The catalytic performances of Ru/ceria-based catalysts in the CO preferential oxidation (CO-PROX) reaction are discussed here. Specifically, the effect of the addition of different oxides to Ru/CeO2 has been assessed. The Ru/CeO2-MnOx system showed the best performance in the 80–120 C temperature range, advantageous for polymer-electrolyte membrane fuel cell (PEMFC) applications. Furthermore, the influence of the addition of different metals to this mixed oxide system has been evaluated. The bimetallic Ru–Pd/CeO2-MnOx catalyst exhibited the highest yield to CO2 (75%) at 120 C whereas the monometallic Ru/CeO2-MnOx sample was that one with the highest CO2 yield (60%) at 100 C. The characterization data (H2-temperature programmed reduction (H2-TPR), X-ray diffraction (XRD), N2 adsorption-desorption, diffuse reflectance infrared Fourier transform spectroscopy (DRIFT), X-ray photoelectron spectroscopy (XPS)) pointed out that the co-presence of manganese oxide and ruthenium enhances the mobility/reactivity of surface ceria oxygens accounting for the good CO-PROX performance of this system. Reducible oxides as CeO2 and MnOx, in fact, play two important functions, namely weakening the CO adsorption on the metal active sites and providing additional sites for adsorption/activation of O2, thus changing the mechanism from competitive Langmuir–Hinshelwood into non-competitive one-step dual site Langmuir–Hinshelwood/Mars–van Krevelen. As confirmed by H2-TPR and XPS measurements, these features are boosted by the simultaneous presence of ruthenium and palladium. The strong reciprocal interaction of these metals between them and with the CeO2-MnOx support was assumed to be responsible of the promoted reducibility/reactivity of CeO2 oxygens, thus resulting in the best CO-PROX efficiency at low temperature of the Ru-Pd/CeO2-MnOx catalyst. The higher selectivity to CO2 found on the Ru–Pd system, which reduces the undesired H2 consumption, represents a promising result of this research, being one of the key aims of the design of CO-PROX catalysts.

Ru–Pd Bimetallic Catalysts Supported on CeO2-MnOX Oxides as Efficient Systems for H2 Purification through CO Preferential Oxidation

Fiorenza, Roberto;Spitaleri, Luca;Gulino, Antonino;Scirè, Salvatore
2018-01-01

Abstract

The catalytic performances of Ru/ceria-based catalysts in the CO preferential oxidation (CO-PROX) reaction are discussed here. Specifically, the effect of the addition of different oxides to Ru/CeO2 has been assessed. The Ru/CeO2-MnOx system showed the best performance in the 80–120 C temperature range, advantageous for polymer-electrolyte membrane fuel cell (PEMFC) applications. Furthermore, the influence of the addition of different metals to this mixed oxide system has been evaluated. The bimetallic Ru–Pd/CeO2-MnOx catalyst exhibited the highest yield to CO2 (75%) at 120 C whereas the monometallic Ru/CeO2-MnOx sample was that one with the highest CO2 yield (60%) at 100 C. The characterization data (H2-temperature programmed reduction (H2-TPR), X-ray diffraction (XRD), N2 adsorption-desorption, diffuse reflectance infrared Fourier transform spectroscopy (DRIFT), X-ray photoelectron spectroscopy (XPS)) pointed out that the co-presence of manganese oxide and ruthenium enhances the mobility/reactivity of surface ceria oxygens accounting for the good CO-PROX performance of this system. Reducible oxides as CeO2 and MnOx, in fact, play two important functions, namely weakening the CO adsorption on the metal active sites and providing additional sites for adsorption/activation of O2, thus changing the mechanism from competitive Langmuir–Hinshelwood into non-competitive one-step dual site Langmuir–Hinshelwood/Mars–van Krevelen. As confirmed by H2-TPR and XPS measurements, these features are boosted by the simultaneous presence of ruthenium and palladium. The strong reciprocal interaction of these metals between them and with the CeO2-MnOx support was assumed to be responsible of the promoted reducibility/reactivity of CeO2 oxygens, thus resulting in the best CO-PROX efficiency at low temperature of the Ru-Pd/CeO2-MnOx catalyst. The higher selectivity to CO2 found on the Ru–Pd system, which reduces the undesired H2 consumption, represents a promising result of this research, being one of the key aims of the design of CO-PROX catalysts.
2018
CO preferential oxidation (CO-PROX)
fuel cells
ruthenium
palladium
ceria
File in questo prodotto:
File Dimensione Formato  
catalysts-08-00203.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Dimensione 7.14 MB
Formato Adobe PDF
7.14 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/329131
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 30
social impact