
	
	
	

University	 of	 Catania	
	

Department	 of	 Electric,	 Electronic	 and	 Computer	 Engineering	
	

	
	

Ph.D.	 Course	 in	 Systems,	 Energy,	 Computer	 and	
Telecommunication	

Engineering–	 XXXII	 Cycle	
	

	
__	

A	 SDN/NFV	 BASED	 C-‐‑RAN	 ARCHITECTURE	
FOR	 5G	 MOBILE	 NETWORKS	

__	
	
	
	

Ph.D.	 Student:	 	
Ing.	 Gianluca	 Camillo	 Valastro	

	
	
	
	
Coordinator:	 Prof.	 Paolo	 Arena	 	 	 	 	 	 	 	 	 	 Tutor:	 Prof.	 Daniela	 Panno	

	

	

	
	
	

To my family

	

	

ABSTRACT

In these years, various standardization entities are defining the
features regarding the future 5G Radio Access Network (RAN)
architecture. A considerable innovation concerning the design of
5G mobile networks will be a concrete step towards enabling
effective high throughput and low latency services.

A novel architecture design for RANs to address critical
elements in resources management and to achieve the 5G mobile
networks performances is needed. In this context, Cloud-Radio
Access Network (C-RAN), a new mobile network architecture
characterized by a functionalities redistribution, is considered as
the most suitable solution.

The principle of C-RAN is related to a functional splitting
turning the monolithic 4G evolved NodeB (eNB) into a two or
three tier Node B, namely Next Generation NodeB (gNB),
comprising two or three types of entities, the remote unit (RU), the
distributed unit (DU) and the centralized unit (CU). Software
Defined Networking (SDN), Network Function Virtualization
(NFV) and Self Organized Network (SON) are considered the
enabling technologies to achieve these goals.

	

SDN focuses on decoupling control and data plane, NFV performs
the functionalities abstraction from the underlying hardware,
whereas SON permits to maximize automation of various the
aspects.

In this dissertation, a hierarchical layered software-defined
architecture for future 5G networks is proposed. The architecture
relies on SDN, NFV and SON principles. As further contribution,
our solution aims to provide new features in order to facilitate
SDN/NFV/SON application in mobile networks.

The research project related to my PhD has been conducted in
the context of an international academic collaboration between the
University of Glasgow and the University of Catania. I have
technically coordinated this research activity and the relative
participation of our team, in representation of the University of
Catania, to the “Mosaic5G” research project, as contributor
member.

In order to implement the aforementioned software defined
architecture, we design and implement a flexible SDN/NFV-based
SON testbed for future 5G mobile networks. The main contribute
of our work is to cover the need for a SDN/NFV-based SON
testbed, enabling the investigation of the potential of these
paradigms for practical implementations. We exploit, FlexRAN, as
a Software Defined RAN (SD-RAN) platform enabling the SDN
concept and OpenAirInterface, as an open source software-based
implementation of the 3GPP full protocol stack.

Research work led to two different Testbed deployments. A
first Testbed in Catania (TestbedCT), based on NFV to set-up an
entirely emulated environment. A subsequent Testbed in Glasgow
(TestbedGLA), as a real environment deployment, using Software

	

Defined Radios (SDRs) and real user equipments.
Both the testbed deployments enable novel research and

provides teaching opportunities in next generation RAN
architectures and several other areas of system-level research.
Furthermore, they act as benchmark for many use cases with a
significant proximity to real network deployment criticalities.

The research activities during the PhD involve another
research collaboration with Bristol Is Open, a joint venture
between the University of Bristol and Bristol City Council, with
the aim of deploying a SDN/NFV based testbed to prove the
application of this two paradigms in the context of mobile core
networks, exploiting OpenDaylight as SDN controller.

Finally, a research collaboration with the telco research team
in Milan of Altran, engineering consulting company, is conducted,
focusing on the virtualization of the IP Multimedia Subsystem
(IMS) network architecture in the context of the Voice over 5G
(Vo5G).

	

	

Acknowledgments

First of all, I want to thank my supervisor, Prof. Daniela Panno, for
her support during these three years of PhD Course. Her precious
advices, both regarding work and life aspects, helped me to grow
up as man and as researcher. It is a pleasure and a privilege to
work under her guidance.

Then I want to thank all my family. The last three years were
not easy, but you always believed in me. You supported me with
your love and care.

This last paragraph is dedicated to my wife Mariangela, I love
you, no words could explain what you mean to me.

	

	

	
	
	

	

	
	

 CONTENTS

1	 CONTENTS	 ..	 11	

1	 INTRODUCTION	 ..	 19	

1.1	 INTRODUCTION	 ...	 19	
1.2	 STRUCTURE	 OF	 THIS	 DISSERTATION	 ..	 27	

2	 BACKGROUND	 AND	 RELATED	 WORK	 ..	 29	

2.1	 BACKGROUND	 ...	 29	
2.2	 OVERVIEW	 ON	 RELATED	 WORKS	 ..	 33	

3	 PROPOSED	 ARCHITECTURE	 ...	 40	

3.1	 SYSTEM	 MODEL	 ...	 40	
3.1.1	 INFRASTRUCTURE	 LAYER	 ..	 42	
3.1.2	 BASEBAND	 PROCESSING	 LAYER	 ..	 42	
3.1.3	 LOW	 AND	 UPPER	 CONTROL	 LAYER	 ...	 43	
3.2	 LOGICAL	 CONTROLLER	 AREAS	 AND	 NEW	 PROPOSED	 FUNCTIONALITIES	 	 44	
3.2.1	 SDN	 CONTROLLER	 LOGICAL	 AREA	 ..	 45	
3.2.2	 NFV	 ORCHESTRATION	 LOGICAL	 AREA	 ...	 46	
3.2.3	 RESOURCE	 CONTROLLER	 LOGICAL	 AREA	 ..	 47	
3.3	 DOCOMO	 USE	 ...	 48	

4	 NS-‐3	 BASED	 TESTBED	 ..	 53	

4.1	 PRELIMINARY	 STEPS	 ..	 53	
4.2	 NS-‐3	 SIMULATOR	 ...	 55	
4.3	 OPENFLOW	 1.3	 MODULE	 ..	 57	
4.4	 SCRIPT-‐BASED	 SIMULATIONS:	 FIXED	 NETWORKS	 AND	 OFSWITCH	 1.3	 	 59	
4.5	 SCRIPT-‐BASED	 SIMULATIONS:	 LTE	 NETWORKS	 AND	 OFSWITCH	 1.3	 	 64	
4.6	 RESULTS	 AND	 CONSIDERATIONS	 ..	 71	

5	 MOSAIC5G	 RESEARCH	 PROJECT	 ..	 74	

	

5.1	 MOTIVATIONS	 ...	 74	
5.2	 MOSAIC5G	 ..	 75	
5.3	 OPENAIRINTERFACE	 ...	 76	
5.4	 FLEXRAN	 ...	 81	

6	 OPENAIRINTERFACE/FLEXRAN	 BASED	 TESTBED	 ..	 87	

6.1	 MOTIVATIONS	 ...	 87	
6.2	 OPENAIRINTERFACE/FLEXRAN	 BASED	 TESTBED	 ...	 89	
6.2.1	 VIRTUALIZED	 TESTBED	 ...	 91	
6.2.2	 REAL	 TESTBED	 ..	 92	
6.3	 FIRST	 CASE	 STUDY:	 RAN	 ENTITIES	 	 	 LIFE-‐CYCLE	 MANAGEMENT	 ..	 94	
6.3.1	 THE	 APPLICATION	 ...	 94	
6.3.2	 START	 AND	 STOP	 COMMANDS	 ...	 96	
6.3.3	 TIMING	 EVALUATIONS	 ...	 99	
6.3.4	 RESULTS	 AND	 CONSIDERATIONS	 ..	 102	
6.4	 SECOND	 CASE	 STUDY:	 MOTION	 SENSOR	 BASED	 SMALL	 CELL	 SLEEP	 SCHEDULING	 	 104	
6.4.1	 PROPOSED	 ALGORITHM	 ...	 107	
6.4.2	 ALGORITHM	 DESIGN	 ..	 109	
6.4.3	 POWER	 CONSUMPTION	 MODEL	 ...	 112	
6.4.4	 PERFORMANCE	 EVALUATION	 ..	 113	

7	 CONCLUSIONS	 ..	 117	

7.1	 CONCLUDING	 REMARKS	 ..	 117	
7.2	 WORK	 IN	 PROGRESS	 ...	 121	
7.2.1	 RAN	 SLICING	 APPLICATION	 ..	 121	
7.2.2	 MACHINE	 LEARNING	 BASED	 SWITCH	 ON/OFF	 ..	 124	
7.2.3	 CORE	 NETWORKS	 AND	 OPENDAYLIGHT	 ..	 126	
7.2.4	 IMS	 VIRTUALIZATION	 ..	 129	
7.3	 LIST	 OF	 PUBLICATIONS	 ..	 131	
BIBLIOGRAPHY………	 134	
	
	
	

	

	

LIST OF ABBREVIATIONS

Abbreviation Description

3GPP Third Generation Partnership Project

5GC 5G core network

5G NG-RAN 5G Next Generation RAN

5G NR 5G new radio interface

5GPPP 5G Public Private Partnership

BS Base Stations

BBU Base Band Unit

CBS Control Base Station

CP Control Plane

CPRI Common Public Radio Interface

CDSA Control Data Separated Architecture

C-RAN Cloud or Centralized Radio Access Network

C-SON Centralized-SON

CU Centralized Unit

DBS Data Base Station

	

DP Data Plane

D-SON Distributed-SON

DU Distributed Unit

EE Energy Efficiency

eMBB Enhanced Mobile Broadband

eNB evolved NodeB

EPC Evolved Packet Core

gNB Next generation NodeB

HetNets Heterogeneous Networks

H-SON Hybrid-SON

IMS IP Multimedia Subsystem

IoT Internet of Things

KPI Key Performance Indicator

LTE Long Term Evolution

MC Macro Cell

mMTC Massive Machine Type Communications

ng-eNB Next generation eNodeB

NGFI Next Generation fronthaul interface

	

NGMN Next Generation Mobile Network

NG-RAN Next Generation RAN

NG-SON Next Generation-SON

NFV Network Function Virtualization

NSA Non-Standalone

OAI OpenAirInterface

O&M Operation and Maintenance

QoS Quality of Service

RAN Radio Access Network

RAT Radio Access Technology

RAU Remote Aggregation Unit

RCC Radio Cloud Center

RRH Remote Radio Head

RRS Remote Radio System

RRU Remote Radio Unit

SA Standalone

SC Small Cell

SCF Small Cell Forum

	

SDN Software Defined Networking

SDR Software Defined Radio

SD-RAN Software Defined RAN

SON Self Organized Network

UE User Equipment

uRLLC Ultra-reliable and Low Latency Communications

USRP Universal Software Radio Peripheral

Vo5G Voice over 5G

VM Virtual Machine

V-RAN Virtual-RAN

	

	
	
	
	

	

CHAPTER
 ONE

1 INTRODUCTION

1.1 Introduction
	
	
	

5G networks will be innovative networks able to provide revolutionary
services, functionalities and capabilities hard to obtain by exploiting the
actual network technologies. Therefore, 5G networks should be re-
designed in order to accomplish the new requirements.

Recently, the progress regarding various aspects of the IT world has
contributed to the creation and the evolution of an open ecosystem. The
users will leverage on various types of devices, which will allow the
connection to different types of networks in order to access different kind
of services.

Actually, this progress and the relative flexibility mainly regards
services and applications, whereas the network architectures are not
suitable for these new technologies, leading to the need of a next
generation mobile networks.

	

Therefore, the next generation mobile networks will be characterized

by the presence of different kind of physical networks. The coexistence
of these networks, by overcoming economical and juridical constraints,
can be exploited to provide to the end-users an enhanced experience
related to the requested service.

Figure 1.1: 5G requirements

	

As can be seen in Fig. 1.1, strict requirements are envisioned for the

5G networks:

• Ensuring a wireless capacity 1000 times greater than the
actual

• Ensuring a services diversification
• Achieving an energy saving up to 90%, primarily as regards

the RAN side, which is responsible for the 80% of the energy
consumption in a mobile network.

• Decreasing the time to create services
• Creating a new network architecture based on the concepts of

availability and reliability,
• Ensuring a perceived down time close to zero.

This focus on the services and their requirements is based on the

assumption that, in contrast to the previous mobile networks generations,
the 5G is not centered on the end-user but on the services, or more
specifically, the verticals, i.e., the different vertical markets, such as
automotive, energy, city management, government, healthcare,
manufacturing, and intelligent transport systems. The definition of
verticals remarks the definition introduced by IMT Vision
recommendation ITU-R M.2083-0, regarding three principal use cases
as:

• Enhanced Mobile Broadband (eMBB), mainly regarding the

human-devices involved in high data rate and large payload
transmission with a moderate reliability, typical of high quality

	

streaming, augmented and virtual reality.

• Ultra-reliable and Low Latency Communications (uRLLC),

mainly regarding devices involved in tactile internet or remote
control. These communications are characterized by small
payload transmissions with low latency and high reliability, since
concern mission critical communications such as medical or
emergency items.

• Massive Machine Type Communications (mMTC), mainly

regarding communication among a high number of devices with
small payload and non-delay-sensitive transmissions, typical of
Internet of Things (IoT).

In order to exploit this heterogeneity of services and relative

requirements, changes and enhancements, regarding the management of
the mobile networks, are needed. The major challenges in terms of
research and innovation concerning the mobile networks in the context of
5G cover different aspects. In particular, the European Union funded 5G
Public Private Partnership (5GPPP) supported different projects focusing
on a wide range of aspects, from physical layer to the overall
architecture, network management and software networks. The
motivation relies on the assumption that 5G is not only an innovation
related to a new radio but mainly focuses on the attempt to create a new
framework allowing the integration of previous and new technologies in
order to achieve the 5G requirements.

This process is conducted by a specific working group of the 5GPPP
Initiative, the 5G Architecture Working Group. The work of the group
has been organized in three phases. Each one of these phases led to the

	

production of a white paper in the versions 1.0, 2.0 and 3.0, respectively
published in July 2016, January 2018 and July 2019 [1-3]. The view
given by the 5G PPP contributors and the results coming from the 5G
PPP projects deeply contributed to the standardization process of the 5G
mobile networks conducted by various standardization entities, e.g., the
Third Generation Partnership Project (3GPP), as shown in Fig. 1.2.

Figure 1.2: The standardization process regarding the 5G networks

The standardization process regards both the RAN and the CN. As

shown in Fig. 1.3, 5G network is composed of a 5G access network,
called 5G Next Generation RAN (NG-RAN) and a 5G core network
(5GC) [4]. The NG-RAN consists of 5G new radio interface (NR) access
nodes and/or of non-3GPP access network nodes, both connected to the
5GC.

	

On the basis of the user plane/control plane terminations, the 5G
access network node can be defined as:

• evolved NodeB (eNB) - LTE access network node from 3GPP
Rel-8 up to Rel-14.

• Next generation eNodeB (ng-eNB) – LTE access network node

from 3GPP Rel-15, providing user plane and control plane
protocol termination towards the user equipment (UE), connected
via the NG interface to the 5CG.

Figure 1.3: 5G network architecture

• Next generation NodeB (gNB) – 5G access network from 3GPP
Rel-15, providing NR user plane and control plane protocol
terminations towards the UE, via the NG interface to the 5GC.

Furthermore, as shown in Fig. 1.4, different deployment options are

	

defined on the basis of the RAN-CN interconnections. In particular, the
various options can be divided in standalone (SA) and non-standalone
(NSA). In the SA options (1,2,5) only one radio access technology is
deployed, 5G NR or the evolved Long Term Evolution (LTE) connected
to the corresponding generation of core network. In the NSA options
(3,4,7), NR radio access nodes are combined with LTE access nodes and
the core network may be either Evolved Packet Core (EPC) or 5GC.

Figure 1.4: 5G Deployments and migration strategies

Finally, different migration strategies are defined in order to move

from a previous type of deployment to another. Considering a starting
configuration, it is possible the migration only to a restricted number of
available deployment options.

	

Finally, as regards the network functions, in 5G networks generally
they will be exposed as services, so the 5G core is said to have a service-
based architecture. More specifically, the procedures related to specific
network functions are defined as services. Furthermore, in previous
mobile networks generations a standardized real or logical point-to-point
interface interconnecting two network entities is defined, and this
interface uses a specific bit-oriented protocol. In the 5GC, service-based
interfaces are exploited, supported by web-oriented tools such as
HTTP/2, REST and JSON. Consequently, the 5G architecture has been
designed to enable the softwarization of the network functions.

This led to an evolution regarding the network design, characterized
by a new need of flexibility and programmability, different from the
“ossified” hardware previous network architecture.

Software defined networking (SDN), network function virtualization
(NFV) and cloud computing are recognized as the key enabling
technologies to enable these enhancements. In Chapter 2, a detailed
overview of the RAN evolution will permit to better understand how
these paradigms are contributing to this software revolution.

	

1.2 Structure of this Dissertation
	

The dissertation is organized as follows. In Chapter 2 is presented a
brief overview on 5G technology and a State-of-the-art overview.
In Chapter 3 we introduce the system model and the network model
being considered and then present a detailed description of the proposed
software defined architecture. In Chapter 4 the first version of the
testbed, based on the ns-3 simulator. In Chapter 5 we present the
software tools utilized in the second version of the testbed,
OpenAirInterface and FlexRAN. In Chapter 6 we expose the testbed
based on these two software tools, as well exposing the results and the
relative considerations.

Finally, in Chapter 7 the conclusion remarks, where discuss also the
works in progress. The list of related publications is presented as well.

CHAPTER

 TWO

2 BACKGROUND AND RELATED WORK

2.1 Background

In next decade, as exposed in [2], future mobile networks will fulfill
multiple 5G features in terms of guaranteed user data rate, high
throughput, low delay, number of UEs and mobility support at high
speed. Cell densification is considered as a key solution in order to
realize these enhancements. In this context, the basic idea is to deploy the
access nodes as close as possible to the end users, in order to satisfy the
required Quality of Service (QoS) and maximize system throughput. Due
to the increasing user density, small cells become smaller and denser,
leading to the ultra-dense networks concept. In [5] a quantitative measure
of the cell density for which a network can be considered ultra-dense
(103 cells / km2) is provided.

In this line, future networks will be realized as a set of multiple base
stations with different features, in terms of connected users, transmitted
power and coverage areas, i.e., small cell and macro cell deployment.

Among the main aspects available in literature concerning

densification, we focus on dual connectivity and centralization. Based on

	

Dual Connectivity scheme standardized by 3GPP for Release 12 small
cell enhancements [6], DOCOMO proposes in [7] the Phantom Cell
Concept, as a solution for the next ultra-dense networks.

