Bidirectional communication between neurons and astrocytes shapes synaptic plasticity and behavior. D-serine is a necessary co-agonist of synaptic N-methyl-D-aspartate receptors (NMDARs), but the physiological factors regulating its impact on memory processes are scantly known. We show that astroglial CB1receptors are key determinants of object recognition memory by determining the availability of D-serine at hippocampal synapses. Mutant mice lacking CB1receptors from astroglial cells (GFAP-CB1-KO) displayed impaired object recognition memory and decreased in vivo and in vitro long-term potentiation (LTP) at CA3-CA1 hippocampal synapses. Activation of CB1receptors increased intracellular astroglial Ca2+levels and extracellular levels of D-serine in hippocampal slices. Accordingly, GFAP-CB1-KO displayed lower occupancy of the co-agonist binding site of synaptic hippocampal NMDARs. Finally, elevation of D-serine levels fully rescued LTP and memory impairments of GFAP-CB1-KO mice. These data reveal a novel mechanism of in vivo astroglial control of memory and synaptic plasticity via the D-serine-dependent control of NMDARs. Robin et al. show that astroglial CB1receptors in the hippocampus regulate D-serine supply to NMDA receptors, a process necessary for LTP induction and object recognition memory.

Astroglial CB1 Receptors Determine Synaptic D-Serine Availability to Enable Recognition Memory

OLIVEIRA DA CRUZ, JOSE FERNANDO;BELLOCCHIO, LUIGI;Drago, Filippo;MARSICANO, GIOVANNI
2018-01-01

Abstract

Bidirectional communication between neurons and astrocytes shapes synaptic plasticity and behavior. D-serine is a necessary co-agonist of synaptic N-methyl-D-aspartate receptors (NMDARs), but the physiological factors regulating its impact on memory processes are scantly known. We show that astroglial CB1receptors are key determinants of object recognition memory by determining the availability of D-serine at hippocampal synapses. Mutant mice lacking CB1receptors from astroglial cells (GFAP-CB1-KO) displayed impaired object recognition memory and decreased in vivo and in vitro long-term potentiation (LTP) at CA3-CA1 hippocampal synapses. Activation of CB1receptors increased intracellular astroglial Ca2+levels and extracellular levels of D-serine in hippocampal slices. Accordingly, GFAP-CB1-KO displayed lower occupancy of the co-agonist binding site of synaptic hippocampal NMDARs. Finally, elevation of D-serine levels fully rescued LTP and memory impairments of GFAP-CB1-KO mice. These data reveal a novel mechanism of in vivo astroglial control of memory and synaptic plasticity via the D-serine-dependent control of NMDARs. Robin et al. show that astroglial CB1receptors in the hippocampus regulate D-serine supply to NMDA receptors, a process necessary for LTP induction and object recognition memory.
2018
astrocytes; astroglial CB1 receptors; D-serine; hippocampus; in vitro LTP; in vivo LTP; memory; NMDA receptors; object recognition; synapse; Neuroscience (all)
File in questo prodotto:
File Dimensione Formato  
Astroglial CB1 Receptors.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Dimensione 1.89 MB
Formato Adobe PDF
1.89 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/334368
Citazioni
  • ???jsp.display-item.citation.pmc??? 38
  • Scopus 149
  • ???jsp.display-item.citation.isi??? 139
social impact