The molecular geometry of some 3-substituted beta-thioxoketones (R = CN, OH, F, CH3) and of 3-methyl-4-mercaptopent-3-en-2-one (6) has been fully optimised by ab initio molecular orbital calculations using the 3-21G basis set. The energetics of the intramolecular hydrogen bonding and tautomerism in these compounds have been studied using 6-31G** and MP2/6-31G** basis sets. The 3-substitution does not change the geometry of the hydrogen bridge except in the sterically hindered compound 6. Accordingly, the hydrogen-bonding strength (E(HB)) is little influenced by the substitutent, except in 6, where it increases by ca. 58% with respect to the parent compound, reaching 90 kJ mol-1. E(HB) does not follow Hammett-type behaviour in parallel with the observed variation in the chelate proton chemical shift of the related beta-diketones. This is supported by the molecular orbital and population analysis which, inter alia, shows that the beta-thioxoketone skeleton behaves as a strong sigma-electron donor towards the 3-substituent, including the OH group. Very strong hydrogen bonds in this class of compounds can be achieve if only by steric effects, electronic effects of the substituent being damped by conjugative effects and charge redistributions outside the H-bridge. The tautomeric equilibrium is markedly shifted towards the enolic form in the CN- and CH3 - derivatives, whilst in the OH- derivative the enethiolic structure is favoured. The interconversion (Z)-enol reversible (Z)-enethiol process cannot be regarded as an internal acid-base reaction. The tautomeric energy, relative to the parent compound, rather reflects differential conjugative effects. On the basis of the calculated dipole moment values, the stable gas-phase tautomer is expected to be relatively even more stable in solution.

HYDROGEN-BONDING AND TAUTOMERISM IN 3-SUBSTITUTED BETA-THIOXOKETONES - AN ABINITIO MOLECULAR-ORBITAL STUDY

DI BELLA, Santo
1991-01-01

Abstract

The molecular geometry of some 3-substituted beta-thioxoketones (R = CN, OH, F, CH3) and of 3-methyl-4-mercaptopent-3-en-2-one (6) has been fully optimised by ab initio molecular orbital calculations using the 3-21G basis set. The energetics of the intramolecular hydrogen bonding and tautomerism in these compounds have been studied using 6-31G** and MP2/6-31G** basis sets. The 3-substitution does not change the geometry of the hydrogen bridge except in the sterically hindered compound 6. Accordingly, the hydrogen-bonding strength (E(HB)) is little influenced by the substitutent, except in 6, where it increases by ca. 58% with respect to the parent compound, reaching 90 kJ mol-1. E(HB) does not follow Hammett-type behaviour in parallel with the observed variation in the chelate proton chemical shift of the related beta-diketones. This is supported by the molecular orbital and population analysis which, inter alia, shows that the beta-thioxoketone skeleton behaves as a strong sigma-electron donor towards the 3-substituent, including the OH group. Very strong hydrogen bonds in this class of compounds can be achieve if only by steric effects, electronic effects of the substituent being damped by conjugative effects and charge redistributions outside the H-bridge. The tautomeric equilibrium is markedly shifted towards the enolic form in the CN- and CH3 - derivatives, whilst in the OH- derivative the enethiolic structure is favoured. The interconversion (Z)-enol reversible (Z)-enethiol process cannot be regarded as an internal acid-base reaction. The tautomeric energy, relative to the parent compound, rather reflects differential conjugative effects. On the basis of the calculated dipole moment values, the stable gas-phase tautomer is expected to be relatively even more stable in solution.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/47852
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 27
social impact