Figure 2.1: Docomo splitting solution

As shown in Fig. 2.1, this solution is mainly focused on a splitting
between control plane (C-Plane) and user data plane (U-Plane).
Moreover, different frequency band allocation in Macro cell and small
cell coverage areas is considered. In particular, for a UE in a phantom
cell coverage area, C-Plane is provided by the Macro eNodeB at low
frequency band (2 GHz), in order to improve connectivity and mobility
management, whereas U-Plane is provided by Phantom base station at
higher frequency band (3.5 GHz), in order to boost user data rate.

As regards the centralization aspect, we observe that in the
traditional LTE RAN, see Fig.2.2a, the eNodeB is composed of a radio

	

front-end entity, referred as Remote Radio Head (RRH) and a base band
computational unit, called Base Band Unit (BBU). In this context, the
BBUs are located in a distributed mode (i.e., each BBU is co-located
with the related RRH). As shown in Fig.2.2b, in the last few years,
mobile RAN is slightly evolving to a more centralized architecture,
known as Centralized-Radio Access Network (C-RAN) [8].

Figure 2.2: (a) CPRI based Distributed RAN - (b) CPRI based Centralized
RAN

In C-RAN architecture, base band computational resources are pooled in
remote locations, still hardware-based, known as BBU Pools, whereas
RRHs are placed in edge locations. Centralization feature provides
notable advantages in terms of CAPEX/OPEX, since enables operators to
centralize hardware, significantly reducing energy consumption and
maintenance costs. Exploiting the positive aspects of dual connectivity

	

and centralization in an ultra-dense scenario enables to perform a
centralized radio resource management capable of addressing significant
issues as severe interference between co-tier small cells, support and co-
deployment of LTE-Advanced and 5G RAN entities (inter-technology
compatibility). Furthermore, a RAN evolution is also required in order to
support Multi-Radio Access Technology (RAT) feature and seamlessly
integrate new radio access technologies, e.g. millimeter waves, with
existing ones.

These significant requirements cannot be achieved without new key
features as softwarization, programmability, virtualization, fronthaul and
radio interface redesigning and resource coordination. The control and
data plane splitting proposed by DOCOMO could be realized through
SDN. In its native wired nature, SDN focuses on decoupling control and
data plane of network forwarding elements as switches. The
communication between the forwarding entity and the control entity, i.e.
the controller, is performed by the OpenFlow protocol. Accordingly, the
data plane is performed by OpenFlow enabled switches, whereas the
control plane is performed by logically centralized but physically
distributed SDN controllers.

In order to take full advantage of SDN capabilities in mobile and
wireless environments, a first critical issue is related to its possible
integration. NFV, focusing on virtualization of hardware based
functionalities, can be take in account in virtualization process of the
BBU entities forming the BBU Pool. NFV permits to realize in a
software fashion the hardware based baseband functionalities. These
enhancements make RAN architecture more scalable and reliable, since a
programmable management of virtualized functionalities is achievable.
At this aim, as depicted in [9], SDN and NFV are considered as the
enabling technologies to realize these enhancements.

	

Following to the above assumptions, in a further evolution of the
Centralized-RAN, BBUs can be not only centralized but also virtualized
and coordinated by a centralized entity, in order to optimize resource
allocation, leading to Cloud-RAN or Virtual-RAN. Accordingly, Cloud-
RAN, SDN and NFV are recognized as the key enabling solutions for
future mobile networks.

2.2 Overview on related works

As mentioned above and depicted in [10], in terms of centralization and
architecture redesigning, in the last few years mobile RAN has already
slightly evolved to a more centralized and coordinated fashion, C-RAN.
As shown in Fig. 2.3, the transport network connecting RRHs to the
related BBU Pool is called Fronthaul. Fronthaul links could be
implemented using different technologies like Ethernet, optical fiber or
millimeter wave communication.

On the one hand, due to high bandwidth and low delay requirements
optical fiber communication would be the proper solution for C-RAN
fronthaul, but its deployment is usually high costly and not flexible. On
the other hand, wireless solutions, such as millimeter wave
communication, are cheaper and easy to deploy, but characterized by
lower bandwidth and higher delay.

	

Figure 2.3: RAN evolution

The selection of the appropriate frounthaul link option is strictly

related to a further significant aspect, i.e., centralization option. In fact,
centralization could be implemented in different patterns, i.e., full
centralization, partial centralization and hybrid centralization. These
patterns are related to various functional splits proposed by different
organizations, e.g., SCF [11], NGMN [12] and 3GPP [13], as shown in
Fig. 2.4.

Figure 2.4: 3GGP Functional splitting options - Source: 3GPP TR 38.801

V.14.0.0.

	

In full centralization, coinciding with option 8, only RF
functionalities are deployed in RRH site, PHY Layer and upper layers in
BBU Pool site, in order to maximize management capacity, making
easier operation and maintenance. On the other hand, as exposed in [14],
due to high bandwidth and overhead related to IQ data transmission, this
solution suffers from performance limitations.

In partial centralization, coinciding with option 6, PHY layer
functions are implemented in RRHs, upper layers in the central unit
(BBU). As opposed to fully centralized option, bandwidth and overhead
requirements are reduced, since the demodulated signal is carried rather
than the modulated one, but pooling gain is limited. In hybrid
centralization, coinciding with option 7, also known as LLS (Lower
Layer Split), part of the physical layer functions are implemented in
RRHs, remaining functions in BBU.

In conclusion, partially and hybrid centralized solutions are
characterized by lower requirements than fully centralized, in terms of
bandwidth and overhead, allowing to deploy an Ethernet fronthaul, rather
than fiber. Furthermore, fully centralized option is better in terms of
pooling gain, since aggregating computational resources related to the
entire protocol stack permits to implement more advanced processing
algorithms. Thus, an appropriate functional splitting should take into
account a trade-off between these solutions.

As regards the interface redesigning, we observe that in the
traditional LTE RAN, as shown in Fig.2.2a, the interface between RRHs
and BBUs is a Common Public Radio Interface (CPRI). CPRI was
developed for local link between BBU and RRH in antenna sites and to
support lower bandwidth transmissions. Moreover, as shown in Fig.2.2b,
first implementations of C-RAN fronthaul are still CPRI-based. As
depicted in [15], different solutions are present in literature. In particular,

	

two examples of Centralized RAN are considered.
The first example is China Mobile Research Institute C-RAN

proposal [8], deploying a centralized control, in particular virtualized
BBU pool are connected to RRHs through fiber connections. The second
example is proposed by DOCOMO and is considered as an Advanced C-
RAN, since implements Phantom Cell Concept, based on carrier
aggregation and small cell technologies [16]. These two solutions are
based on a full centralization, thus suffer from the IQ data transport
related issues, which causes a bottleneck in Fronthaul Network.

In order to resolve it, in [17] is proposed by Akyildiz et al. a
Software Defined architecture based on hybrid centralization, but still
implementing the CPRI as Fronthaul Interface. Nevertheless, in next few
years, increasing the distance between RRHs and BBUs, the fronthaul
link will be extended in the range of Kms, so traditional CPRI will not be
the proper solution. In fact, one of the most significant issues will be the
high data rate requirements related to the increasing number of antennas,
as effect of massive MIMO deployments [2]. In addition, strict 5G
requirements in terms of higher bandwidth and lower delay, leads to a
further evolution of fronthaul and interface designing.

In this line, in recent times IEEE NGFI working group defines a new
transport fronthaul interface for future mobile networks, called Next
Generation fronthaul interface (NGFI). This solution aims to resolve the
abovementioned issues related to CPRI, thanks to features as adaptive
bandwidth, statistical multiplexing, support for high-gain coordinated
algorithms, data rate decoupled from the number of antennas at RRUs,
support for different air interface technology.

	

Figure 2.5: NGFI based Centralized RAN

As shown in Fig. 2.5, according to [18], BBU and RRH
functionalities are redefined, since part of BBU functionalities are moved
to the edge location. Consequently, Remote Radio System (RRS)
concept is introduced. In particular, the RSS concerns network elements
as antennas, Remote Radio Units (RRUs) and Remote Aggregation Unit
(RAU). RRUs will be an enhanced radio frontend performing part of
base band processing, the RAU will be a logical entity performing local
aggregation functionality and part of BBU processing.

Accordingly, BBU will be redesigned as Radio Cloud Center (RCC),
since will exploit softwarization and virtualization features. The RCC
will perform the remaining BBU processing. The RRU coverage will be
equivalent to a metrocell. The fronthaul network will be redesigned,
since fronthaul links will evolve from point-to-point to multipoint-to-

	

multipoint, exploiting the aggregation feature of the RAU. According to
this redesign, since bandwidth requirements will be relaxed, the fronthaul
transport technology would be packet based, i.e. Ethernet, in order to
facilitate NGFI standardization and real deployment.

	 	

	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	

CHAPTER

 THREE

3 PROPOSED ARCHITECTURE

3.1 SYSTEM MODEL

In this thesis, a hierarchical layered architecture for future 5G networks
is proposed. The solution exploits SDN/NFV features, in order to deploy
a programmable and virtualized architecture. We aim to propose new
features that could facilitate SDN/NFV integration in wireless/mobile
environment, concretizing Docomo proposed solution in an ultra-dense
scenario.

The hierarchical architecture scheme includes different logical layers, as
shown in Fig. 3.1. The considered scenario concerns a group of macro
cells. Exploiting a NGFI based architecture, each macro and the RRUs
deployed in the related coverage area form the infrastructure layer.

