Implanted biomedical devices can induce adverse responses in the human body, which can cause failure of the implant—referred to as implant failure. Early implant failure is induced numerous factors, most importantly, infection and inflammation. Natural products are, today, one of the main sources of new drug molecules due to the development of pathogenic bacterial strains that possess resistance to more antibiotics used currently in various diseases. The aim of this work is the sol–gel synthesis of antibacterial biomedical implants. In the silica matrix, different percentages (6, 12, 24, 50 wt %) of polyethylene glycol (PEG) or poly(ε-caprolactone) (PCL) were embedded. Subsequently, the ethanol solutions with high amounts of chlorogenic acid (CGA 20 wt %) were slowly added to SiO2/PEG and SiO2/PCL sol. The interactions among different organic and inorganic phases in the hybrid materials was studied by Fourier transform infrared (FTIR) spectroscopy. Furthermore, the materials were soaked in simulated body fluid (SBF) for 21 days and the formation of a hydroxyapatite layer on their surface was evaluated by FTIR and XRD analysis. Finally, Escherichia coli and Pseudomonas aeruginosa were incubated with several hybrids, and the diameter of zone of inhibition was observed to assessment the potential antibacterial properties of the hybrids.

Sol–Gel Synthesis of Silica-Based Materials with Different Percentages of PEG or PCL and High Chlorogenic Acid Content

Ignazio Blanco
2019-01-01

Abstract

Implanted biomedical devices can induce adverse responses in the human body, which can cause failure of the implant—referred to as implant failure. Early implant failure is induced numerous factors, most importantly, infection and inflammation. Natural products are, today, one of the main sources of new drug molecules due to the development of pathogenic bacterial strains that possess resistance to more antibiotics used currently in various diseases. The aim of this work is the sol–gel synthesis of antibacterial biomedical implants. In the silica matrix, different percentages (6, 12, 24, 50 wt %) of polyethylene glycol (PEG) or poly(ε-caprolactone) (PCL) were embedded. Subsequently, the ethanol solutions with high amounts of chlorogenic acid (CGA 20 wt %) were slowly added to SiO2/PEG and SiO2/PCL sol. The interactions among different organic and inorganic phases in the hybrid materials was studied by Fourier transform infrared (FTIR) spectroscopy. Furthermore, the materials were soaked in simulated body fluid (SBF) for 21 days and the formation of a hydroxyapatite layer on their surface was evaluated by FTIR and XRD analysis. Finally, Escherichia coli and Pseudomonas aeruginosa were incubated with several hybrids, and the diameter of zone of inhibition was observed to assessment the potential antibacterial properties of the hybrids.
2019
sol–gel method; hybrid materials; antibacterial activity; chlorogenic acid; PEG; PCL; biomaterials
File in questo prodotto:
File Dimensione Formato  
83.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Versione Editoriale (PDF)
Dimensione 2.9 MB
Formato Adobe PDF
2.9 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/359064
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 51
  • ???jsp.display-item.citation.isi??? 49
social impact