Melanoma is a highly invasive cancer that resists most conventional treatments. Therefore, there is an urgent need to identify alternative anticancer agents able to affect new molecular targets. Drimys winteri (Winteraceae) is a medicinal plant, employed in Brazil and many countries, in folk medicine against a variety of ailments, especially for the treatment of fevers, ulcers, pains, affections of respiratory tract and cancers. Previous phytochemical studies have isolated and identified the presence of diverse classes of secondary metabolites in this plant such as sesquiterpenes. In an ongoing to identify new natural anticancer compounds for the treatment and/or prevention of melanoma, we study the effects of Drimys winteri bark ethyl acetate extract and its sesquiterpenes drimenol, nordrimenone, isonordrimenone and polygodial on human melanoma cells. The treatment of melanoma cells with extract, drimenol, isordrimenone and polygodial resulted in a significant reduction in cell viability. But, polygodial showed the highest inhibitory growth activity. In addition, we reported an apoptotic response after treatment with drimenol, isordrimenone and polygodial that probably involves the reduction of Hsp70 expression and reactive oxygen species production. Alternatively, the inhibition of caspase cascade at higher concentrations, correlated with additional reactive oxygen species increase, probably switches natural product-induced cell death from apoptosis to necrosis. Therefore, this evidence provides a scientific support for the anticancer employ of Drimys winteri in traditional medicinal and suggests that active molecules can be considered potential candidates to be tested also in in vivo models, alone or in combination with chemotherapy agents, for the management of melanoma.

Antigrowth Activity and Induction of Apoptosis in Human Melanoma Cells by Drymiswinteri Forst extract and its active components

Russo Alessandra
;
Cardile Venera;Graziano Adriana C. E;Avola Rosanna;
2019-01-01

Abstract

Melanoma is a highly invasive cancer that resists most conventional treatments. Therefore, there is an urgent need to identify alternative anticancer agents able to affect new molecular targets. Drimys winteri (Winteraceae) is a medicinal plant, employed in Brazil and many countries, in folk medicine against a variety of ailments, especially for the treatment of fevers, ulcers, pains, affections of respiratory tract and cancers. Previous phytochemical studies have isolated and identified the presence of diverse classes of secondary metabolites in this plant such as sesquiterpenes. In an ongoing to identify new natural anticancer compounds for the treatment and/or prevention of melanoma, we study the effects of Drimys winteri bark ethyl acetate extract and its sesquiterpenes drimenol, nordrimenone, isonordrimenone and polygodial on human melanoma cells. The treatment of melanoma cells with extract, drimenol, isordrimenone and polygodial resulted in a significant reduction in cell viability. But, polygodial showed the highest inhibitory growth activity. In addition, we reported an apoptotic response after treatment with drimenol, isordrimenone and polygodial that probably involves the reduction of Hsp70 expression and reactive oxygen species production. Alternatively, the inhibition of caspase cascade at higher concentrations, correlated with additional reactive oxygen species increase, probably switches natural product-induced cell death from apoptosis to necrosis. Therefore, this evidence provides a scientific support for the anticancer employ of Drimys winteri in traditional medicinal and suggests that active molecules can be considered potential candidates to be tested also in in vivo models, alone or in combination with chemotherapy agents, for the management of melanoma.
2019
Apoptosis; Drimys winteri; Hsp70 protein; Melanoma; Reactive oxygen species; Sesquiterpenes
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0009279719302145-main.pdf

solo gestori archivio

Descrizione: articolo su rivista
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.34 MB
Formato Adobe PDF
1.34 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/362883
Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 17
social impact