In highly viscous electron systems such as, for example, high quality graphene above liquid nitrogen temperature, a linear response to applied electric current becomes essentially nonlocal, which can give rise to a number of new and counterintuitive phenomena including negative nonlocal resistance and current whirlpools. Moreover, in a fluid subject to a magnetic field the viscous stress tensor has a dissipationless antisymmetric component controlled by the so-called Hall viscosity. We propose an all-electrical scheme that allows a determination of the Hall viscosity of a two-dimensional electron liquid in a solid-state device.

All-electrical scheme for Hall viscosity measurement

Pellegrino F. M. D.
;
Marco Polini
2018-01-01

Abstract

In highly viscous electron systems such as, for example, high quality graphene above liquid nitrogen temperature, a linear response to applied electric current becomes essentially nonlocal, which can give rise to a number of new and counterintuitive phenomena including negative nonlocal resistance and current whirlpools. Moreover, in a fluid subject to a magnetic field the viscous stress tensor has a dissipationless antisymmetric component controlled by the so-called Hall viscosity. We propose an all-electrical scheme that allows a determination of the Hall viscosity of a two-dimensional electron liquid in a solid-state device.
2018
978-331972374-7
File in questo prodotto:
File Dimensione Formato  
448361_1_En_2_Chapter_Author.pdf

solo gestori archivio

Tipologia: Documento in Pre-print
Dimensione 404.09 kB
Formato Adobe PDF
404.09 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/318375
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact