Humic substances extracted from leonardite are widely considered to be bioactive compounds, influencing the whole-plant physiology and the crop yield. The aim of this work was to evaluate the effect of a new formulate based on leonardite in the early stage of growth of sugar beet (Beta vulgaris L.). A commercial preparation of leonardite (BLACKJAK) was characterized by ionomic analysis, solid-state13C MAS NMR spectroscopy. Seedlings of sugar beet were grown in Hoagland’s solution under controlled conditions. After five days of growth, an aliquot of the concentrated BLACKJAK was added to the solution to obtain a final dilution of 1:1000 (0.5 mg C L−1). The sugar beet response in the early stage of growth was determined by evaluating root morphological traits as well as the changes in the expression of 53 genes related to key morphophysiological processes. Root morphological traits, such as total root length, fine root length (average diameter < 0.5 mm), and number of root tips, were significantly (p < 0.001) increased in plants treated with BLACKJAK, compared to the untreated plants at all sampling times. At the molecular level, BLACKJAK treatment upregulated many of the evaluated genes. Moreover, both Real Time PCR and digital PCR showed that genes involved in hormonal response, such as PIN, ARF3, LOGL 10, GID1, and BRI1, were significantly (p < 0.05) upregulated by treatment with BLACKJAK. Our study provides essential information to understand the effect of a leonardite-based formulate on plant growth hormone metabolism, although the molecular and physiological basis for these complicated regulatory mechanisms deserve further investigations.

Molecular and morphological changes induced by Leonardite-based biostimulant in Beta vulgaris L

Puglisi I.;Baglieri A.;
2019-01-01

Abstract

Humic substances extracted from leonardite are widely considered to be bioactive compounds, influencing the whole-plant physiology and the crop yield. The aim of this work was to evaluate the effect of a new formulate based on leonardite in the early stage of growth of sugar beet (Beta vulgaris L.). A commercial preparation of leonardite (BLACKJAK) was characterized by ionomic analysis, solid-state13C MAS NMR spectroscopy. Seedlings of sugar beet were grown in Hoagland’s solution under controlled conditions. After five days of growth, an aliquot of the concentrated BLACKJAK was added to the solution to obtain a final dilution of 1:1000 (0.5 mg C L−1). The sugar beet response in the early stage of growth was determined by evaluating root morphological traits as well as the changes in the expression of 53 genes related to key morphophysiological processes. Root morphological traits, such as total root length, fine root length (average diameter < 0.5 mm), and number of root tips, were significantly (p < 0.001) increased in plants treated with BLACKJAK, compared to the untreated plants at all sampling times. At the molecular level, BLACKJAK treatment upregulated many of the evaluated genes. Moreover, both Real Time PCR and digital PCR showed that genes involved in hormonal response, such as PIN, ARF3, LOGL 10, GID1, and BRI1, were significantly (p < 0.05) upregulated by treatment with BLACKJAK. Our study provides essential information to understand the effect of a leonardite-based formulate on plant growth hormone metabolism, although the molecular and physiological basis for these complicated regulatory mechanisms deserve further investigations.
2019
Genetic expression; Hormonal metabolism; Root growth; Sugar beet
File in questo prodotto:
File Dimensione Formato  
plants-08-00181-v2.pdf

accesso aperto

Descrizione: Articolo
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 3.69 MB
Formato Adobe PDF
3.69 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/373433
Citazioni
  • ???jsp.display-item.citation.pmc??? 8
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 20
social impact