Objectives: Klinefelter syndrome (KS) is one of the most common sex-chromosome disorders as it affects up to 1 in every 600-1000 newborn males. Men with KS carry one extra X chromosome and they usually present a 47,XXY karyotype, but less frequent variants have also been reported in literature. KS typical symptoms include tall stature, gynecomastia, broad hips, hypogonadism and absent spermatogenesis. The syndrome is also related to a wide range of cognitive deficits, among which language-based learning disabilities and verbal cognition impairment are frequently diagnosed. The present study was carried out to investigate the role of mitochondrial subunits in KS, since the molecular mechanisms underlying KS pathogenesis are not fully understood. Methods: The study was performed by the next generation sequencing analysis and qRT-PCR assay. Results: We were able to identify a significant down-expression of mitochondrial encoded NADH: ubiquinone oxidoreductase core subunit 6 (MT-ND6) in men with KS. Conclusion: It is known that defects of the mtDNA encoding mitochondrial subunits are responsible for the malfunction of Complex I, which will eventually lead to the Complex I deficiency, the most common respiratory chain defect in human disorders. Since it has been shown that decreased Complex I protein levels could induce apoptosis, wehypothesizethat the above-mentioned MT-ND6 down-expression contributes to the wide range of phenotypes observed in men with KS.

Next generation sequencing expression profiling of mitochondrial subunits in men with klinefelter syndrome

Cimino L
Conceptualization
;
Cannarella R
Conceptualization
;
Condorelli RA
Conceptualization
;
Romano C
Conceptualization
;
La Vignera S
Conceptualization
;
Calogero AE
Conceptualization
2018-01-01

Abstract

Objectives: Klinefelter syndrome (KS) is one of the most common sex-chromosome disorders as it affects up to 1 in every 600-1000 newborn males. Men with KS carry one extra X chromosome and they usually present a 47,XXY karyotype, but less frequent variants have also been reported in literature. KS typical symptoms include tall stature, gynecomastia, broad hips, hypogonadism and absent spermatogenesis. The syndrome is also related to a wide range of cognitive deficits, among which language-based learning disabilities and verbal cognition impairment are frequently diagnosed. The present study was carried out to investigate the role of mitochondrial subunits in KS, since the molecular mechanisms underlying KS pathogenesis are not fully understood. Methods: The study was performed by the next generation sequencing analysis and qRT-PCR assay. Results: We were able to identify a significant down-expression of mitochondrial encoded NADH: ubiquinone oxidoreductase core subunit 6 (MT-ND6) in men with KS. Conclusion: It is known that defects of the mtDNA encoding mitochondrial subunits are responsible for the malfunction of Complex I, which will eventually lead to the Complex I deficiency, the most common respiratory chain defect in human disorders. Since it has been shown that decreased Complex I protein levels could induce apoptosis, wehypothesizethat the above-mentioned MT-ND6 down-expression contributes to the wide range of phenotypes observed in men with KS.
2018
Klinefelter syndrome; MT-ND6; cognitive deficits; NGS analysis; qRT-PCR.
File in questo prodotto:
File Dimensione Formato  
393_Salemi_NGS-KS_IJMS_2018.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Dimensione 331.81 kB
Formato Adobe PDF
331.81 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/315158
Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 10
social impact