	

Figure 3.1: Proposed SDN/NFV based C-RAN architecture

The baseband processing layer is composed of BBU Pools,

concerning the entire computational capacity, connected through
fronthaul links and RAU to RRUs. The control layer is performed by a
set of SDN controllers, each controller takes care of several management
aspects, performing various functionalities. The application layer as the
various applications deployed on top of the SDN controllers.

A detailed description of the proposed architecture is provided, the
proposed SDN/NFV based C-RAN architecture comprises the following
layers.

	

3.1.1 Infrastructure Layer

As opposed to CPRI-based SoftAir proposal, inspired by NGFI-
based architecture, in particular by the RAU, we consider NGFI as
fronthaul interface. This permits to overcome the CPRI related issues
still present in SoftAir proposal and to deploy an Ethernet based
fronthaul network. Inspired by [17], in order to softwarize mobile
networks, as novelty we propose to deploy an OpenFlow agent upon the
RAU entity, which in conjunction with OpenFlow-enabled forwarding
devices, performs a programmable forwarding on the basis of SDN
Controller rules. Furthermore, in the fronthaul and backhaul network,
OpenFlow enabled forwarding devices are deployed. In this line, control
and data plane splitting is achieved and the data plane becomes
programmable.

3.1.2 Baseband processing layer
	

The baseband processing layer concerns a set of BBU Pools,
representing the entire computational capacity. In particular, as regards
functional splitting options, we design virtualized base band
functionalities also in RAU, in order to dynamically implement a
particular functional splitting option. Furthermore, as opposed to a CPRI
based architecture, the flexibility of the designed virtualized base band
processing in RAU, permits to relax the fronthaul link requirements,
enabling the deploy of an Ethernet fronthaul network. This enhancement
is appropriate, e.g., when a fronthaul link suffers from a fault or the
capacity of a BBU Pool is not sufficient in relation to the experienced
data traffic.

	

3.1.3 Low and upper control Layer

Furthermore, as opposed to a CPRI based architecture, the flexibility
of the designed virtualized base band processing in RAU, permits to
relax the fronthaul link requirements, enabling the deploy of an Ethernet
fronthaul network. This enhancement is appropriate, e.g., when a
fronthaul link suffers from a fault or the capacity of a BBU Pool is not
sufficient in relation to the experienced data traffic.

The control layer is composed of a set of SDN controllers, each
controller takes care of several management aspects, performing various
functionalities. The architectural control layer is logically centralized but
physically distributed, as a set of slave controllers and master controllers.

Master controllers, forming the upper control layer and located in
remote sites, manage a group of macro cells, keeps in account long time
scale and less fine grained parameters, acting as reference entities for
slave controllers.

Slave controllers, forming the lower control layer, located in edge
sites, as opposed to master controllers, keep in account short time scale
and more fine grained parameters, acting as management entity for a
group of small cells.

In order to realize these enhancements, is necessary to customize
northbound and southbound interfaces. In particular, the southbound
interface is performed by the OpenFlow interface, enabling
programmable management of underlying network elements.
Northbound interfaces allow applications to interact with controller. On
the basis of the reports sent by RAN entities, the algorithms running in
applications computes the related output.

	

3.2 Logical controller areas and new
proposed functionalities

As shown in Fig. 3.2, the proposed slave controller, focusing on

different features, can be seen as composed of different logical areas,
corresponding to the related northbound applications. These proposed
functionalities could allow to fulfill strict 5G requirements, since
elaborating and combining reports from network entities, will be able to
perform optimum rules in terms of switching, resource allocation and
virtual function instantiation/migration.

Figure 3.2: Proposed Slave Controller

	

	

3.2.1 SDN Controller logical area

We design this logical area as strictly related to the particular

designed fronthaul network. In fact, in our design, fronthaul network will
evolve from a point-to-point CPRI-based network to multipoint-to-
multipoint NGFI/Ethernet based network. Since fronthaul topology will
be more complex, manage forwarding in a fast, programmable and
dynamic fashion exploiting OpenFlow will be necessary, realizing
control and data plane splitting related to forwarding functionalities. This
SDN enhancement in the proposed mobile RAN architecture is deployed
in OpenFlow native scope, i.e. wired network forwarding, but could be
very useful to achieve strict 5G requirements. The proposed
functionalities related to this area are:

	
	

• Forwarding functionalities in fronthaul network.

As exposed above since fronthaul network will be more complex,
this controller area will allow to manage the mobile

network in a centralized way, coordinating forwarding behavior among
OpenFlow enabled network entities, like RAU and switches. This is
achievable only through a centralized entity which perform an overall
and continuously updated view of the network state.

An Ethernet-like fronthaul will permit to exploit actual OpenFlow
capabilities. Moreover, will be possible, through an extended OpenFlow
protocol, adding new matching fields, realize splitting based on different
rules (simple control and data plane splitting, UE-related and cell-related,
different types of splitting in downlink and uplink). In this case, in a
dynamic fashion, would be created a Virtual cluster, as a set of RRU

	

dynamically associated with a BBU Pool and consequently to a slave
controller.

	
	

• Forwarding functionalities in Multi-RAT RAN.

Since 5G environment will be a Multi-RAT environment, this new
functionality will concern Multi-RAT support. Interconnecting different
wired and wireless involved subsystems, should be possible only
deploying an intelligent and fast forwarding, in order to comply with 5G
delay requirements. In fact, will be necessary a convergence entity which
will be able to select optimum options in terms of switching, security
issues and reliability. These enhancements could be realized in our slave
controller, in association to the aggregation feature performed by the
RAU. As opposed to the abovementioned functionality, in which slave
controllers would manage a group of small cells based on the same
technology, in this case our slave controller would manage a group of
access point based on different technologies. This would be achievable
exploiting a Virtual Multi-RAT cluster, dynamically related to a
particular BBU POOL and consequently to a particular slave controller.

3.2.2 NFV Orchestrator logical area

We design this logical area in order to realize a NFV Orchestrator,
which would be able to allocate dynamically computational resources
related to BBU Pool.

	

The novelty introduced with this logical area comes with these
enhancements:

• Dynamic instantiation of BBU/RAU/RRU related

functionalities

Since part of the protocol stack processing will be implemented in a
virtualized fashion, would be possible to dynamically instantiate
virtualized base band processing functionalities based on fronthaul link
requirements, activating or dis-activating the related virtual entities, in
order to dynamically deploy different functional splitting options. These
variations could be related to the capacity required in a particular time
interval or period of the day.

• Dynamic instantiation/migration of slave controllers

In order to follow capacity demands or the need for a convergence

controller in multi-rat environment, would be possible to instantiate or
migrate slave controller, implemented in a virtualized fashion. In this
case could be useful realize a “lighter virtualization”, in a container
fashion.

	
	

3.2.3 Resource Management Controller logical area

This logical area is designed to instantiate rules based on related
resource management algorithms, in order to allocate resources on the

	

basis of instantaneous requirements in terms of capacity, rate and link
state. Moreover, would be possible to deploy a mobility management in a
single or multi RAT environment.

	
	

• Resource management in single or Multi RAT RAN

This functionality concerns algorithms implementation based on a
programmable resource management. Slave controller, on the basis of
parameters regarding the actual state of the network, elaborates the
optimum resource allocation. This logical area would permit to realize an
efficient allocation through cooperative concepts, exploiting the overall
point of view of the slave controller, in the above mentioned Virtual
Cluster.

• Resource management for single or Multi RAT handover.

Handover algorithms implementation and resource reallocation

based on the related requested service. Thanks to the concept of Virtual
Multi-RAT cluster, would be possible to associate the best Multi-RAT
neighbor, in order to manage a transparent handover between related
technologies.

3.3 Docomo use case

On the basis of the above assumptions, we design an architectural
solution for DOCOMO proposed control and data plane splitting. This
proposed architecture realizes the abovementioned splitting and exploit
SDN/NFV features described in the previous section. Furthermore, as

	

opposed to Docomo Advanced C-RAN, exploiting the flexibility of the
proposed virtual base band processing in RAU. We are able to overcome
IQ data transmission issues and to dynamically implement a specific
functional splitting option. As regards the control and data plane splitting
proposed by Docomo, two different cases are considered in the proposed
architecture:

• UEs in the coverage area of a macrocell

In this case control and data plane traffic would be routed by
OpenFlow enabled RAN entities, on the basis of no splitting option rules
specified by the SDN Controller, since Macro RRU provide both control
and data plane.

• UEs in the coverage area of a phantomcell

In this case is necessary a splitting between control and data plane.
In particular, data plane traffic is routed to Phantom RRU, control plane
traffic is routed to Macro RRU, through OpenFlow enabled RAN
entities, according to the rules specified by the SDN Controller.

In addition, as designed by DOCOMO in a further evolution of the

Phantom Cell Concept, the interface between Macro RRU and BBU Pool
is designed as the X3 Interface, the interface between phantom RRU and
BBU Pool is designed as the X4 interface. In this specific considered
scenario, we are focusing on slave controller case. On the basis of
different considerations regarding the strict throughput and delay
requirements, the slave controller could be located in the same site of the
macro RRU.

