Light and electron microscopic immunocytochemical methods were used to study the distribution and the morphology of substance P-positive fibers and axon terminals in the dorsal column nuclei of rats and cats, and to determine whether they are part of an ascending input to these nuclei. In rats, substance P-positive fibers and axon terminals are present throughout the rostrocaudal extent of the dorsal column nuclei. In cats, immunostained fibers and terminals are mostly confined to the ventral region of the caudal and middle portions of these nuclei but they are more homogeneously distributed at rostral levels. In both species, substance P-positive neurons are not present in the same nuclear complex. At the electron microscope level, substance P-positive terminals are small- to medium-sized and dome-shaped; they form asymmetric contacts on dendrites and contain many round, agranular vescicles and sparse dense core vescicles. In double-labeling experiments, visualization of substance P-immunoreactivity in the dorsal root ganglia and dorsal horn of the spinal cord was combined with the retrograde transport of wheat germ agglutinin conjugated to horseradish peroxidase or of colloidal gold-labeled wheat germ agglutinin conjugated to enzymatically inactive horseradish peroxidase. These experiments show that substance P-positive axon terminals may originate from both small dorsal root ganglion neurons and from spinodorsal column nuclei neurons in lamina IV. Although quantitative evaluation of the contribution of these two pathways to the substance P innervation of the dorsal column nuclei has not been performed and other sources cannot be discarded on the basis of the present evidence, it is proposed that non-primary afferents to the dorsal column nuclei account for most of the substance P-positive fibers and terminals in the dorsal column nuclei. The experiments support previous findings suggesting that nociceptive input may access the dorsal column nuclei and that this may be mediated, though to a very limited extent, directly by way of small dorsal root ganglion neurons. © 1990.

Substance P-containing projections in the dorsal columns of rats and cats

Giuffrida, R.;
1990-01-01

Abstract

Light and electron microscopic immunocytochemical methods were used to study the distribution and the morphology of substance P-positive fibers and axon terminals in the dorsal column nuclei of rats and cats, and to determine whether they are part of an ascending input to these nuclei. In rats, substance P-positive fibers and axon terminals are present throughout the rostrocaudal extent of the dorsal column nuclei. In cats, immunostained fibers and terminals are mostly confined to the ventral region of the caudal and middle portions of these nuclei but they are more homogeneously distributed at rostral levels. In both species, substance P-positive neurons are not present in the same nuclear complex. At the electron microscope level, substance P-positive terminals are small- to medium-sized and dome-shaped; they form asymmetric contacts on dendrites and contain many round, agranular vescicles and sparse dense core vescicles. In double-labeling experiments, visualization of substance P-immunoreactivity in the dorsal root ganglia and dorsal horn of the spinal cord was combined with the retrograde transport of wheat germ agglutinin conjugated to horseradish peroxidase or of colloidal gold-labeled wheat germ agglutinin conjugated to enzymatically inactive horseradish peroxidase. These experiments show that substance P-positive axon terminals may originate from both small dorsal root ganglion neurons and from spinodorsal column nuclei neurons in lamina IV. Although quantitative evaluation of the contribution of these two pathways to the substance P innervation of the dorsal column nuclei has not been performed and other sources cannot be discarded on the basis of the present evidence, it is proposed that non-primary afferents to the dorsal column nuclei account for most of the substance P-positive fibers and terminals in the dorsal column nuclei. The experiments support previous findings suggesting that nociceptive input may access the dorsal column nuclei and that this may be mediated, though to a very limited extent, directly by way of small dorsal root ganglion neurons. © 1990.
1990
Neuroscience (all)
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/328885
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 45
  • ???jsp.display-item.citation.isi??? 42
social impact