Supramolecular architectures developed after the initial studies of Cram, Lehn and Pedersen have become structurally complex but fascinating. In this context, supramolecular capsules based on resorcin[4]arenes, calix[n]arenes or metal–ligand structures are dynamic assemblies inspired by biological systems. The reversible formation of these assemblies, combined with the possibility to modify their dimensions and shapes in the presence of a guest (concepts of reversibility and adaptivity) make them similar to biological macromolecules, such as proteins and enzymes. The small space inside a supramolecular capsule is characterized by different properties compared to the bulk solution. This review describes concrete applications of capsular supramolecular self-assemblies in the biomedical field, in catalysis and in material science.

Applications of supramolecular capsules derived from resorcin[4]arenes, calix[n]arenes and metallo-ligands: from biology to catalysis

PAPPALARDO, ANDREA;TRUSSO SFRAZZETTO, GIUSEPPE
2015-01-01

Abstract

Supramolecular architectures developed after the initial studies of Cram, Lehn and Pedersen have become structurally complex but fascinating. In this context, supramolecular capsules based on resorcin[4]arenes, calix[n]arenes or metal–ligand structures are dynamic assemblies inspired by biological systems. The reversible formation of these assemblies, combined with the possibility to modify their dimensions and shapes in the presence of a guest (concepts of reversibility and adaptivity) make them similar to biological macromolecules, such as proteins and enzymes. The small space inside a supramolecular capsule is characterized by different properties compared to the bulk solution. This review describes concrete applications of capsular supramolecular self-assemblies in the biomedical field, in catalysis and in material science.
File in questo prodotto:
File Dimensione Formato  
RSC Adv., 2015, 5, 51919-51933.pdf

solo gestori archivio

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.09 MB
Formato Adobe PDF
1.09 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/35349
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 45
  • ???jsp.display-item.citation.isi??? 46
social impact