In this paper, we describe how to construct a finite-difference shockcapturing method for the numerical solution of the Euler equation of gas dynamics on arbitrary two-dimensional domain Ω, possibly with moving boundary. The boundaries of the domain are assumed to be changing due to the movement of solid objects/ obstacles/walls. Although the motion of the boundary could be coupled with the fluid, all of the numerical tests are performed assuming that such a motion is prescribed and independent of the fluid flow. The method is based on discretizing the equation on a regular Cartesian grid in a rectangular domain WR ⊂ Ω. We identify inner and ghost points. The inner points are the grid points located inside Ω, while the ghost points are the grid points that are outside Ω but have at least one neighbor inside Ω. The evolution equations for inner points data are obtained from the discretization of the governing equation, while the data at the ghost points are obtained by a suitable extrapolation of the primitive variables (density, velocities and pressure). Particular care is devoted to a proper description of the boundary conditions for both fixed and time dependent domains. Several numerical experiments are conducted to illustrate the validity of themethod. We demonstrate that the second order of accuracy is numerically assessed on genuinely two-dimensional problems.

ASecond-order finite-differencemethod for compressible fluids in domains with moving boundaries

COCO, ARMANDO;Russo, Giovanni
2018-01-01

Abstract

In this paper, we describe how to construct a finite-difference shockcapturing method for the numerical solution of the Euler equation of gas dynamics on arbitrary two-dimensional domain Ω, possibly with moving boundary. The boundaries of the domain are assumed to be changing due to the movement of solid objects/ obstacles/walls. Although the motion of the boundary could be coupled with the fluid, all of the numerical tests are performed assuming that such a motion is prescribed and independent of the fluid flow. The method is based on discretizing the equation on a regular Cartesian grid in a rectangular domain WR ⊂ Ω. We identify inner and ghost points. The inner points are the grid points located inside Ω, while the ghost points are the grid points that are outside Ω but have at least one neighbor inside Ω. The evolution equations for inner points data are obtained from the discretization of the governing equation, while the data at the ghost points are obtained by a suitable extrapolation of the primitive variables (density, velocities and pressure). Particular care is devoted to a proper description of the boundary conditions for both fixed and time dependent domains. Several numerical experiments are conducted to illustrate the validity of themethod. We demonstrate that the second order of accuracy is numerically assessed on genuinely two-dimensional problems.
2018
Compressible fluids; Euler equations of gas dynamics; Finite-difference shock-capturing methods; Ghost-cell extrapolation; Moving boundaries; Physics and Astronomy (miscellaneous)
File in questo prodotto:
File Dimensione Formato  
ASecond-order finite-differencemethod for compressible fluids in domains with moving boundaries.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Versione Editoriale (PDF)
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 1.1 MB
Formato Adobe PDF
1.1 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/336242
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 11
social impact