The complete understanding of the stellar abundances of lithium, beryllium, and boron represents one of the most interesting open problems in astrophysics. These elements are largely used to probe stellar structure and mixing phenomena in different astrophysical scenarios, such as pre-main-sequence or main-sequence stars. Their different fragility against (p,α) burning reactions allows one to investigate different depths of the stellar interior. Such fusion mechanisms are triggered at temperatures between T ≈ (2–5) × 106 K, thus defining a corresponding Gamow energy between ≈ 3–10 keV, where S(E)-factor measurements need to be performed to get reliable reaction rate evaluations. The Trojan Horse Method is a well defined procedure to measure cross sections at Gamow energies overcoming the uncertainties due to low-energy S(E)-factor extrapolation as well as electron screening effects. Taking advantage of the THM measure of the 9Be(p,α)6Li and 10B(p,α)7Be cross sections, the corresponding reaction rates have been calculated and compared with the evaluations by the NACRE collaboration, widely used in the literature. The impact on surface abundances of the updated 9Be and 10B (p,α) burning rates is discussed for pre-MS stars.

ASTROPHYSICAL IMPACT OF THE UPDATED Be-9(p,alpha)Li-6 AND B-10(p,alpha)Be-7 REACTION RATES AS DEDUCED BY THM

LAMIA, LIVIO
Primo
;
Pizzone RG;
2015-01-01

Abstract

The complete understanding of the stellar abundances of lithium, beryllium, and boron represents one of the most interesting open problems in astrophysics. These elements are largely used to probe stellar structure and mixing phenomena in different astrophysical scenarios, such as pre-main-sequence or main-sequence stars. Their different fragility against (p,α) burning reactions allows one to investigate different depths of the stellar interior. Such fusion mechanisms are triggered at temperatures between T ≈ (2–5) × 106 K, thus defining a corresponding Gamow energy between ≈ 3–10 keV, where S(E)-factor measurements need to be performed to get reliable reaction rate evaluations. The Trojan Horse Method is a well defined procedure to measure cross sections at Gamow energies overcoming the uncertainties due to low-energy S(E)-factor extrapolation as well as electron screening effects. Taking advantage of the THM measure of the 9Be(p,α)6Li and 10B(p,α)7Be cross sections, the corresponding reaction rates have been calculated and compared with the evaluations by the NACRE collaboration, widely used in the literature. The impact on surface abundances of the updated 9Be and 10B (p,α) burning rates is discussed for pre-MS stars.
File in questo prodotto:
File Dimensione Formato  
Lamia_2015_ApJ_811_99.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Dimensione 2.03 MB
Formato Adobe PDF
2.03 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/252405
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 35
  • ???jsp.display-item.citation.isi??? 37
social impact