The cytoprotective effect of various copper(II) complexes on the gastric mucosa damage induced by acute intragastric administration of ethanol was investigated. For in vitro experiments, the following copper(II) complexes were tested: Cu(II)(L-Trp)(L-Phe), Cu(II)(L-Leu)Cu(II)(L-Leu-Leu)(L-Leu), Cu(II)(L-Phe-L-Leu), Cu(II)(Gly-His-Lys), and Cu(II)(cyHis)2(ClO4)2. Inorganic copper such as CuSO4 was also tested. The free radical generating system, acting for 2 hr on cardial and fundic mucosa scraping or mucosal microsomes, was Fe++ (20-mu-M)/ascorbate (0.25 mM). We found a marked inhibition to 75% of lipid peroxidation in the range 10-100 mM, regardless of whether copper was given in complexed or inorganic form. The results suggest that nontoxic copper(II)-amino acid complexes are able to neutralize oxygen-derived free radicals. In addition, copper(II) complexes suppressed membrane lipid peroxidation when mucosa homogenates were exposed to t-butyl hydroperoxide (1-20-mu-M) plus Fe++ (50-mu-M). In vivo experiments on rat stomachs, pretreated p.o. by gavage either with Cu(II)(L-Trp)(L-Phe) as paradigmatic agent or with copper sulphate at equivalent doses in the range 3-30 mg/kg body weight showed a significant decrease (30 min after 95% ethanol administration) in the number and severity of mucosal hemorrhagic lesions. In the gastric mucosa scrapings of copper-treated rats after ethanol exposure, we found that malondialdehyde and conjugated diene levels were unchanged compared to those of untreated controls; five enzyme activities released from lysosomes were near control values. In isolated mucosal cells, whether or not pretreated with 200-mu-M solution of either Cu(II)(L-Trp)(L-Phe) or CuSO4, the release of cathepsin D activity was also unmodified. The results suggest that the cytoprotective effect of Cu(II) complexes against ethanol-induced mucosal lesions was not associated in vivo to lipid peroxidation.

The cytoprotective effect of various copper(II) complexes on the gastric mucosa damage induced by acute intragastric administration of ethanol was investigated. For in vitro experiments, the following copper(II) complexes were tested: Cu(II)(L-Trp)(L-Phe), Cu(II)(L-Leu)Cu(II)(L-Leu-Leu)(L-Leu), Cu(II)(L-Phe-L-Leu), Cu(II)(Gly-His-Lys), and Cu(II)(cyHis)2(ClO4)2. Inorganic copper such as CuSO4 was also tested. The free radical generating system, acting for 2 hr on cardial and fundic mucosa scraping or mucosal microsomes, was Fe++ (20-mu-M)/ascorbate (0.25 mM). We found a marked inhibition to 75% of lipid peroxidation in the range 10-100 mM, regardless of whether copper was given in complexed or inorganic form. The results suggest that nontoxic copper(II)-amino acid complexes are able to neutralize oxygen-derived free radicals. In addition, copper(II) complexes suppressed membrane lipid peroxidation when mucosa homogenates were exposed to t-butyl hydroperoxide (1-20-mu-M) plus Fe++ (50-mu-M). In vivo experiments on rat stomachs, pretreated p.o. by gavage either with Cu(II)(L-Trp)(L-Phe) as paradigmatic agent or with copper sulphate at equivalent doses in the range 3-30 mg/kg body weight showed a significant decrease (30 min after 95% ethanol administration) in the number and severity of mucosal hemorrhagic lesions. In the gastric mucosa scrapings of copper-treated rats after ethanol exposure, we found that malondialdehyde and conjugated diene levels were unchanged compared to those of untreated controls; five enzyme activities released from lysosomes were near control values. In isolated mucosal cells, whether or not pretreated with 200-mu-M solution of either Cu(II)(L-Trp)(L-Phe) or CuSO4, the release of cathepsin D activity was also unmodified. The results suggest that the cytoprotective effect of Cu(II) complexes against ethanol-induced mucosal lesions was not associated in vivo to lipid peroxidation.

