The role of epigenetic alterations in the pathogenesis of retinal degenerative diseases, including age-related macular degeneration (AMD), has been pending so far. Our study investigated the effect of oxidative stress and inflammation on DNA methyltransferases (DNMTs) and Sirtuin 1 (SIRT1) functions, as well as on long interspersed nuclear element-1 (LINE-1) methylation, in human retinal pigment epithelial (ARPE-19) cells. Therefore, we evaluated whether treatment with resveratrol may modulate DNMT and SIRT1 functions and restore changes in LINE-1 methylation. Cells were treated with 25 mU/mL glucose oxidase (GOx) or 10 µg/mL lipopolysaccharide (LPS) to mimic oxidative or inflammatory conditions, respectively. Oxidative stress decreased DNMT1, DNMT3a, DNMT3b, and SIRT1 expression (p-values < 0.05), as well as total DNMTs (−28.5%; p < 0.0001) and SIRT1 (−29.0%; p < 0.0001) activities. Similarly, inflammatory condition decreased DNMT1 and SIRT1 expression (p-values < 0.05), as well as total DNMTs (−14.9%; p = 0.007) and SIRT1 (−20.1%; p < 0.002) activities. Interestingly, GOx-and LPS-treated cells exhibited lower LINE-1 methylation compared to controls (p-values < 0.001). We also demonstrated that treatment with 10 µM resveratrol for 24 h counteracted the detrimental effect on DNMT and SIRT1 functions, and LINE-1 methylation, in cells under oxidative and inflammatory conditions. However, further studies should explore the perspectives of resveratrol as a suitable strategy for the prevention and/or treatment of retinal degenerative diseases.

Resveratrol modulates SIRT1 and DNMT functions and restores LINE-1 methylation levels in ARPE-19 cells under oxidative stress and inflammation

Maugeri A;Barchitta M;Basile G;Agodi A
2018-01-01

Abstract

The role of epigenetic alterations in the pathogenesis of retinal degenerative diseases, including age-related macular degeneration (AMD), has been pending so far. Our study investigated the effect of oxidative stress and inflammation on DNA methyltransferases (DNMTs) and Sirtuin 1 (SIRT1) functions, as well as on long interspersed nuclear element-1 (LINE-1) methylation, in human retinal pigment epithelial (ARPE-19) cells. Therefore, we evaluated whether treatment with resveratrol may modulate DNMT and SIRT1 functions and restore changes in LINE-1 methylation. Cells were treated with 25 mU/mL glucose oxidase (GOx) or 10 µg/mL lipopolysaccharide (LPS) to mimic oxidative or inflammatory conditions, respectively. Oxidative stress decreased DNMT1, DNMT3a, DNMT3b, and SIRT1 expression (p-values < 0.05), as well as total DNMTs (−28.5%; p < 0.0001) and SIRT1 (−29.0%; p < 0.0001) activities. Similarly, inflammatory condition decreased DNMT1 and SIRT1 expression (p-values < 0.05), as well as total DNMTs (−14.9%; p = 0.007) and SIRT1 (−20.1%; p < 0.002) activities. Interestingly, GOx-and LPS-treated cells exhibited lower LINE-1 methylation compared to controls (p-values < 0.001). We also demonstrated that treatment with 10 µM resveratrol for 24 h counteracted the detrimental effect on DNMT and SIRT1 functions, and LINE-1 methylation, in cells under oxidative and inflammatory conditions. However, further studies should explore the perspectives of resveratrol as a suitable strategy for the prevention and/or treatment of retinal degenerative diseases.
2018
DNA methylation; Epigenetics; Inflammation; Oxidative stress; Retinal degeneration; Catalysis; Molecular Biology; Spectroscopy; Computer Science Applications1707 Computer Vision and Pattern Recognition; Physical and Theoretical Chemistry; Organic Chemistry; Inorganic Chemistry
File in questo prodotto:
File Dimensione Formato  
ijms-19-02118.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Dimensione 1.29 MB
Formato Adobe PDF
1.29 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/335498
Citazioni
  • ???jsp.display-item.citation.pmc??? 43
  • Scopus 80
  • ???jsp.display-item.citation.isi??? 66
social impact