Latest results concerning the study of central collisions in 58Ni+48Ca reactions at Elab(Ni)=25 AMeV are presented. The experimental data, collected with the CHIMERA 4π device, have been analyzed in order to investigate the competition among different reaction mechanisms for central collisions in the Fermi energy domain. The method adopted to perform the centrality selection refers to the global variable “flow angle”, that is related to the event shape in momentum space, as it is determined by the eigenvectors of the experimental kinetic-energy tensor. The main features of the reaction products were explored by using different constraints on some of the relevant observables, such as mass and velocity distributions and their correlations. Much emphasis was devoted to the competition between fusion-evaporation processes with subsequent identification of a heavy residue and a prompt multifragmentation mechanism. The reaction mechanism was simulated in the framework of transport theories (dynamical stochastic BNV calculations, followed by sequential SIMON code) and further comparison with dynamical calculations from transport model (QMD, CoMD) are in progress. Moreover, an extension of this study taking into account for the light particles has been envisaged.

Exploring reaction mechanisms and their competition in 58Ni+48Ca collisions at E = 25 AMeV

GERACI, Elena Irene;POLITI, Giuseppe;RIZZO, Francesca;
2014-01-01

Abstract

Latest results concerning the study of central collisions in 58Ni+48Ca reactions at Elab(Ni)=25 AMeV are presented. The experimental data, collected with the CHIMERA 4π device, have been analyzed in order to investigate the competition among different reaction mechanisms for central collisions in the Fermi energy domain. The method adopted to perform the centrality selection refers to the global variable “flow angle”, that is related to the event shape in momentum space, as it is determined by the eigenvectors of the experimental kinetic-energy tensor. The main features of the reaction products were explored by using different constraints on some of the relevant observables, such as mass and velocity distributions and their correlations. Much emphasis was devoted to the competition between fusion-evaporation processes with subsequent identification of a heavy residue and a prompt multifragmentation mechanism. The reaction mechanism was simulated in the framework of transport theories (dynamical stochastic BNV calculations, followed by sequential SIMON code) and further comparison with dynamical calculations from transport model (QMD, CoMD) are in progress. Moreover, an extension of this study taking into account for the light particles has been envisaged.
File in questo prodotto:
File Dimensione Formato  
francalanza_epjconf_inpc2013.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 782.54 kB
Formato Adobe PDF
782.54 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/73937
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact