It has been observed that, after 2 hours of aerobic exercise, plasma interleukin-6 (IL-6) increases whereas nuclear concentrations of enzyme DNA methyltransferase (DNMT) 3B significantly decreased in peripheral blood mononuclear cells (PBMCs), with no change observed in DNMT3A. The aim of the present study was to detect differences in these changes induced by exercise in plasma IL-6 levels as well as in PBMC nuclear concentrations of DNMT3A and DNMT3B, in relation to age and sex. Four groups were studied: 12 young men (24.8 ± 1.77 years old), 12 young women (23.8 ± 1.81 years old), 12 adult men (45.8 ± 1.82 years old), 12 adult women (mean 44.5 ± 2.07 years old). Participants had to run at 60% of maximal oxygen consumption (VO2max) for 120 minutes, interspersed with sprints at 90% of VO2maxfor the last 30 seconds of every 10 minutes. About 250 mL of PBMCs (1 106cells) were treated with 100 mL of either pre-exercise plasma or post-exercise plasma and nuclear DNMT3A and DNMT3B concentrations were quantified. No change in nuclear concentration of DNMT3A following the exercise was observed. Conversely, nuclear concentrations of DNMT3B significantly decreased, with a reduction of about 78% in young men, 72% in young women, 61% in adult men, and 53% in adult women. Moreover, a strong positive correlation between the nuclear concentration of DNMT3B in PBMC following stimulation with post-exercise plasma and post-exercise plasma concentrations of IL-6 was observed in all the 4 studied groups. This study confirms that a single bout of endurance exercise is sufficient to decrease nuclear concentrations of DNMT3B and thus protein upregulation. Moreover, the epigenetic mechanisms induced by exercise apparently cause more intense changes in men than in women and that, in both of them, this effect seems to decrease with age.

Effects of age and sex on epigenetic modification induced by an acute physical exercise

Perciavalle, Vincenzo;Graziano, Adriana Carol Eleonora;Perciavalle, Valentina
2017-01-01

Abstract

It has been observed that, after 2 hours of aerobic exercise, plasma interleukin-6 (IL-6) increases whereas nuclear concentrations of enzyme DNA methyltransferase (DNMT) 3B significantly decreased in peripheral blood mononuclear cells (PBMCs), with no change observed in DNMT3A. The aim of the present study was to detect differences in these changes induced by exercise in plasma IL-6 levels as well as in PBMC nuclear concentrations of DNMT3A and DNMT3B, in relation to age and sex. Four groups were studied: 12 young men (24.8 ± 1.77 years old), 12 young women (23.8 ± 1.81 years old), 12 adult men (45.8 ± 1.82 years old), 12 adult women (mean 44.5 ± 2.07 years old). Participants had to run at 60% of maximal oxygen consumption (VO2max) for 120 minutes, interspersed with sprints at 90% of VO2maxfor the last 30 seconds of every 10 minutes. About 250 mL of PBMCs (1 106cells) were treated with 100 mL of either pre-exercise plasma or post-exercise plasma and nuclear DNMT3A and DNMT3B concentrations were quantified. No change in nuclear concentration of DNMT3A following the exercise was observed. Conversely, nuclear concentrations of DNMT3B significantly decreased, with a reduction of about 78% in young men, 72% in young women, 61% in adult men, and 53% in adult women. Moreover, a strong positive correlation between the nuclear concentration of DNMT3B in PBMC following stimulation with post-exercise plasma and post-exercise plasma concentrations of IL-6 was observed in all the 4 studied groups. This study confirms that a single bout of endurance exercise is sufficient to decrease nuclear concentrations of DNMT3B and thus protein upregulation. Moreover, the epigenetic mechanisms induced by exercise apparently cause more intense changes in men than in women and that, in both of them, this effect seems to decrease with age.
2017
Acute exercise; Age; DNA methyltransferase; Epigenetic regulation; Interleukin-6; Sex; Medicine (all)
File in questo prodotto:
File Dimensione Formato  
MD-D-17-02680 final.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Versione Editoriale (PDF)
Dimensione 380.1 kB
Formato Adobe PDF
380.1 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/314195
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact