Lipoamino acids (LAAs) are promoieties able to enhance the amphiphilicity of drugs, facilitating their interaction with cell membranes. Experimental and computational studies were carried out on two series of lipophilic amide conjugates between a model drug (tranylcypromine, TCP) and LAA or alkanoic acids containing a short, medium or long alkyl side chain (C-4 to C-16). The effects of these compounds were evaluated by monolayer surface tension analysis and differential scanning calorimetry using dimyristoylphosphatidylcholine monolayers and liposomes as biomembrane models. The experimental results were related to independent calculations to determine partition coefficient and blood–brain partitioning. The comparison of TCP–LAA conjugates with the related series of TCP alkanoyl amides confirmed that the ability to interact with the biomembrane models is not due to the mere increase of lipophilicity, but mainly to the amphipatic nature and the kind of LAA residue.

Enhancement of drug affinity for cell membranes by conjugation with lipoamino acids II. Experimental and computational evidence using biomembrane models

PIGNATELLO, Rosario;GUCCIONE, Salvatore;CASTELLI, Francesco;SARPIETRO, MARIA GRAZIA;PUGLISI, Giovanni;
2006-01-01

Abstract

Lipoamino acids (LAAs) are promoieties able to enhance the amphiphilicity of drugs, facilitating their interaction with cell membranes. Experimental and computational studies were carried out on two series of lipophilic amide conjugates between a model drug (tranylcypromine, TCP) and LAA or alkanoic acids containing a short, medium or long alkyl side chain (C-4 to C-16). The effects of these compounds were evaluated by monolayer surface tension analysis and differential scanning calorimetry using dimyristoylphosphatidylcholine monolayers and liposomes as biomembrane models. The experimental results were related to independent calculations to determine partition coefficient and blood–brain partitioning. The comparison of TCP–LAA conjugates with the related series of TCP alkanoyl amides confirmed that the ability to interact with the biomembrane models is not due to the mere increase of lipophilicity, but mainly to the amphipatic nature and the kind of LAA residue.
File in questo prodotto:
File Dimensione Formato  
22 IJP.pdf

solo gestori archivio

Licenza: Non specificato
Dimensione 294.48 kB
Formato Adobe PDF
294.48 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/24319
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 31
  • ???jsp.display-item.citation.isi??? 28
social impact