We developed a simple time-dependent mean-field theory to describe the phase separation kinetics of either homopolymers or AB-diblock copolymers in supercritical (SC) fluids. The model, previously used to describe the phase behavior of AB-block copolymers under the assumption of strong solvent selectivity for just one copolymer chain, has been extended to study the kinetics of the phase separation process. Time resolved small angle x-ray scattering (TR-SAXS) measurements have been performed on different AB-diblock copolymers containing a perfluorinated chain and dissolved in SC-CO2. The data obtained over a wide range of pressure and temperature confirm our theoretical predictions. Particularly interesting is the presence of two relaxation frequencies for the homogeneous solution-->spherical aggregate transition, where the two relaxation processes depend on the depth of the pressure jump and on temperature. The whole phenomenon could be explained as an initial SC solvent/polymer phase separation followed by a slow reorientation process to form spherical aggregates driven by the copolymer solvophilic moiety. (C) 2004 American Institute of Physics.

Pressure-induced formation of diblock copolymer "micelles" in supercritical fluids. A combined study by small angle scattering experiments and mean-field theory. II. Kinetics of the unimer-aggregate transition

RAUDINO, Antonio;
2004-01-01

Abstract

We developed a simple time-dependent mean-field theory to describe the phase separation kinetics of either homopolymers or AB-diblock copolymers in supercritical (SC) fluids. The model, previously used to describe the phase behavior of AB-block copolymers under the assumption of strong solvent selectivity for just one copolymer chain, has been extended to study the kinetics of the phase separation process. Time resolved small angle x-ray scattering (TR-SAXS) measurements have been performed on different AB-diblock copolymers containing a perfluorinated chain and dissolved in SC-CO2. The data obtained over a wide range of pressure and temperature confirm our theoretical predictions. Particularly interesting is the presence of two relaxation frequencies for the homogeneous solution-->spherical aggregate transition, where the two relaxation processes depend on the depth of the pressure jump and on temperature. The whole phenomenon could be explained as an initial SC solvent/polymer phase separation followed by a slow reorientation process to form spherical aggregates driven by the copolymer solvophilic moiety. (C) 2004 American Institute of Physics.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/9996
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact