Heat shock proteins (HSPs) are believed to represent a cellular stress response mechanism that protects intracellular proteins from damaging events. Some studies have demonstrated an enhanced expression of large-molecular-weight HSPs in diseased systematic joints. Small heat shock proteins, and among these HSP27, have been studied to a lesser extent. HSP27 has cytoprotective and biosynthetic functions within chondrocytes, and it is an estrogen-associated protein that is under hormonal modulation. To improve understanding at a molecular level of the pathophysiology of certain temporomandibular joint disorders, the authors carried out this immunohistochemical study to assess the presence of HSP27 in human TMJ discs. Twelve adult human TMJ discs (10 diseased and 2 healthy discs) and 5 TMJ fetal human discs were used in this study. Adult discs and TMJ tissues of human fetuses were fixed in 10% buffered formalin. Samples were then processed for histologic examination. Sections were immunohistochemically stained using the streptavidin-biotin detection method. No reaction product for HSP27 in the discs of fetuses was noted. HSP27 was weakly expressed in normal TMJ discs and highly up-regulated in discs of patients showing new vessel formation and chondroid metaplasia. Any correlation between gender and HSP27 was found in the sample, being the up-regulation of HSP27 related mostly to major histopathological changes. This different pattern of HSP27 immunostaining in human TMJ discs detected in the authors' specimens suggests that the expression of this small HSP is functionally modulated. In fact HSP27 up-regulates in internal derangement specimens with major histopathological changes; on the other hand, it is not expressed or only weakly expressed in TMJ discs of fetuses and normal TMJ discs.

Expression of Heat Shock Protein 27 (HSP27) in human Temporomandibular Joint Disc of patients with internal derangement

LEONARDI R;CALTABIANO, Mario;LORETO, CARLA AGATA
2002-01-01

Abstract

Heat shock proteins (HSPs) are believed to represent a cellular stress response mechanism that protects intracellular proteins from damaging events. Some studies have demonstrated an enhanced expression of large-molecular-weight HSPs in diseased systematic joints. Small heat shock proteins, and among these HSP27, have been studied to a lesser extent. HSP27 has cytoprotective and biosynthetic functions within chondrocytes, and it is an estrogen-associated protein that is under hormonal modulation. To improve understanding at a molecular level of the pathophysiology of certain temporomandibular joint disorders, the authors carried out this immunohistochemical study to assess the presence of HSP27 in human TMJ discs. Twelve adult human TMJ discs (10 diseased and 2 healthy discs) and 5 TMJ fetal human discs were used in this study. Adult discs and TMJ tissues of human fetuses were fixed in 10% buffered formalin. Samples were then processed for histologic examination. Sections were immunohistochemically stained using the streptavidin-biotin detection method. No reaction product for HSP27 in the discs of fetuses was noted. HSP27 was weakly expressed in normal TMJ discs and highly up-regulated in discs of patients showing new vessel formation and chondroid metaplasia. Any correlation between gender and HSP27 was found in the sample, being the up-regulation of HSP27 related mostly to major histopathological changes. This different pattern of HSP27 immunostaining in human TMJ discs detected in the authors' specimens suggests that the expression of this small HSP is functionally modulated. In fact HSP27 up-regulates in internal derangement specimens with major histopathological changes; on the other hand, it is not expressed or only weakly expressed in TMJ discs of fetuses and normal TMJ discs.
File in questo prodotto:
File Dimensione Formato  
JCraniofacSurg.pdf

solo gestori archivio

Licenza: Non specificato
Dimensione 436.43 kB
Formato Adobe PDF
436.43 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/3216
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact