Preliminary results on a new test for the indirect assessment of porosity through infrared thermography are presented. The study of the cooling behavior of rock samples in laboratory, through the analysis of thermograms, proved an innovative tool for the estimation of such an important property, which is one of the main features affecting the mechanical behavior of rocks. A detailed experimentation was performed on artificially heated volcanic rock samples characterized by different porosity values. The cooling trend was described both graphically and numerically, with the help of cooling curves and Cooling Rate Index. The latter, which proved strictly linked to porosity, was employed to find reliable equations for its indirect estimation. Simple and multiple regression analyses returned satisfactory outcomes, highlighting the great match between predicted and measured porosity values, thus confirming the goodness of the proposed model. This study brings a novelty in rock mechanics, laying the foundation for future researches aimed at refining achieved results for the validation of the model in a larger scale.

The Use of Infrared Thermography for Porosity Assessment of Intact Rock

MINEO, SIMONE;PAPPALARDO, Giovanna
2016-01-01

Abstract

Preliminary results on a new test for the indirect assessment of porosity through infrared thermography are presented. The study of the cooling behavior of rock samples in laboratory, through the analysis of thermograms, proved an innovative tool for the estimation of such an important property, which is one of the main features affecting the mechanical behavior of rocks. A detailed experimentation was performed on artificially heated volcanic rock samples characterized by different porosity values. The cooling trend was described both graphically and numerically, with the help of cooling curves and Cooling Rate Index. The latter, which proved strictly linked to porosity, was employed to find reliable equations for its indirect estimation. Simple and multiple regression analyses returned satisfactory outcomes, highlighting the great match between predicted and measured porosity values, thus confirming the goodness of the proposed model. This study brings a novelty in rock mechanics, laying the foundation for future researches aimed at refining achieved results for the validation of the model in a larger scale.
2016
Bulk density; Cooling curve; Cooling Rate Index; Infrared thermography; Porosity; Rock sample
File in questo prodotto:
File Dimensione Formato  
2016_Mineo and Pappalardo RMRE.pdf

solo gestori archivio

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 9.71 MB
Formato Adobe PDF
9.71 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/18105
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 51
  • ???jsp.display-item.citation.isi??? 46
social impact