditions is dominantly driven by air temperature. Relative hu-
midity was less than 10% different at any given point between the 
two conditions, with the mean differing by only 1.7%. The effect of 
elevated CO2 alone on whitefly development was out of the scope of 
the present study. However, previous studies have demonstrated no 
direct or indirect effect of CO2 on whitefly life (Curnutte et al. 2014, 
Peñalver-Cruz et al. 2020). The present study focused on the impact 
of future climate and therefore evaluated the impact of joint change 
of three environmental variables. However, to fully understand the 
nature of the observed response, future studies employing different 
experimental designs are needed. Such studies could aim to quantify 
the effects of diurnal cycle versus constant conditions, and the indi-
vidual impact of each environmental variable.

Finally, the abovementioned studies that varied only the tem-
perature produced a similar magnitude of change in the develop-
ment times as the change observed between present and future 
simulations presented here. The overall accelerated development 
results from faster development of each life stage. A difference 
in relative shortening of development time between stages was 
observed. The duration of the egg, 1st nymphal, and 2nd nymphal 
stages shortened by around 35%, while the 3rd and 4th nymphal 
stages shortened by 76% and 59%, respectively (Fig. 4). Adult 
longevity was reduced by 22%. These differences could partially 

be explained by the higher overall variability in the stage dura-
tion of the latter three stages as shown by the standard error bars 
(Fig. 4). Further studies are needed to understand the nature of this 
response.

Summing up, we observed faster development, higher fecundity, 
and unchanged survival rates point toward higher pest importance of 
B. tabaci MED in Central Europe under future climatic conditions. 
However, further studies focused on multitrophic interactions 
are needed, not only to determine if increased activity of natural 
enemies could counteract the spread of this increasingly important 
pest (Muñiz and Nombela 2001, Bonato et al. 2007), but also for 
exploring the different possible behavioral scenarios of this insect 
species, in future climatic conditions, on different host plants and 
in populations characterized by different composition of secondary 
endosymbionts.
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