The surface of living cells constitutes a dynamic environment submitted to complex oscillatory motions. Oscillations may modify the uptake of incoming molecules. In this study we explored a bio-mimetic system formed by oscillating bubbles suspended in a sea of randomly distributed diffusants. We investigated by a time-dependent Fokker–Planck equation the effect of the periodic motions on the adsorption of a diffusant onto the moving bubble surface. We introduced both direct interactions between the diffusant and the fluctuating surface and indirect interactions due to the hydrodynamic motions around a vibrating surface. Results are expressed in terms of oscillation frequencies and amplitudes. An overall reduction of the bound diffusant at the bubble surface was observed

Modeling the capture rate by a radially oscillating spherical bubble. A bio-mimetic model for studying the mechanically-mediated uptake by cells,

RAUDINO, Antonio;GRASSI, Antonio
2016-01-01

Abstract

The surface of living cells constitutes a dynamic environment submitted to complex oscillatory motions. Oscillations may modify the uptake of incoming molecules. In this study we explored a bio-mimetic system formed by oscillating bubbles suspended in a sea of randomly distributed diffusants. We investigated by a time-dependent Fokker–Planck equation the effect of the periodic motions on the adsorption of a diffusant onto the moving bubble surface. We introduced both direct interactions between the diffusant and the fluctuating surface and indirect interactions due to the hydrodynamic motions around a vibrating surface. Results are expressed in terms of oscillation frequencies and amplitudes. An overall reduction of the bound diffusant at the bubble surface was observed
File in questo prodotto:
File Dimensione Formato  
Modeling the capture rate.pdf

solo gestori archivio

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 766.63 kB
Formato Adobe PDF
766.63 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/39850
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact