We study the influence of topology on the quench dynamics of a system driven across a quantum critical point. We show how the appearance of certain edge states, which fully characterise the topology of the system, dramatically modifies the process of defect production during the crossing of the critical point. Interestingly enough, the density of defects is no longer described by the Kibble-Zurek scaling, but determined instead by the non-universal topological features of the system. Edge states are shown to be robust against defect production, which highlights their topological nature.

Topology induced anomalous defect production by crossing a quantum critical point

AMICO, Luigi;
2009-01-01

Abstract

We study the influence of topology on the quench dynamics of a system driven across a quantum critical point. We show how the appearance of certain edge states, which fully characterise the topology of the system, dramatically modifies the process of defect production during the crossing of the critical point. Interestingly enough, the density of defects is no longer described by the Kibble-Zurek scaling, but determined instead by the non-universal topological features of the system. Edge states are shown to be robust against defect production, which highlights their topological nature.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/24252
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 146
  • ???jsp.display-item.citation.isi??? 144
social impact