	
	

	 	
Figure 3.3: Docomo Use Case

	
	
	
	
	

In this case, the X3 interface would be an internal interface used to
manage the communication between Macro RRU and the related BBU
Pool. In case of slave controller is located in a remote site, different from
Macro RRU site, the X3 interface would also accomplish the related
requirements in terms of delay and synchronization. Following the above
considerations would be more suitable to locate the slave controller in
the same location of Macro RRU, in order to exploit as well as possible
the enhancements related to the proposed architecture. The application
running on top of the slave controller would be able to communicate
through customized northbound interface API. These applications would

	
be strictly related to the above mentioned logical areas, but would work
on a cooperative fashion in order to enhance the overall architecture
performances. Through a customized southbound interface, the
OpenFlow interface, would be possible to exploit SDN capabilities,
thanks to an OpenFlow agent running on the specified RAN entities.

	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	

CHAPTER

 FOUR

4 NS-3 BASED TESTBED

4.1 PRELIMINARY STEPS
	

In order to implement the proposed architecture, among the designed

logical areas, we design and implement a first deployment of the testbed
focusing on the functionalities related to the SDN Controller logical area
of the SDN/NFV based C-RAN architecture proposed in the Chapter 3.
We decide to deploy and to prove firstly this proposed feature, as a
control/data plane splitting aspect, because we consider it as more
straightforward than the other proposed functionalities, being an
enhancement in OpenFlow native scope, i.e. wired network forwarding
in the RAN and in the interconnections with the core network.

Following these assumptions, the topology considered in this first
testbed implementation reflects the fronthaul network proposed in our C-
RAN architecture, as a multipoint-to-multipoint NGFI/Ethernet based
network. Since fronthaul topology will be more complex, manage
forwarding in a fast, programmable and dynamic fashion exploiting
OpenFlow will be necessary, realizing control and data plane splitting
related to forwarding functionalities.

	

At this aim, we realize, in a simulated environment, a first software
defined deployment of the proposed LTE RAN architecture trough the
ns-3 simulator. In particular, we configured two different ns-3 modules,
known in literature as LENA ns-3 LTE Module [19] and the OFSwitch13
module [20].

The environment has been implemented on top of a SuperMicro 828-
14 server. We decided to install and configure Ubuntu 16.04.2 LTS
Xenial Xerus as operating system, in order to respect the requirements
and the compatibility of the used ns-3 software modules with the specific
operating system. We decided to assign a public class B IP address to
permit the remote interconnection with the server and with the aim of
conducting remote testing sessions. Furthermore, a Virtual Private
Network has been implemented in order to secure the aforementioned
remote interconnection through the open-vpn and the easy-rsa packages.

The ns-3 environment has been installed and configured firstly in a
virtualized entity and subsequently in a real environment, i.e., the Linux
Ubuntu 16.04 operating system installed on top of the server. At this aim
the VirtualBox software tool has been installed to deploy virtual
machines. On top of these virtual machines the ns-3 environment has
been deployed. This choice permits us to conduct the installation and
configuration phases in isolated environments, in order not to cause
potential issues or instability on top of the operating system of the server.
Only when a good confidence with the software tools has been achieved
and the correct functioning of the environments has been proved the
aforementioned steps have been reproduced on top of the real operating
system.

	

In the next sections a brief description of these software tools is given.
	
	

4.2 ns-3 simulator

The ns-3 simulator is a discrete-event network simulator, targeted
primarily for research and educational use. ns-3 is free software, licensed
under the GNU GPLv2 license, and is publicly available for research,
development, and use.

The software is written in C++ and Python languages. In this
simulation environment are defined different types of classes whose
permit to conduct tests regarding different types of networks (fixed,
wireless and mobile).

For our purpose, i.e., the simulation of the LTE architecture, we
leverage on the LENA ns-3 LTE module. The LENA ns-3 LTE module
permits to simulate a LTE RAN / LTE-EPC standard architecture.

In particular, the installation and configuration phases regarded the
release 3.26 of the ns-3 simulator. The two aforementioned phases have
been conducted on top of a Linux Ubuntu 16.04 virtual machine, with the
aim of reproducing later the same procedures in the real operating
system, as previously underlined. The Fig. 4.1 depicts the LTE-EPC
simulation model used in ns-3 simulator. The model is composed of two
different components:

• the LTE Model, including the LTE Radio Protocol stack (RRC,
PDCP, RLC, MAC, PHY), exploiting the UE and eNB nodes.

• the EPC Model, including the network interfaces, protocols and
entities regarding the core network, exploiting the SGW, PGW,
MME and the eNB nodes.

	

	
Figure 4.1: LTE and EPC models

The setup and configuration processes are conducted through the helper
objects. The main helper objects are related to the two aforementioned
models. In this line, we can distinguish:

• the LteHelper object, which permits to configure the LTE radio
access network entities, and to manage the setup and release of
EPS bearers. In the LteHelper class both the API definition and
its implementation are provided.

• the EpcHelper object, which permits to configure the Evolved
Packet Core entities. Unlike the LteHelper class, the EpcHelper
class is an abstract base class, providing only the API definition.
Thus, the relative implementation is realized through the child
classes in order to allow for different EPC network models.

	

The simulation environment permits to conduct LTE-only
simulations, if only the LteHelper is used, or complete LTE-EPC
simulations if both LteHelper and EpcHelper are used. In this case, a
master-slave relation between the two helper is created. Furthermore, the
LteHelper acts as the Master that interacting directly with the user
program, whereas the EpcHelper acts as the slave, configuring the EPC
models through explicit methods called by LteHelper.

	
	

4.3 OpenFlow 1.3 Module

The OpenFlow 1.3 module, called also OFSwitch13 module, has
been designed to integrate the updated SDN capabilities in ns-3
simulator. In fact, in the ns-3 simulator a module supporting the
OpenFlow functionalities was already implemented, but this module was
based on a very outdated OpenFlow protocol, the 0.8.9 version (2008).
Thus, the integration of the OFSwitch13 permitted to use the features of
the version 1.3 of the OpenFlow protocol, both in terms of switch nodes
and controller application interface.

	

	
 Figure 4.2: OFSwitch 1.3 Module

	

As shown in Fig, 4.2, the OFSwitch13 permits to interconnect the
ns-3 nodes, orchestrating the network through the controller application
interface in order to implement the desired control logic. The
interconnection between the controller and the switch entities is
conducted through the standard ns-3 protocol stack, devices and
channels. Furthermore, the external OpenFlow 1.3 Software Switch for
ns-3 is compiled as a library, the ofsoftswitch13 library, in order to
implement the switch data path and to make possible the conversion of
the OpenFlow messages to and from wire format.

Finally, the dpctl utility tool for configuring the switch from the
command line is deployed. The source code that permits the
implementation of the OFSwitch13 module is located in the directory
src/ofswitch13. The version of the OFSwitch 1.3 used in the testbed is
the 3.0.0, compatible with the 3.26 version of ns-3. In particular, we
made these choices because the version 3.0.0 has been developed and
tested together with ns-3 versions 3.26.

	
	

	

4.4 Script-based simulations: Fixed networks and
OFSwitch 1.3

The first objective has been the practical demonstration, for our

purpose, of an efficient OpenFlow integration in the LTE simulation
environment in order to prove the SDN capabilities underlined in the
proposed software defined architecture.

At this aim, a C++ script has been used to simulate a scenario in
which two host are interconnected to an OpenFlow switch through a
CSMA link. The proper functioning of the test is conducted by the ping
process between the two hosts, passing through the OpenFlow switch.

It follows a brief description of the used C++ scripts and an
overview of the first results:

#include	 <ns3/core-‐module.h>	
#include	 <ns3/network-‐module.h>	
#include	 <ns3/csma-‐module.h>	
#include	 <ns3/internet-‐module.h>	
#include	 <ns3/ofswitch13-‐module.h>	
#include	 <ns3/internet-‐apps-‐module.h>	
	
using	 namespace	 ns3;	
	
int	
main	 (int	 argc,	 char	 *argv[])	
{	
//	 Enable	 checksum	 computations	 (required	 by	 OFSwitch13	 module)	
GlobalValue::Bind("ChecksumEnabled",BooleanValue	 (true));	
	
	

	
In ns-3 it is necessary to define the objects acting as container for the

nodes of the simulated networks. It is possible through the
NodeContainer class, which permits to instantiate multiple nodes. The
nodes have been created through the smart pointer Ptr<Node>. In our
case, we created two different hosts nodes and an OpenFlow switch
node:

//	 Create	 two	 host	 nodes	
	 	 	 NodeContainer	 hosts;	
	 	 	 hosts.Create	 (2);	
	
	 	 	 //	 Create	 the	 switch	 node	
	 	 	 Ptr<Node>	 switchNode	 =	 CreateObject<Node>	 ();	

Subsequently, through the use of the helper class CsmaHelper, it has
been possible to model and to configure the networks. Before the use of
this helper, it has been necessary to instantiate the objects of the
NetDeviceContainer class, whose represents an abstraction of the
network interfaces connecting the nodes. In particular, we created the
interfaces of the hosts and the switch ports through two different
NetDeviceContainer objects. In the for loop, through the Install() method
and the related to the CSMA helper it has been possible to create the
links between the hosts and the switch.

	
Finally, through the smart pointer Ptr<Node>, the node

controllerNode has been created.

