This study compared effects of chlorination and chloramination on the chromophores of dissolved organic matter (DOM) and attendant formation of disinfection by-products (DBPs) in raw and treated surface waters. Comparison of the differential absorbance spectra of chloraminated and chlorinated waters shows that interactions of chloramine with DOM chromophores result in changes that are in many respects similar to those observed for chlorine although the extent of degradation of DOM chromophores and the attendant decrease of DOM aromaticity by chloramine are less pronounced than that caused by free chlorine. The degradation of DOM chromophores caused by the examined disinfectants indicated that in both cases a gradual decrease of DOM took place. Decreases of DOM aromaticity estimated based on the changes of DOM absorbance at 254 or 280 nm were correlated with chlorine consumption in a similar way for both examined disinfectants. Correlations between changes of DOM absorbance and yields of dihaloacetic acids (DHAA) were also similar for chlorination and chloramination. This was interpreted to indicate that the generation of DHAA proceeds via the degradation of the reactive sites associated with DOM chromophores irrespective of whether these sites are engaged by chlorine or chloramine. Correlations between the decrease of DOM aromaticity and formation of other DBP (e.g. trihalomethanes - THM, trihaloacetic acids - THAA and dihaloacetonitriles - DHAN) for chloramine and chlorine were also observed but, as opposed to the observations for DHAA, the correlations between degradation of DOM aromaticity and yields of THM, THAA or DHAN were different for chlorination and chloramination.

Comparison of the effects of chloramine and chlorine on the aromaticity of dissolved organic matter and yields of disinfection by-products

Roccaro, Paolo
;
2018-01-01

Abstract

This study compared effects of chlorination and chloramination on the chromophores of dissolved organic matter (DOM) and attendant formation of disinfection by-products (DBPs) in raw and treated surface waters. Comparison of the differential absorbance spectra of chloraminated and chlorinated waters shows that interactions of chloramine with DOM chromophores result in changes that are in many respects similar to those observed for chlorine although the extent of degradation of DOM chromophores and the attendant decrease of DOM aromaticity by chloramine are less pronounced than that caused by free chlorine. The degradation of DOM chromophores caused by the examined disinfectants indicated that in both cases a gradual decrease of DOM took place. Decreases of DOM aromaticity estimated based on the changes of DOM absorbance at 254 or 280 nm were correlated with chlorine consumption in a similar way for both examined disinfectants. Correlations between changes of DOM absorbance and yields of dihaloacetic acids (DHAA) were also similar for chlorination and chloramination. This was interpreted to indicate that the generation of DHAA proceeds via the degradation of the reactive sites associated with DOM chromophores irrespective of whether these sites are engaged by chlorine or chloramine. Correlations between the decrease of DOM aromaticity and formation of other DBP (e.g. trihalomethanes - THM, trihaloacetic acids - THAA and dihaloacetonitriles - DHAN) for chloramine and chlorine were also observed but, as opposed to the observations for DHAA, the correlations between degradation of DOM aromaticity and yields of THM, THAA or DHAN were different for chlorination and chloramination.
2018
Aromaticity; Chlorine; Disinfection by-products (DBPs); Dissolved organic matter (DOM); Monochloramine; Environmental Chemistry; Chemistry (all)
File in questo prodotto:
File Dimensione Formato  
Comparison of the effects of chloramine.pdf

solo gestori archivio

Tipologia: Versione Editoriale (PDF)
Dimensione 3.53 MB
Formato Adobe PDF
3.53 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/321458
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 45
  • ???jsp.display-item.citation.isi??? 43
social impact