The aim of this work is to identify a class of models that can represent the two-phase microfluidic flow in different experimental conditions. The identification procedure adopted is based on the nonlinear systems synchronization theory. The experimental time series were assumed as the asymptotic behavior of a generic state variable of an unknown Master system, and this information was used to drive a second Slave system, with a known model and undefined parameters. To reach the convergence between the time evolutions of the two systems, so the flow identification, an error was evaluated and optimized by tuning the parameters of the Slave system, through genetic algorithm. The Chua’s oscillator has been chosen as a Slave model, and an optimal parameters set of Chua’s system was identified for each of the 18 experiments. As proof of concept on approach validity, the changes in the parameters set in the different experimental conditions were discussed taking into account the results of the nonlinear time series analysis. The results confirm the possibility with a single model to identify a variety of flow regimes generated in two-phase microfluidic processes, independently of how the processes have been generated, no directed relations with the input flow rate used are in the model.

Nonlinear systems synchronization for modeling two-phase microfluidics flows

Cairone, Fabiana;ANANDAN, PRINCIA;Bucolo, Maide
2018-01-01

Abstract

The aim of this work is to identify a class of models that can represent the two-phase microfluidic flow in different experimental conditions. The identification procedure adopted is based on the nonlinear systems synchronization theory. The experimental time series were assumed as the asymptotic behavior of a generic state variable of an unknown Master system, and this information was used to drive a second Slave system, with a known model and undefined parameters. To reach the convergence between the time evolutions of the two systems, so the flow identification, an error was evaluated and optimized by tuning the parameters of the Slave system, through genetic algorithm. The Chua’s oscillator has been chosen as a Slave model, and an optimal parameters set of Chua’s system was identified for each of the 18 experiments. As proof of concept on approach validity, the changes in the parameters set in the different experimental conditions were discussed taking into account the results of the nonlinear time series analysis. The results confirm the possibility with a single model to identify a variety of flow regimes generated in two-phase microfluidic processes, independently of how the processes have been generated, no directed relations with the input flow rate used are in the model.
2018
Master-Slave coupling; Chua's model; Genetic algorithm
File in questo prodotto:
File Dimensione Formato  
2018_Article_NonlinearSystemsSynchronization.pdf

solo gestori archivio

Tipologia: Versione Editoriale (PDF)
Dimensione 2.05 MB
Formato Adobe PDF
2.05 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/316482
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 24
social impact