The effects of the Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR signaling pathways on proliferation, drug resistance, prevention of apoptosis and sensitivity to signal transduction inhibitors were examined in FL/DeltaAkt-1:ER*(Myr(+)) + DeltaRaf-1:AR cells which are conditionally-transformed to grow in response to Raf and Akt activation. Drug resistant cells were isolated from FL/DeltaAkt-1:ER*(Myr(+)) + DeltaRaf-1:AR cells in the presence of doxorubicin. Activation of Raf-1, in the drug resistant FL/DeltaAkt-1:ER*(Myr(+)) + DeltaRaf-1:AR cells, increased the IC(50) for doxorubicin 80-fold, whereas activation of Akt-1, by itself, had no effect on the doxorubicin IC50. However, Akt-1 activation enhanced cell proliferation and clonogenicity in the presence of chemotherapeutic drugs. Thus the Raf/MEK/ERK pathway had profound effects on the sensitivity to chemotherapeutic drugs, and Akt-1 activation was required for the long term growth of these cells as well as resistance to chemotherapeutic drugs. The effects of doxorubicin on the induction of apoptosis in the drug resistant cells were enhanced by addition of either mTOR and MEK inhibitors. These results indicate that targeting the Raf/MEK/ERK and PI3K/Akt/mTOR pathways may be an effective approach for therapeutic intervention in drug resistant cancers that have mutations activating these cascades.

The Raf/MEK/ERK pathway can govern drug resistance, apoptosis and sensitivity to targeted therapy

NICOLETTI, FERDINANDO;LIBRA, Massimo;
2010-01-01

Abstract

The effects of the Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR signaling pathways on proliferation, drug resistance, prevention of apoptosis and sensitivity to signal transduction inhibitors were examined in FL/DeltaAkt-1:ER*(Myr(+)) + DeltaRaf-1:AR cells which are conditionally-transformed to grow in response to Raf and Akt activation. Drug resistant cells were isolated from FL/DeltaAkt-1:ER*(Myr(+)) + DeltaRaf-1:AR cells in the presence of doxorubicin. Activation of Raf-1, in the drug resistant FL/DeltaAkt-1:ER*(Myr(+)) + DeltaRaf-1:AR cells, increased the IC(50) for doxorubicin 80-fold, whereas activation of Akt-1, by itself, had no effect on the doxorubicin IC50. However, Akt-1 activation enhanced cell proliferation and clonogenicity in the presence of chemotherapeutic drugs. Thus the Raf/MEK/ERK pathway had profound effects on the sensitivity to chemotherapeutic drugs, and Akt-1 activation was required for the long term growth of these cells as well as resistance to chemotherapeutic drugs. The effects of doxorubicin on the induction of apoptosis in the drug resistant cells were enhanced by addition of either mTOR and MEK inhibitors. These results indicate that targeting the Raf/MEK/ERK and PI3K/Akt/mTOR pathways may be an effective approach for therapeutic intervention in drug resistant cancers that have mutations activating these cascades.
2010
Akt; Chemotherapeutic drugs; Drug resistance; Raf; Signal transduction inhibitors
File in questo prodotto:
File Dimensione Formato  
The Raf_MEK_ERK pathway can govern drug resistance, apoptosis and sensitivity to targeted therapy.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 1.95 MB
Formato Adobe PDF
1.95 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/24654
Citazioni
  • ???jsp.display-item.citation.pmc??? 59
  • Scopus 107
  • ???jsp.display-item.citation.isi??? 97
social impact