The present study aims to investigate the relation between exposure to low-dose benzene and the occurrence of oxidative DNA damage in gasoline station workers, as well as the possible role of interfering or confounding factors. Urine levels of 8-OHdG were evaluated by a competitive immunoassay in a group of 80 men, employed in gasoline stations located in East Sicily and compared with a control group (n = 63) of male office employees not occupationally exposed to benzene. Information regarding socio-demographic characteristics, lifestyle and job-related records were provided through a questionnaire. Significantly higher (p < 0.05) urinary t,t,-MA and 8-OHdG levels were observed in gasoline station attendants compared to subjects not exposed to benzene. Pearson's test demonstrated a strong correlation (r = 0.377, p < 0.001) between 8-OHdG and benzene exposure level. 8-OHdG significantly correlated also with job seniority, (r = 0.312, p < 0.01), whereas the relation with age resulted weaker (r = 0.242, p < 0.05). Multiple linear regression analysis, performed to exclude a role for confounding factors, showed that variables like gender, smoking habit, alcohol consumption and BMI did not have a significant influence on the measured biomarkers. No subject enrolled in the study presented signs or symptoms of work-related disease or other illness linked to oxidative stress. These results suggest that low-level chronic exposure to benzene among gasoline station attendants can determine oxidative damage on DNA, as indicated by alteration of 8-OHdG which may represent a non-invasive biomarker of early genotoxic damage in exposed subjects.

8-Hydroxydeoxyguanosine as a biomarker of oxidative DNA damage in workers exposed to low-dose benzene

RAPISARDA, VENERANDO;
2017-01-01

Abstract

The present study aims to investigate the relation between exposure to low-dose benzene and the occurrence of oxidative DNA damage in gasoline station workers, as well as the possible role of interfering or confounding factors. Urine levels of 8-OHdG were evaluated by a competitive immunoassay in a group of 80 men, employed in gasoline stations located in East Sicily and compared with a control group (n = 63) of male office employees not occupationally exposed to benzene. Information regarding socio-demographic characteristics, lifestyle and job-related records were provided through a questionnaire. Significantly higher (p < 0.05) urinary t,t,-MA and 8-OHdG levels were observed in gasoline station attendants compared to subjects not exposed to benzene. Pearson's test demonstrated a strong correlation (r = 0.377, p < 0.001) between 8-OHdG and benzene exposure level. 8-OHdG significantly correlated also with job seniority, (r = 0.312, p < 0.01), whereas the relation with age resulted weaker (r = 0.242, p < 0.05). Multiple linear regression analysis, performed to exclude a role for confounding factors, showed that variables like gender, smoking habit, alcohol consumption and BMI did not have a significant influence on the measured biomarkers. No subject enrolled in the study presented signs or symptoms of work-related disease or other illness linked to oxidative stress. These results suggest that low-level chronic exposure to benzene among gasoline station attendants can determine oxidative damage on DNA, as indicated by alteration of 8-OHdG which may represent a non-invasive biomarker of early genotoxic damage in exposed subjects.
2017
8-Hydroxydeoxyguanosine; Benzene; Occupational exposure; Oxidative stress; t,t-muconic acid; Toxicology; Health, Toxicology and Mutagenesis
File in questo prodotto:
File Dimensione Formato  
8-Hydroxydeoxyguanosine as a biomarker of oxidative DNA damage in workers exposed to low-dose benzene.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Dimensione 501.88 kB
Formato Adobe PDF
501.88 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/302255
Citazioni
  • ???jsp.display-item.citation.pmc??? 18
  • Scopus 54
  • ???jsp.display-item.citation.isi??? 50
social impact