	 	 	 //	 Use	 the	 CsmaHelper	 to	 connect	 the	 host	 nodes	 to	 the	 switch.	
	 	 	 CsmaHelper	 csmaHelper;	
	 	 	 NetDeviceContainer	 hostDevices;	
	 	 	 NetDeviceContainer	 switchPorts;	
	
	 	 	 for	 (size_t	 i	 =	 0;	 i	 <	 hosts.GetN	 ();	 i++)	
	 	 	 {	
	 	 	 	 	 	 NodeContainer	 pair	 (hosts.Get	 (i),	 switchNode);	
	 	 	 	 	 	 NetDeviceContainer	 link	 =	 csmaHelper.Install	 (pair);	
	 	 	 	 	 	 hostDevices.Add	 (link.Get	 (0));	
	 	 	 	 	 	 switchPorts.Add	 (link.Get	 (1));	
	 	 	 }	
	
	
	 	 	 //	 Create	 the	 controller	 node	
	 	 	 Ptr<Node>	 controllerNode	 =	 CreateObject<Node>	 ();	

	
The OFSwitch13InternalHelper helper class permits to represent and

to configure an OpenFlow network domain, installing the controllerNode
previously created through the InstallController() method. Furthermore,
this permits to enable the switch node to support the OpenFlow Datapath
on the relative ports.

//	 Configure	 the	 OpenFlow	 network	 domain	
	 	 	 Ptr<OFSwitch13InternalHelper>	 of13Helper	 =	 	 	 	 	 	 	 	 	 	
CreateObject<OFSwitch13InternalHelper>	 ();	

	 	 	 of13Helper-‐>InstallController	 (controllerNode);	
	 	 	 of13Helper-‐>InstallSwitch	 (switchNode,	 switchPorts);	
	 	 	 of13Helper-‐>CreateOpenFlowChannels	 ();	

The InternetStackHelper helper permits to create a default TCP/IP
protocol stack and to install it on the hosts nodes of the network.

	 	 	 //	 Install	 the	 TCP/IP	 stack	 into	 hosts	 nodes	
	 	 	 InternetStackHelper	 internet;	
	 	 	 internet.Install	 (hosts);	

The definition of the pool of IP addresses and the relative assignment to
the associate nodes has been possible through Ipv4AddressHelper class.

	 	 	 //	 Set	 IPv4	 host	 addresses	
	 	 	 Ipv4AddressHelper	 ipv4helpr;	
	 	 	 Ipv4InterfaceContainer	 hostIpIfaces;	
	 	 	 ipv4helpr.SetBase	 ("10.1.1.0",	 "255.255.255.0");	
	 	 	 hostIpIfaces	 =	 ipv4helpr.Assign	 (hostDevices);	
	

	
Among the available Helpers we have chosen to use the

V4PingHelper, which permits to configure a ping session between two
hosts. In our case, the packet flow is forwarded by the OpenFlow Switch,
that is managed by the previously configured controller, managing the
data path regarding the two hosts.

	 	 	 //	 Configure	 ping	 application	 between	 hosts	
	 	 	 V4PingHelper	 pingHelper	 =	 V4PingHelper	 (hostIpIfaces.GetAddress	 (1));	
	 	 	 pingHelper.SetAttribute	 ("Verbose",	 BooleanValue	 (true));	
	 	 	 ApplicationContainer	 pingApps	 =	 pingHelper.Install	 (hosts.Get	 (0));	
	 	 	 pingApps.Start	 (Seconds	 (1));

Finally, through the methods of the Simulator class, we defined the

duration of the simulation, managing the life cycle of the simulation
through the Run() and the Destroy() methods.

	 	 //	 Run	 the	 simulation	
	 	 	 Simulator::Stop	 (Seconds	 (10));	
	 	 	 Simulator::Run	 ();	
	 	 	 Simulator::Destroy	 ();	
}	

This script permits us to demonstrate a proper functioning of the

OFSwitch 1.3 module in simulation concerning a generic fixed network.
	

	
	

	
	

4.5 Script-based simulations: LTE networks and
OFSwitch 1.3

In this section, we prove the proper integration and functioning of

the OFSwitch 1.3 module in the case of simulation concerning LTE
networks. The simulation is script-based and the script is similar to the
one used for the fixed network simulation. For this reason, the overview
of the script regards only the new entities deployed in the simulation.

In this case, the script permitted us to run a simulation demonstrating
the effective connection managed by the configured controller through a
single Openflow Switch, between a UE and a remote fixed host.

The first step has been the creation of the LteHelper and of the
EpcHelper through the relative methods in order to properly create both
the RAN and the EPC architecture models.

//	 Create	 LTE/EPC	 helper	 	
	
Ptr<LteHelper>	 lteHelper	 =	 CreateObject<LteHelper>	 ();	
Ptr<PointToPointEpcHelper>epcHelper	 =	
CreateObject<PointToPointEpcHelper>	 ();	
lteHelper-‐>SetEpcHelper	 (epcHelper);	

	

	
The second step has been the creation of the remotehost node

through the relative container, installing the internet protocol stack.
	
//	 Create	 a	 single	 RemoteHost	 	
	 NodeContainer	 remoteHostContainer;	
	 remoteHostContainer.Create	 ();	
	 Ptr<Node>	 remoteHost	 =	 remoteHostContainer.Get	 (0);	
	 InternetStackHelper	 internet;	
	 internet.Install	 (remoteHostContainer);	

Then through the relative NodeContainer and the method the node
for the Openflow switch is created.
	
	
//	 Create	 switch	 nodes	 	
	 NodeContainer	 switches;	
	 switches.Create	 (1);	 	
	

	
The following lines permitted us to create, through the appropriate

NodeContainer, the nodes for the UE and for the enb.
	
//	 Create	 ueNodes/enbNodes	
	 NodeContainer	 ueNodes;	
	 NodeContainer	 enbNodes;	
	 enbNodes.Create	 ();	
	 ueNodes.Create	 ();	

	
The creation of the nodes for the controller and for the pgw have

been realized through the smart pointer Ptr<Node>.
	

//	 Create	 the	 controller	 node	 	
	 Ptr<Node>	 controllerNode	 =	 CreateObject<Node>	 ();	
	 	 	
	 	 //	 Create	 the	 pgw	 node	 	
	 	 Ptr<Node>	 pgw	 =	 epcHelper-‐>GetPgwNode	 ();	
	

The following lines permitted us to realize the configuration of the
Internet connection through the PointToPointHelper, setting different
values.
	
	 	 //	 Create	 the	 Internet	 	
	 	 PointToPointHelper	 p2ph;	
	 	 p2ph.SetDeviceAttribute	 ("DataRate",	 DataRateValue	
(DataRate	 ("100Gb/s")));	
	 	 p2ph.SetDeviceAttribute	 ("Mtu",	 UintegerValue	 (1500));	
	 	 p2ph.SetChannelAttribute	 ("Delay",	 TimeValue	 (Seconds	
(0.010)));	

	
	

The following lines configures the interconnection between the fixed
remote host and the pgw, setting the chosen ip address pools.
	
	 	 NetDeviceContainer	 internetDevices	 =	 p2ph.Install	 (pgw,	
remoteHost);	
	 	 Ipv4AddressHelper	 ipv4h;	
	 	 ipv4h.SetBase	 ("1.0.0.0",	 "255.0.0.0");	
	 	 Ipv4InterfaceContainer	 internetIpIfaces	 =	 ipv4h.Assign	
(internetDevices);	
	 	 Ipv4Address	 remoteHostAddr	 =	 internetIpIfaces.GetAddress	 ();	

	
	 	 Ipv4StaticRoutingHelper	 ipv4RoutingHelper;	
	 	 Ptr<Ipv4StaticRouting>	 remoteHostStaticRouting=	 	 	 	
ipv4RoutingHelper.GetStaticRouting	 (remoteHost-‐
>GetObject<Ipv4>	 ());	
	 	 remoteHostStaticRouting-‐>AddNetworkRouteTo	 (Ipv4Address	
("7.0.0.0"),	 Ipv4Mask	 ("255.0.0.0"),	 1);	 	 	
	 remoteHostStaticRouting-‐>SetDefaultRoute	 (Ipv4Address	
("10.0.0.5"),	 1);	
	
	

Through the mobilityHelper it has been possible to configure the
mobility model of the nodes involved in the simulation. In our case, we
decided to implement a constant position mobility model, i.e., all the
nodes persist in the same position during the simulation.
	
//	 Install	 Mobility	 Model	 	
MobilityHelper	 mobility;	
	 	
mobility.SetMobilityModel("ns3::ConstantPositionMobilityMod
el");	
	 	 mobility.Install(enbNodes);	
	 	 mobility.Install(ueNodes);	
	 	 mobility.Install(remoteHostContainer);	 	
	 	 mobility.Install(switches);	
	 	 mobility.Install(controllerNode);	
	 	 mobility.Install(pgw);	
	 	 	
	 	

We created the devices on top of previously created nodes, and we
configured the mac scheduler, in this case a proportional fair MAC
scheduler.

	

	
	 //	 Create	 Devices	 and	 install	 them	 in	 the	 Nodes	 	
	 (eNB	 and	 UE)	 	
NetDeviceContainer	 enbDevs	 =	 lteHelper-‐>InstallEnbDevice	
(enbNodes);	
	 	 NetDeviceContainer	 ueDevs	 =	 lteHelper-‐>InstallUeDevice	
(ueNodes);	
	 	 //	 Default	 scheduler	 is	 PF,	 uncomment	 to	 use	 RR	
	 	 //lteHelper-‐>SetSchedulerType	 ("ns3::RrFfMacScheduler");	
	
	

The following permits to install the IP stack on top of the UE
devices, to set the relative interfaces and to assign to each UE device one
IP address from those previously specified. Finally, the default gateway
for the UEs is configured.

