The role of the interface potential on the effective mass of charge carriers is elucidated in this work. We develop a new theoretical formalism using a spatially dependent effective mass that is related to the magnitude of the interface potential. Using this formalism, we studied Ge quantum dots (QDs) formed by plasma enhanced chemical vapour deposition (PECVD) and co-sputtering (sputter). These samples allowed us to isolate important consequences arising from differences in the interface potential. We found that for a higher interface potential, as in the case of PECVD QDs, there is a larger reduction in the effective mass, which increases the confinement energy with respect to the sputter sample. We further understood the action of O interface states by comparing our results with Ge QDs grown by molecular beam epitaxy. It is found that the O states can suppress the influence of the interface potential. From our theoretical formalism, we determine the length scale over which the interface potential influences the effective mass. (C) 2015 AIP Publishing LLC.

Influence of interface potential on the effective mass in Ge nanostructures

TERRASI, Antonio;MIRABELLA, SALVATORE
2015-01-01

Abstract

The role of the interface potential on the effective mass of charge carriers is elucidated in this work. We develop a new theoretical formalism using a spatially dependent effective mass that is related to the magnitude of the interface potential. Using this formalism, we studied Ge quantum dots (QDs) formed by plasma enhanced chemical vapour deposition (PECVD) and co-sputtering (sputter). These samples allowed us to isolate important consequences arising from differences in the interface potential. We found that for a higher interface potential, as in the case of PECVD QDs, there is a larger reduction in the effective mass, which increases the confinement energy with respect to the sputter sample. We further understood the action of O interface states by comparing our results with Ge QDs grown by molecular beam epitaxy. It is found that the O states can suppress the influence of the interface potential. From our theoretical formalism, we determine the length scale over which the interface potential influences the effective mass. (C) 2015 AIP Publishing LLC.
File in questo prodotto:
File Dimensione Formato  
BarbagiovanniJAP2015.pdf

solo gestori archivio

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 3.2 MB
Formato Adobe PDF
3.2 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/17636
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 10
social impact