This paper deals with the implementation of Full Adder chains by mixing different CMOS Full Adder topologies. The approach is based on cascading fast Transmission-Gate Full Adders interrupted by static gates having driving capability, such as inverters or Mirror Full Adders, thus exploiting the intrinsic low power consumption of such topologies. The obtained mixed-topology circuits are optimized in terms of delay by resorting to simple analytical models. Delay, power consumption and the Power-Delay Product (PDP) in both mixed-topology and traditional Full Adder chains were evaluated through post-layout Spectre simulations with a 0.35 mu m, 0.18 mu m and 90 nm CMOS technology considering different design targets, i.e., minimum power consumption, PDP, Energy-Delay Product (EDP) and delay. The results obtained show that the mixed-topology approach based on Mirror adders are capable of a very low power consumption (comparable to that of the low-power Transmission-Gate Full Adder) and a very high speed (comparable with or even greater than that of the very fast Dual-Rail Domino Full Adder). This also enables a high degree of design freedom, given that the same (mixed) topology can be used for a wide range of applications. This greater flexibility also affords a significant reduction in the design effort. (c) 2006 Elsevier Ltd. All rights reserved.

Mixed Full Adder topologies for high-performance low-power arithmetic circuits

DI CATALDO, Giuseppe;PALUMBO, Gaetano
2007-01-01

Abstract

This paper deals with the implementation of Full Adder chains by mixing different CMOS Full Adder topologies. The approach is based on cascading fast Transmission-Gate Full Adders interrupted by static gates having driving capability, such as inverters or Mirror Full Adders, thus exploiting the intrinsic low power consumption of such topologies. The obtained mixed-topology circuits are optimized in terms of delay by resorting to simple analytical models. Delay, power consumption and the Power-Delay Product (PDP) in both mixed-topology and traditional Full Adder chains were evaluated through post-layout Spectre simulations with a 0.35 mu m, 0.18 mu m and 90 nm CMOS technology considering different design targets, i.e., minimum power consumption, PDP, Energy-Delay Product (EDP) and delay. The results obtained show that the mixed-topology approach based on Mirror adders are capable of a very low power consumption (comparable to that of the low-power Transmission-Gate Full Adder) and a very high speed (comparable with or even greater than that of the very fast Dual-Rail Domino Full Adder). This also enables a high degree of design freedom, given that the same (mixed) topology can be used for a wide range of applications. This greater flexibility also affords a significant reduction in the design effort. (c) 2006 Elsevier Ltd. All rights reserved.
File in questo prodotto:
File Dimensione Formato  
Mixed Full Adder Topologies for Hiigh-Performace Low-Power Arithmetic Circuits.pdf

solo gestori archivio

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 231.97 kB
Formato Adobe PDF
231.97 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/10247
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 72
  • ???jsp.display-item.citation.isi??? 40
social impact