	 //	 Install	 the	 IP	 stack	 on	 the	 UEs	
	
internet.Install	 (ueNodes);	
	 Ipv4InterfaceContainer	 ueIpIface	 =	 epcHelper-‐
>AssignUeIpv4Address	 (NetDeviceContainer	 (ueDevs));	
	 	 	
	 	 //	 Assign	 IP	 address	 to	 UEs,	 and	 install	 applications	
	 	 for	 (uint32_t	 u	 =	 0;	 u	 <	 ueNodes.GetN	 ();	 ++u)	
	 	 	 	 {	
	 	 	 	 	 	 Ptr<Node>	 ueNode	 =	 ueNodes.Get	 (u);	

	
	 	 	 	 	 	 //	 Set	 the	 default	 gateway	 for	 the	 UE	
	 	 	 	 	 	 Ptr<Ipv4StaticRouting>	 ueStaticRouting	 =	
ipv4RoutingHelper.GetStaticRouting	 (ueNode-‐
>GetObject<Ipv4>	 ());	
	 	 	 	 	 	 ueStaticRouting-‐>SetDefaultRoute	 (epcHelper-‐
>GetUeDefaultGatewayAddress	 (),	 1);	
	 	 	 	 }	 	

	
	

The next lines are necessary to set the attach of the specified UE to
the chosen enb.
	
//	 Attach	 one	 UE	 per	 eNodeB	 	
	 	 for	 (uint16_t	 i	 =	 0;	 i	 <	 numberOfNodes;	 i++)	
	 	 	 	 	 	 {	
	 	 	 	 	 	 	 	 lteHelper-‐>Attach	 (ueDevs.Get(i),	 enbDevs.Get(0));	
	 	 	 	 	 	 }	
	 	 	
	

These lines are used to configure the application that causes the
traffic generation and the relative intercommunication between the Ue
node and the remote host node, specifying the necessary parameters.

	
//	 Configure	 applications	 to	 generate	 traffic	
UdpEchoServerHelper	 echoServer	 (9);	 	
ApplicationContainer	 serverApps	 =	 echoServer.Install	
(remoteHost1);	 	 	 	 	 	
	 serverApps.Start	 (Seconds	 (1.0));	
	 serverApps.Stop	 (Seconds	 (20.0));	
UdpEchoClientHelper	 echoClient	 (remoteHostAddr1,	 9);	 	
echoClient.SetAttribute	 ("MaxPackets",	 UintegerValue	 (5));	
echoClient.SetAttribute	 ("Interval",	 TimeValue	 (Seconds	 (1.0)));	
	 echoClient.SetAttribute	 ("PacketSize",	 UintegerValue	 (512));	
ApplicationContainer	 clientApps	 =	 echoClient.Install	
(ueNodes.Get(0));	 	
clientApps.Start	 (Seconds	 (2.0));	
clientApps.Stop	 (Seconds	 (20.0));	
serverApps.Start	 (Seconds	 (2));	
clientApps.Start	 (Seconds	 (4));	
	
	

	
Finally, the simulation is configured and the NetAnim tool is used in
order to visualize the different information during the execution of the
simulation. The NetAnim tool is an offline animator based on the Qt
toolkit. Through this tool, we animated the simulation using the XML
trace file collected during simulation. Furthermore, the following lines
permit to set the necessary parameters in order to visualize the node
position statistics with node trajectory plotting (path of a mobile node),
and to show IP and MAC information, including peer IP and MAC for
point-to-point links.
	
//	 Run	 the	 simulation	
	
Simulator::Stop(Seconds(simTime));	
	
ns3::AnimationInterface	 anim	 (animFile);	
anim.SetConstantPosition(ueNodes.Get(0),	 10.0,	 20.0);	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 anim.UpdateNodeDescription(ueNodes.Get(0),	 "Ue0");	
anim.SetConstantPosition	 (enbNodes.Get(0),	 10.0,	 30.0);	
anim.UpdateNodeDescription(enbNodes.Get(0),	 "EnodeB	 0");	
anim.SetConstantPosition	 (switches.Get(0),	 20.0,	 20.0);	
anim.UpdateNodeDescription(switches.Get(0),	 "Switch");	
anim.SetConstantPosition	 (controllerNode,	 30.0,	 20.0);	
anim.UpdateNodeDescription(controllerNode,	 "Controller");	
anim.SetConstantPosition	 (remoteHostContainer.Get(0),	 40.0,	
40.0);	
anim.UpdateNodeDescription(remoteHostContainer.Get(0),	
"Remote	 Host	 0");	
anim.SetConstantPosition	 (pgw,	 30.0,	 30.0);	
anim.UpdateNodeDescription(pgw,	 "P-‐GW");	
Simulator::Run();	
Simulator::Destroy();	
}	 	

	

4.6 Results and considerations

As can be seen in Fig. 4.3, the build and compile processes related to
the C++ script described in the previous section have been successfully
executed. Furthermore, after the run process, thanks to the NetAnim tool,
we visualized the configured positions of all the specified nodes. As set
in the script, the simulation generated six different nodes: the UE, the
OpenFlow Switch, the controller, the P-GW, the enb and the remote host.

 Figure 4.3: ns-3 simulations, node positons

The Fig.4.4 shows the proper communication between the Ue and
the remote host. The relative packets exchange flows through the
OpenFlow switch and it is managed by the configured controller.

	

	
 Figure 4.4: ns-3 simulations, node interactions

The considerations based this first version of the testbed, based on
the ns-3 simulator are this simulation environment permitted us, through
the execution of the two aforementioned C++ scripts, to test a proper use,
for our objectives, of the OpenFlow protocol when it is embedded in a
mobile network context. It has been possible thanks to the configuration
work conducted in order to properly use ns-3 and the OFSwitch 1.3
module. Despite these positive aspects, the use of ns-3 simulator and the
OFSwitch 1.3 module, permitted us only to prove a proper integration of
the OpenFlow protocol in its nature context, i.e. the wired side of the
mobile networks. Thus, utilizing a testbed based on these tools it has not
been possible to prove the remaining innovative aspects of the proposed
software defined architecture. In order to prove these concepts in a
wireless/mobile context we have decided to base our testbed on another
solution, exploiting other types of software tools.

	

	

CHAPTER

 FIVE

5 MOSAIC5G RESEARCH PROJECT

5.1 MOTIVATIONS
	
	
	
	

In order to overcome the negative aspects of the ns-3 based testbed,
with the aim of implementing an emulated environment, closer to the real
networks than the ns-3 environment, that permits to deploy only a
simulated environment, we decided to design and to implement a new
flexible SDN/NFV-based SON testbed for future 5G mobile networks
based on distinct software tools. The main contribute of our work is to
cover the need for a SDN/NFV-based testbed, enabling the investigation
of the potential of these paradigms for practical implementations. The
research project related to my PhD has been conducted in the context of
an international academic collaboration between the University of
Glasgow and the University of Catania.

I have technically coordinated this research activity and the relative
participation of our team, in representation of the University of

Catania, to the “Mosaic5G” research project, as contributor member.

	

5.2 Mosaic5G
	

As specified in [21], the Mosaic5G initiative is created in order to
provide an open, flexible and agile 4G/5G experimentation platform. The
main objective is to share an ecosystem of open-source platforms and use
cases for 5G system research exploiting SDN, NFV and MEC as key
technology enablers. Mosaic-5G Ecosystem consists of the following
elements:

• OpenAirInterface (OAI) [22], composed of OAI-RAN and
OAI-CN as 3GPP compatible implementations of a subset of
RAN (Release 14) and CN (Release 12) features, respectively.

• FlexRAN [23], as a flexible and programmable platform

developed to implement the SDN concepts at the RAN domain,
enabling a SD-RAN.

• JOX is an event-driven Juju-based service orchestrator core with

several plugins to interact with different network domains, e.g.,
RAN and CN.

• Store includes a constellation of platform packages, software

development kits, network control applications and datasets.

• LL-MEC is an ETSI-aligned MEC platform that can act as a
software-defined core network controller.

	
	

 Figure 5.1: MOSAIC5G platform

In the research activity only OpenAirInterface RAN,

OpenAirInterface CN and FlexRAN controller entities are used, so in the
next section only these will be described in details.

5.3 OpenAirInterface

As described in [22] OpenAirInterface is an open experimentation
and prototyping platform created by the Mobile Communications
Department at EURECOM to enable innovation in the area of
mobile/wireless networking and communications, as an open-source
software-based implementation of the 3GPP LTE protocol stack. As
stated in the previous section, the specific release referenced by the
research activity is the LTE Release 14 (OAI RAN), because actually a

	

full 5G release of the platform is still under development. Since 2018, it
has been included in the Mosaic5G initiative.

MME

SGW PGW

eNB HSSS1-‐C

S1-‐U

S11

S6a

SGi INTERNET

 Figure 5.2: OpenAirInterface LTE entities

The RAN and CORE sides of the 3GPP protocol stack are developed
through two different branches:

• openairinterface5g as a software implementation of the RAN
side.

• openair-cn as a software implementation of the EPC side.

In order to realize a better comprehension of the functionalities
created by leveraging on these software platforms, it is very useful to
have a brief overview of Network Elements and Source Code
architecture of OpenAirInterface. Indeed, specific OAI files and
functions have been identified, properly editing the related code in order
to achieve the research objectives, as will be described in the next
chapters.

