Thanks to their excellent mechanical strength in combination with low density, high melting point, and good resistance to corrosion, titanium alloys are very useful in many industrial and biomedical fields. The new additive manufacturing methods, such as Electron Beam Powder Bed Fusion based on the deposition of metal powders layers progressively molten by electron beam scanning, can overcome many of the machining problems concerning the production of peculiar shapes made of Ti alloys. However, the processing route is strictly determinant for mechanical performance of products, especially in the case of Ti alloys. In the present work flat specimens made of Ti-6Al-4V alloy produced by Electron Beam Powder Bed Fusion (or Electron Beam Melting) have been built and post-processed with the purpose of obtaining good tensile and creep performance. Preliminarily, the process parameters were set according to literature evidence and machine producer recommendations, validated by the results of a thermal analysis, aimed at satisfying the best processing conditions to reduce defects, as unmelted regions, microstructure coarsening or porosity, that are detrimental to mechanical behavior. Subsequently, Hot Isostatic Pressing and surface smoothing were considered, respectively, in order to reduce any internal porosity and lower roughness. Microstructure of the investigated specimens was characterized by optical and scanning electron microscopy observations and by X-ray diffraction measurements. Results show enhanced tensile behavior after the hot pressing treatment that allows to relieve stresses and reduce defects detrimental to mechanical properties. The best ductility was obtained by the combined effects of machining and densification. Creep test results verify the beneficial effects of surface smoothing.

Tensile and creep properties improvement of Ti-6Al-4V alloy specimens produced by electron beam powder bed fusion additive manufacturing

Giudice F.
;
2019-01-01

Abstract

Thanks to their excellent mechanical strength in combination with low density, high melting point, and good resistance to corrosion, titanium alloys are very useful in many industrial and biomedical fields. The new additive manufacturing methods, such as Electron Beam Powder Bed Fusion based on the deposition of metal powders layers progressively molten by electron beam scanning, can overcome many of the machining problems concerning the production of peculiar shapes made of Ti alloys. However, the processing route is strictly determinant for mechanical performance of products, especially in the case of Ti alloys. In the present work flat specimens made of Ti-6Al-4V alloy produced by Electron Beam Powder Bed Fusion (or Electron Beam Melting) have been built and post-processed with the purpose of obtaining good tensile and creep performance. Preliminarily, the process parameters were set according to literature evidence and machine producer recommendations, validated by the results of a thermal analysis, aimed at satisfying the best processing conditions to reduce defects, as unmelted regions, microstructure coarsening or porosity, that are detrimental to mechanical behavior. Subsequently, Hot Isostatic Pressing and surface smoothing were considered, respectively, in order to reduce any internal porosity and lower roughness. Microstructure of the investigated specimens was characterized by optical and scanning electron microscopy observations and by X-ray diffraction measurements. Results show enhanced tensile behavior after the hot pressing treatment that allows to relieve stresses and reduce defects detrimental to mechanical properties. The best ductility was obtained by the combined effects of machining and densification. Creep test results verify the beneficial effects of surface smoothing.
2019
Electron beam powder bed fusion (EB-PBF); Hot isostatic pressing (HIP); Mechanical properties; Microstructure; Surface conditions; Ti-6Al-4V ELI alloy
File in questo prodotto:
File Dimensione Formato  
metals-09-01207.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 9.05 MB
Formato Adobe PDF
9.05 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/393197
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 26
social impact