The classical dynamics concepts of recurrence and attractor are analysed in the basic mathematical setting of state transition systems, where both time and space are discrete, and no structure is assumed on the state space besides a binary transition relation. This framework proves useful to the dynamical analysis of computations and biomolecular processes. Here a relational formulation of this framework is presented, where the concepts of attractor and recurrence surface in two variants, respectively relating to the two fundamental modalities. A strong link between recurrence and both existence and extent of attractors, in either variant, is established by a novel characterization theorem.

A relational view of recurrence and attractors in state transition dynamics

SCOLLO, Giuseppe;
2006-01-01

Abstract

The classical dynamics concepts of recurrence and attractor are analysed in the basic mathematical setting of state transition systems, where both time and space are discrete, and no structure is assumed on the state space besides a binary transition relation. This framework proves useful to the dynamical analysis of computations and biomolecular processes. Here a relational formulation of this framework is presented, where the concepts of attractor and recurrence surface in two variants, respectively relating to the two fundamental modalities. A strong link between recurrence and both existence and extent of attractors, in either variant, is established by a novel characterization theorem.
2006
3-540-37873-1
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/91502
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact