ZnO nanorods (NRs) grown by chemical bath deposition (CBD) are among the most promising semiconducting nanostructures currently investigated for a variety of applications. Still, contrasting experimental results appear in the literature on the microscopic mechanisms leading to high aspect ratio and vertically aligned ZnO NRs. Here, we report on CBD of ZnO NRs using Zn nitrate salt and hexamethylenetetramine (HMTA), evidencing a double role of HMTA in the NRs growth mechanism. Beyond the well-established pH buffering activity, HMTA is shown to introduce a strong steric hindrance effect, biasing growth along the c-axis and ensuring the vertical arrangement. This twofold function of HMTA should be taken into account for avoiding detrimental phenomena such as merging or suppression of NRs, which occur at low HMTA concentration.

Double Role of HMTA in ZnO Nanorods Grown by Chemical Bath Deposition

CILIBERTO, Enrico;MIRABELLA, SALVATORE
2014-01-01

Abstract

ZnO nanorods (NRs) grown by chemical bath deposition (CBD) are among the most promising semiconducting nanostructures currently investigated for a variety of applications. Still, contrasting experimental results appear in the literature on the microscopic mechanisms leading to high aspect ratio and vertically aligned ZnO NRs. Here, we report on CBD of ZnO NRs using Zn nitrate salt and hexamethylenetetramine (HMTA), evidencing a double role of HMTA in the NRs growth mechanism. Beyond the well-established pH buffering activity, HMTA is shown to introduce a strong steric hindrance effect, biasing growth along the c-axis and ensuring the vertical arrangement. This twofold function of HMTA should be taken into account for avoiding detrimental phenomena such as merging or suppression of NRs, which occur at low HMTA concentration.
File in questo prodotto:
File Dimensione Formato  
lavoro JPC C.pdf

solo gestori archivio

Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 4.56 MB
Formato Adobe PDF
4.56 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/19359
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 138
  • ???jsp.display-item.citation.isi??? 133
social impact