Microorganisms are the main drivers shaping the functioning and equilibrium of all ecosystems, contributing to nutrient cycling, primary production, litter decomposition, and multi-trophic interactions. Knowledge about the microbial assemblies in specific ecological niches is integral to understanding the assemblages interact and function the function, and becomes essential when the microbiota intersects with human activities, such as protecting crops against pests and diseases. Metabarcoding has proven to be a valuable tool and has been widely used for characterizing the microbial diversity of different environments and has been utilized in many research endeavors. Here we summarize the current status of metabarcoding technologies, the advantages and challenges in utilizing this technique, and how this pioneer approach is being applied to studying plant diseases and pests, with a focus on plant protection and biological control. Current and future developments in this technology will foster a more comprehensive understanding of microbial ecology, and the development of new, innovative pest control strategies.

Metabarcoding: A powerful tool to investigate microbial communities and shape future plant protection strategies

CACCIOLA, Santa Olga;
2017-01-01

Abstract

Microorganisms are the main drivers shaping the functioning and equilibrium of all ecosystems, contributing to nutrient cycling, primary production, litter decomposition, and multi-trophic interactions. Knowledge about the microbial assemblies in specific ecological niches is integral to understanding the assemblages interact and function the function, and becomes essential when the microbiota intersects with human activities, such as protecting crops against pests and diseases. Metabarcoding has proven to be a valuable tool and has been widely used for characterizing the microbial diversity of different environments and has been utilized in many research endeavors. Here we summarize the current status of metabarcoding technologies, the advantages and challenges in utilizing this technique, and how this pioneer approach is being applied to studying plant diseases and pests, with a focus on plant protection and biological control. Current and future developments in this technology will foster a more comprehensive understanding of microbial ecology, and the development of new, innovative pest control strategies.
2017
High throughput sequencing Marker gene Biological control Bioinformatics Plant pathology
File in questo prodotto:
File Dimensione Formato  
Biological Control Cacciola.pdf

solo gestori archivio

Descrizione: original research article
Tipologia: Versione Editoriale (PDF)
Dimensione 729.18 kB
Formato Adobe PDF
729.18 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/308563
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 87
  • ???jsp.display-item.citation.isi??? 77
social impact