Cytoprotective effecyt of Copper(II) complexes against ethanol-induced damage to rat gastric mucosa

LUPO, Gabriella;GULISANO, Massimo;SCIOTTO, Domenico;RIZZARELLI, Enrico
1992-01-01

Abstract

The cytoprotective effect of various copper(II) complexes on the gastric mucosa damage induced by acute intragastric administration of ethanol was investigated. For in vitro experiments, the following copper(II) complexes were tested: Cu(II)(L-Trp)(L-Phe), Cu(II)(L-Leu)Cu(II)(L-Leu-Leu)(L-Leu), Cu(II)(L-Phe-L-Leu), Cu(II)(Gly-His-Lys), and Cu(II)(cyHis)2(ClO4)2. Inorganic copper such as CuSO4 was also tested. The free radical generating system, acting for 2 hr on cardial and fundic mucosa scraping or mucosal microsomes, was Fe++ (20-mu-M)/ascorbate (0.25 mM). We found a marked inhibition to 75% of lipid peroxidation in the range 10-100 mM, regardless of whether copper was given in complexed or inorganic form. The results suggest that nontoxic copper(II)-amino acid complexes are able to neutralize oxygen-derived free radicals. In addition, copper(II) complexes suppressed membrane lipid peroxidation when mucosa homogenates were exposed to t-butyl hydroperoxide (1-20-mu-M) plus Fe++ (50-mu-M). In vivo experiments on rat stomachs, pretreated p.o. by gavage either with Cu(II)(L-Trp)(L-Phe) as paradigmatic agent or with copper sulphate at equivalent doses in the range 3-30 mg/kg body weight showed a significant decrease (30 min after 95% ethanol administration) in the number and severity of mucosal hemorrhagic lesions. In the gastric mucosa scrapings of copper-treated rats after ethanol exposure, we found that malondialdehyde and conjugated diene levels were unchanged compared to those of untreated controls; five enzyme activities released from lysosomes were near control values. In isolated mucosal cells, whether or not pretreated with 200-mu-M solution of either Cu(II)(L-Trp)(L-Phe) or CuSO4, the release of cathepsin D activity was also unmodified. The results suggest that the cytoprotective effect of Cu(II) complexes against ethanol-induced mucosal lesions was not associated in vivo to lipid peroxidation.
1992
The cytoprotective effect of various copper(II) complexes on the gastric mucosa damage induced by acute intragastric administration of ethanol was investigated. For in vitro experiments, the following copper(II) complexes were tested: Cu(II)(L-Trp)(L-Phe), Cu(II)(L-Leu)Cu(II)(L-Leu-Leu)(L-Leu), Cu(II)(L-Phe-L-Leu), Cu(II)(Gly-His-Lys), and Cu(II)(cyHis)2(ClO4)2. Inorganic copper such as CuSO4 was also tested. The free radical generating system, acting for 2 hr on cardial and fundic mucosa scraping or mucosal microsomes, was Fe++ (20-mu-M)/ascorbate (0.25 mM). We found a marked inhibition to 75% of lipid peroxidation in the range 10-100 mM, regardless of whether copper was given in complexed or inorganic form. The results suggest that nontoxic copper(II)-amino acid complexes are able to neutralize oxygen-derived free radicals. In addition, copper(II) complexes suppressed membrane lipid peroxidation when mucosa homogenates were exposed to t-butyl hydroperoxide (1-20-mu-M) plus Fe++ (50-mu-M). In vivo experiments on rat stomachs, pretreated p.o. by gavage either with Cu(II)(L-Trp)(L-Phe) as paradigmatic agent or with copper sulphate at equivalent doses in the range 3-30 mg/kg body weight showed a significant decrease (30 min after 95% ethanol administration) in the number and severity of mucosal hemorrhagic lesions. In the gastric mucosa scrapings of copper-treated rats after ethanol exposure, we found that malondialdehyde and conjugated diene levels were unchanged compared to those of untreated controls; five enzyme activities released from lysosomes were near control values. In isolated mucosal cells, whether or not pretreated with 200-mu-M solution of either Cu(II)(L-Trp)(L-Phe) or CuSO4, the release of cathepsin D activity was also unmodified. The results suggest that the cytoprotective effect of Cu(II) complexes against ethanol-induced mucosal lesions was not associated in vivo to lipid peroxidation.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/242418
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 17
social impact