Nonlinear circuits may be synchronized with interconnections that evolve in time incorporating mechanisms of adaptation found in many biological systems. Such dynamics in the links is efficiently implemented in electronic devices by using memristors. However, the approach requires a massive amount of interconnections (of the order of N², where N is the number of nonlinear circuits to be synchronized). This issue is solved in this paper by adopting a memristor crossbar architecture for adaptive synchronization. The functionality of the structure is demonstrated, with respect to different switching characteristics, via a simulation-based evaluation using a behavioral threshold-type model of voltage-controlled bipolar memristor. In addition, we show that the architecture is robust to device variability and faults: quite surprisingly, when faults are localized, the performance of the approach may also improve as adaptation becomes more significant.

Memristor Crossbar for Adaptive Synchronization

GAMBUZZA, LUCIA VALENTINA;FRASCA, MATTIA;FORTUNA, Luigi;
2017-01-01

Abstract

Nonlinear circuits may be synchronized with interconnections that evolve in time incorporating mechanisms of adaptation found in many biological systems. Such dynamics in the links is efficiently implemented in electronic devices by using memristors. However, the approach requires a massive amount of interconnections (of the order of N², where N is the number of nonlinear circuits to be synchronized). This issue is solved in this paper by adopting a memristor crossbar architecture for adaptive synchronization. The functionality of the structure is demonstrated, with respect to different switching characteristics, via a simulation-based evaluation using a behavioral threshold-type model of voltage-controlled bipolar memristor. In addition, we show that the architecture is robust to device variability and faults: quite surprisingly, when faults are localized, the performance of the approach may also improve as adaptation becomes more significant.
2017
Electrical and Electronic Engineering
File in questo prodotto:
File Dimensione Formato  
07911226-Memristor Crossbar for Adaptive Synchronization.pdf

solo gestori archivio

Tipologia: Versione Editoriale (PDF)
Dimensione 1.68 MB
Formato Adobe PDF
1.68 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/300314
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 34
  • ???jsp.display-item.citation.isi??? 31
social impact