Adduct formations of Pt-II complexes containing an aromatic diimine (DA) and an L-amino acid (A) with an aromatic carboxylate (AR) or a mononucleotide (NMP) has been studied by synthetic, structural, spectroscopic, and calorimetric methods. Several adducts between Pt-II complexes, [Pt(DA)(L-A)] (charges are omitted; DA=2.2'-bipyrimidine (bpm); A=L-arginine (L-Arg), L-alaninate (L-Ala), and AR (=indole-3-acetate (IA), gentisate (GA)) or GMP were isolated as crystals and structurally characterized by the X-ray diffraction method. GMP in [Pt(bpm)(Arg)](GMP).5H(2)O was revealed to be bound through the pi-pi stacking and guanidinium-phosphate hydrogen bonds. ne [Pt(DA)(A)]-AR and -NMP systems in aqueous solution exhibited NMR upfield shifts of the aromatic ring proton signals due to stacking. The stability constants (K) for the adducts were determined by absorption and NMR spectra and calorimetric titrations. The log K values were found to be in the range 1.40-2.29 for AR and 1.8-3.3 for NMP, the order for NMP being GMP > AMP > CMP > UMP. The DeltaHdegrees values were negative for all the systems studied, and the values for AR (= IA and GA) were more negative than those for NMP, indicating that ARs are stronger electron donors than NMPs. Comparison of the log K values for [Pt(bpm)(L-Arg)] and [Pt(bpm)(L-Ala)] (Ala = alaninate) indicated that the Arg moiety further stabilized the adducts by the guanidinium-carboxylate or -phosphate hydrogen bonds. The combined effects of weak interactions on the stability of the adducts in solution are discussed on the basis of the thermodynamic parameters and solid state structures.

Combined effects of electrostatic and pi-pi stacking interactions: Selective binding of nucleotides and aromatic carboxylates by platinum(II) - Aromatic ligand complexes

MACCARRONE, Giuseppe;CONTINO, Annalinda;ARENA, Giuseppe;
2003-01-01

Abstract

Adduct formations of Pt-II complexes containing an aromatic diimine (DA) and an L-amino acid (A) with an aromatic carboxylate (AR) or a mononucleotide (NMP) has been studied by synthetic, structural, spectroscopic, and calorimetric methods. Several adducts between Pt-II complexes, [Pt(DA)(L-A)] (charges are omitted; DA=2.2'-bipyrimidine (bpm); A=L-arginine (L-Arg), L-alaninate (L-Ala), and AR (=indole-3-acetate (IA), gentisate (GA)) or GMP were isolated as crystals and structurally characterized by the X-ray diffraction method. GMP in [Pt(bpm)(Arg)](GMP).5H(2)O was revealed to be bound through the pi-pi stacking and guanidinium-phosphate hydrogen bonds. ne [Pt(DA)(A)]-AR and -NMP systems in aqueous solution exhibited NMR upfield shifts of the aromatic ring proton signals due to stacking. The stability constants (K) for the adducts were determined by absorption and NMR spectra and calorimetric titrations. The log K values were found to be in the range 1.40-2.29 for AR and 1.8-3.3 for NMP, the order for NMP being GMP > AMP > CMP > UMP. The DeltaHdegrees values were negative for all the systems studied, and the values for AR (= IA and GA) were more negative than those for NMP, indicating that ARs are stronger electron donors than NMPs. Comparison of the log K values for [Pt(bpm)(L-Arg)] and [Pt(bpm)(L-Ala)] (Ala = alaninate) indicated that the Arg moiety further stabilized the adducts by the guanidinium-carboxylate or -phosphate hydrogen bonds. The combined effects of weak interactions on the stability of the adducts in solution are discussed on the basis of the thermodynamic parameters and solid state structures.
2003
hydrogen bonds; nucleotides; platinum(II) complexes; stability constants; stacking interactions
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/8731
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 62
  • ???jsp.display-item.citation.isi??? 61
social impact