Learning precision ball throwing was mostly studied to explore the early rapid improvement of accuracy, with poor attention on possible adaptive processes occurring later when the rate of improvement is reduced. Here, we tried to demonstrate that the strategy to select angle, speed and height at ball release can be managed during the learning periods following the performance stabilization. To this aim, we used a multivariate linear model with angle, speed and height as predictors of changes in accuracy. Participants performed underarm throws of a tennis ball to hit a target on the floor, 3.42 m away. Two training sessions (S1, S2) and one retention test were executed. Performance accuracy increased over the S1 and stabilized during the S2, with a rate of changes along the throwing axis slower than along the orthogonal axis. However, both the axes contributed to the performance changes over the learning and consolidation time. A stable relationship between the accuracy and the release parameters was observed only during S2, with a good fraction of the performance variance explained by the combination of speed and height. All the variations were maintained during the retention test. Overall, accuracy improvements and reduction in throwing complexity at the ball release followed separate timing over the course of learning and consolidation.

Relationship between accuracy and complexity when learning underarm precision throwing

Valle, Maria Stella;Cioni, Matteo;Casabona, Antonino
2018-01-01

Abstract

Learning precision ball throwing was mostly studied to explore the early rapid improvement of accuracy, with poor attention on possible adaptive processes occurring later when the rate of improvement is reduced. Here, we tried to demonstrate that the strategy to select angle, speed and height at ball release can be managed during the learning periods following the performance stabilization. To this aim, we used a multivariate linear model with angle, speed and height as predictors of changes in accuracy. Participants performed underarm throws of a tennis ball to hit a target on the floor, 3.42 m away. Two training sessions (S1, S2) and one retention test were executed. Performance accuracy increased over the S1 and stabilized during the S2, with a rate of changes along the throwing axis slower than along the orthogonal axis. However, both the axes contributed to the performance changes over the learning and consolidation time. A stable relationship between the accuracy and the release parameters was observed only during S2, with a good fraction of the performance variance explained by the combination of speed and height. All the variations were maintained during the retention test. Overall, accuracy improvements and reduction in throwing complexity at the ball release followed separate timing over the course of learning and consolidation.
2018
Motor control; performance; skill
File in questo prodotto:
File Dimensione Formato  
Relationship between accuracy and complexity.pdf

solo gestori archivio

Tipologia: Versione Editoriale (PDF)
Dimensione 1.06 MB
Formato Adobe PDF
1.06 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/329699
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact