Glioblastoma (GBM) is the most frequent and deadly form of primary malignant brain tumor among adults. A promising emerging approach for GBM treatment may be offered from HIV protease inhibitors (HIV-PIs). In fact, in addition to their primary pharmacological activity in the treatment of HIV infection, they possess important anti-neoplastic effects. According to previous studies, the addition of a nitric oxide (NO) donating group to parental compounds can reduce their toxicity and enhance the anticancer action of various compounds, including HIV-PIs. In this study we compared the effects of the HIV-PI Lopinavir (Lopi) and of its NO-derivative Lopinavir-NO (Lopi-NO) on the in vitro growth of LN-229 and U-251 human GBM cell lines. Lopi-NO reduced the viability of LN-229 and U-251 cells at significantly lower concentrations than the parental drug. In particular, Lopi-NO inhibited tumor cell proliferation and induced the differentiation of U-251 cells toward an astrocyte-like phenotype without triggering significant cell death in both cell types. The anticancer effect of Lopi-NO was persistent even upon drug removal. Furthermore, Lopi-NO induced strong autophagy that did not appear to be related to its chemotherapeutic action. Overall, our results suggest that Lopi-NO could be a potential effective anticancer drug for GBM treatment.

Anticancer and differentiation properties of the nitric oxide derivative of lopinavir in human glioblastoma cells

Basile, Maria Sofia;Mazzon, Emanuela;Cavalli, Eugenio;Nicoletti, Ferdinando;
2018-01-01

Abstract

Glioblastoma (GBM) is the most frequent and deadly form of primary malignant brain tumor among adults. A promising emerging approach for GBM treatment may be offered from HIV protease inhibitors (HIV-PIs). In fact, in addition to their primary pharmacological activity in the treatment of HIV infection, they possess important anti-neoplastic effects. According to previous studies, the addition of a nitric oxide (NO) donating group to parental compounds can reduce their toxicity and enhance the anticancer action of various compounds, including HIV-PIs. In this study we compared the effects of the HIV-PI Lopinavir (Lopi) and of its NO-derivative Lopinavir-NO (Lopi-NO) on the in vitro growth of LN-229 and U-251 human GBM cell lines. Lopi-NO reduced the viability of LN-229 and U-251 cells at significantly lower concentrations than the parental drug. In particular, Lopi-NO inhibited tumor cell proliferation and induced the differentiation of U-251 cells toward an astrocyte-like phenotype without triggering significant cell death in both cell types. The anticancer effect of Lopi-NO was persistent even upon drug removal. Furthermore, Lopi-NO induced strong autophagy that did not appear to be related to its chemotherapeutic action. Overall, our results suggest that Lopi-NO could be a potential effective anticancer drug for GBM treatment.
2018
Glioblastoma; HIV protease inhibitors; Lopinavir; Lopinavir-NO; Nitric oxide; Apoptosis; Cell Differentiation; Cell Proliferation; Glioblastoma; HIV Protease Inhibitors; Humans; Lopinavir; Nitric Oxide; Tumor Cells, Cultured; Analytical Chemistry; Chemistry (miscellaneous); Molecular Medicine; 3003; Drug Discovery3003 Pharmaceutical Science; Physical and Theoretical Chemistry; Organic Chemistry
File in questo prodotto:
File Dimensione Formato  
nitric oxide derivative of lopinavir in human glioblastoma cells.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Dimensione 3.64 MB
Formato Adobe PDF
3.64 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/361749
Citazioni
  • ???jsp.display-item.citation.pmc??? 27
  • Scopus 35
  • ???jsp.display-item.citation.isi??? 35
social impact