Idebenone (IDE) is a strong antioxidant that has been proposed for the treatment of skin disorders, including skin ageing. Unfavorable physico-chemical properties make IDE a poor skin permeant where effectiveness could be improved by its loading into suitable delivery systems such as solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC). In this work, we designed novel IDE-loaded NLC containing tocopheryl acetate (VitE) as a liquid component to obtain a synergic effect between IDE and VitE. The resulting NLC showed small particle sizes (24–42 nm), low polydispersity indices (<0.300), good stability, and were assessed for their in vitro antioxidant activity and in vivo topical effects. IDE-loaded SLN and NLC showed a high antioxidant activity in in vitro assays (DPPH and reducing power method) and provided a similar and significant protection from oxidative stress of fibroblast cells, HS-68, exposed to UV light. After a two-week topical treatment of human volunteers with gels containing IDE-loaded SLN or NLC, a similar increase in skin hydration was observed, while IDE NLC reduced skin pigmentation to a greater extent than IDE SLN. These results suggest that co-loading IDE and VitE into NLC could be a promising strategy to obtain topical formulations with improved photo-protection.

In Vitro Antioxidant Activity and In Vivo Topical Efficacy of Lipid Nanoparticles Co-Loading Idebenone and Tocopheryl Acetate

Montenegro, Lucia
;
MESSINA, Concetta Sabina;Pasquinucci, Lorella;Turnaturi, Rita;Parenti, Carmela;
2019-01-01

Abstract

Idebenone (IDE) is a strong antioxidant that has been proposed for the treatment of skin disorders, including skin ageing. Unfavorable physico-chemical properties make IDE a poor skin permeant where effectiveness could be improved by its loading into suitable delivery systems such as solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC). In this work, we designed novel IDE-loaded NLC containing tocopheryl acetate (VitE) as a liquid component to obtain a synergic effect between IDE and VitE. The resulting NLC showed small particle sizes (24–42 nm), low polydispersity indices (<0.300), good stability, and were assessed for their in vitro antioxidant activity and in vivo topical effects. IDE-loaded SLN and NLC showed a high antioxidant activity in in vitro assays (DPPH and reducing power method) and provided a similar and significant protection from oxidative stress of fibroblast cells, HS-68, exposed to UV light. After a two-week topical treatment of human volunteers with gels containing IDE-loaded SLN or NLC, a similar increase in skin hydration was observed, while IDE NLC reduced skin pigmentation to a greater extent than IDE SLN. These results suggest that co-loading IDE and VitE into NLC could be a promising strategy to obtain topical formulations with improved photo-protection.
2019
Idebenone; tocopheryl acetate; lipid nanoparticles; antioxidants; topical administration; skin hydration; photo-protective effect
File in questo prodotto:
File Dimensione Formato  
applsci-09-00845.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Versione Editoriale (PDF)
Dimensione 2.52 MB
Formato Adobe PDF
2.52 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/360897
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 11
social impact