	

Different deployment scenarios can be considered with the
EURECOM eNB and UE as follows:

• Commercial UE <-> OAI eNB + Commercial EPC
• Commercial UE <-> OAI eNB + OAI EPC
• Commercial UE <-> Commercial eNB + OAI EPC
• OAI UE <-> Commercial eNB + OAI EPC (experimental)
• OAI UE <-> Commercial eNB + EPC (experimental)
• OAI UE <-> OAI eNB + Commercial EPC (experimental)
• OAI UE <-> OAI eNB + OAI EPC
• OAI UE <-> OAI eNB

In particular, each entity can be deployed on the same host, in an all-

in-one deployment, or in a dedicated host. As regards, the code, each
repository is available through two different branches, the Master Branch
and Develop Branch. The develop branch is used to prove the stability of
the new features, which after are embedded in the develop branch. These
two branches are the main ones, but several additional branches called
tags are available and permits to test specific use cases or research
aspects. The OAI source code in a release directory or in the trunk
directory is organized as follows:

• cmake_targets, Openair build system (latest)
• common, Common code to all layers
• openair1, Physical layer source code
• openair2, Layer 2 (MAC, RLC, RRC, PDCP) source code

	

• openair3, Middleware code (mainly unused)
• targets, Specific code for executables

The OAI code needs a powerful x86 system to be properly executed.

The following are the requirements regarding the type of supported CPU:

• Intel Core i5, i7 Generation 3/4/5/6
• Intel Xeon
• Intel Atom
• At least 4 cores > 3GHz

In order to realize the RF layers’ functionalities, it is necessary to

connect via a wired link these systems to a Software Defined Radio
(SDR) platform. SDR is a radio communication system which permits to
execute in a software fashion (on top of the systems), traditionally
implemented in hardware (e.g. mixers, filters, amplifiers,
modulators/demodulators, detectors, etc.). Only a subset of the available
SDR platforms are compatible with the OAI platform, others are still
under testing:

• ExpressMIMO2
• USRP B2xx, X300 and X310
• Blade RF
• LMS-SDR
• Sidekiq (experimental)

In particular, during the research activity the USRP PC-hosted

software radio platforms B2xx and X310 have been used, based on the
USRP Hardware Driver software (UHD).

	

In addition to the real-time mode exploiting the aforementioned SDR
platforms, the full protocol stack can be executed in the emulation mode
for validation and performance evaluation from both system and link
level perspectives. The emulation mode capability is developed in order
to properly reproduce the behavior of the wireless access technology in a
real network setting while respecting the temporal frame timing of the
air-interface. In particular, two distinct emulation modes are available:

• PHY Abstraction mode: This mode leverages on the PHY
abstraction unit which simulates error events in the channel
decoder;

• Full PHY Layer mode: This is a more detailed and
computationally intensive mode, which exploits convolution of
the real PHY signal with an emulated channel in real-time.

The emulator permits to exploit the available the 3GPP channel
models, with specific path loss, shadow fading and stochastic small scale
fading parameters. The emulation modes can be a proper way of testing
of new functionalities prior to its deployment in real RF environment
exploiting the SDR platforms. Thanks to these features OAI is a more
suitable solution compared to system-level simulations through, e.g.,
MATLAB, which are based on analytical approach with no notion of
time. Discrete-event simulator as ns-3 models the protocol layers
abstracting them or executes the relative functionalities in an abstracted
mode, whereas the OAI implements the full protocol stack to run on a
real execution environment respecting frame timing constraints. These

	

aspects permit to OAI to be a more realistic platform (even in emulation
mode) compared to the aforementioned alternatives.

These are the positive aspects and the reasons that pushed us to use
the OpenAirInterface platform instead of the ns-3 simulator.

5.4 FlexRAN

In order to implement the Control Data Separation concept in our
proposed architecture, we have exploited the FlexRAN software
platform. In fact, as previously exposed, our proposal envisages a
centralized entity that is in charge of managing various control decisions
related to a set of cells. The FlexRAN platform is designed to accomplish
these requirements, as an open-source SD-RAN platform able to flexibly
separate control and user plane operations. Furthermore, due to its
specific design it permits to centralize RAN domain control logics
among multiple base stations (either monolithic or disaggregated RAN)
or to delegate control decisions in a distributed fashion.

In this line, FlexRAN allows to exploit different control functions in
a hierarchical control framework performing a “real-time” monitoring,
control delegation and reconfiguration in the RAN domain. The
FlexRAN software platform is a good solution thanks to peculiar
characteristics as flexibility and programmability. These features enable
a productive deployment of different types of functionalities. Finally, its
open source nature permits to edit the code and create new
functionalities.

	

Figure 5.3: FlexRAN

As shown in Fig. 5.3, the two main entities composing the FlexRAN
software platform are:

• FlexRAN Master Controller, enabling coordinated control over
multiple RANs, providing high/low-level primitives and
provision SDKs for control application.

• FlexRAN Agent, acting as a local control entity, virtualizing the
underlying RAN radio resources, and enabling distributed control
applications.

Control plane is composed of a Master Controller connected to a

number of FlexRAN Agents, one for each eNodeB. Control and data
plane separation is provided by the FlexRan Agent API, which act as the
southbound API with FlexRAN control plane on one side and eNodeB.

	

Thanks to this architecture, FlexRAN can support various slice
requirements (e.g., isolation) and also improve multiplexing benefits
(e.g., sharing) in terms of radio resource abstractions. The
communication between the FlexRAN Master Controller and the
FlexRAN Agent is performed through the FlexRAN protocol, a protocol
a la OpenFlow, providing capabilities as statistics, reconfiguration,
triggering of events and control delegation. FlexRAN software platform
is strictly related to the OpenAirInteface software platform. In fact, it is
born as an extension to a modified version of the OpenAirInterface
platform.

	
	
	
	
	
	

Figure 5.4: FlexRAN entities

	

FlexRAN Master controller leverages on the RIB (RAN Information
Base), a database storing the statistics and configuration regarding UEs,
eNodeBs and the relative FlexRAN agents, to manage the Network. In
particular, the RIB is structured as a forest graph. The root note of each
tree is an Agent and the nodes of the second level are the cells associated
with a specific agent. Leaves are UEs associated to a specific cell. Each
RIB modification is managed by the RIB updater. More specifically, the
applications are not allowed to modify the RIB but send information
about modifications to the agents through the northbound interface.
Modifications are delivered back to the Master through the Statistics
reports and event notifications sent by the agent.

Figure 5.5: FlexRAN VSFs

	

FlexRAN Agent provides a number of eNodeB Control Modules,

e.g., the RRC Control Module for the Radio Resource Management and
the RLC/MAC Control Module for scheduling. Each Control Module is
executed by one or more Virtual Subsystem Function (implemented in
C), for the actual action of the specific functionality performed by the
Agent. The Number and Type of VSFs per each control module is
defined through a CMI (Control Module Interface). CMI is placed at
higher level, allowing the Agent to abstract the set of operations of the
Control Module. It is worth noting that new operations can be introduced
by extending the Control Module Interface. In order to reduce signalling
overhead, Master is able to decide to perform Control Delegation
functionalities (FlexRAN Agent Management module). This can be a
very useful (and sometimes essential) solution when considering
centralized time-critical applications (for example remote scheduling of
more eNodeBs). Indeed, when operations require low-latency decision-
making, Master Controller could be not quite fast enough. Consequently,
individual agents get the delegation for time critical decision.

Finally, as said Master and Agent sides interact each other through
the FlexRAN Protocol and more specifically through FlexRAN protocol
messages. A message handler and dispatcher entity residing at the agent
side is responsible to receive FlexRAN protocol messages from the
FlexRAN master controller and forward them to be handled by the
appropriate VSF of the corresponding control module, using the
FlexRAN Agent API. TCP is used for the communication of the agents
with the master and the exchange of protocol messages.

	

	

	

CHAPTER

 SIX

6 OPENAIRINTERFACE/FLEXRAN
BASED TESTBED

6.1 MOTIVATIONS

As underlined in [24], the enabling aspects of the envisioned 5G
RAN architecture will be the Network Function Virtualization (NFV)
paradigm and the control plane/data plane (CP/DP) splitting concept. The
CP/DP splitting is explicated through the Control Data Separated
Architecture (CDSA) in the RAN context and the SDN paradigm in the
core network context. CDSA is considered a necessary step towards the
developing of the fifth generation of mobile networks. CDSA approach
allows a logical separation between signaling and data traffic in RAN,
also guaranteeing traffic off-loading.

	

Figure 6.1: CDSA

As shown in Fig. 6.1, Macro cells, also known as Control Base Stations
(CBSs) are required to provide the control plane (signaling traffic), while
Small cells, also known as Data Base Stations (DBSs), take care of data
transmission. CBSs are conceived to provide continuous and reliable
coverage at low frequency bands, while DBSs offer high data rate traffic
by using higher frequency bands. Thus, the CDSA offers several
advantages, e.g., improved energy efficiency, signaling efficiency, and
mobility management. A further aspect which will play an integral role
in future mobile networks is the SON concept. As underlined in [25],
concerning the previous generations of mobile networks, the SON
concept was introduced to automate the Operation and Maintenance
(O&M) processes in order to improve network efficiency and
performance. As regards 5G mobile networks, the SON concept will
cover not only the O&M context, but a set of different aspects. Thus, it is
required an optimization of the original view, leading to a so-called Next

	

Generation-SON (NG-SON). NG-SON will permit to achieve a full
awareness of the current RAN and core network status, enabling a proper
management through the determination of optimal network parameter
values, thus minimizing the human intervention.

As regards the small cells, the SCF has already predicted that there
would be tens of millions of new SC deployed around within next couple
of years [26], so centralized and complex methods would be no more
feasible to implement. Thus, it will be necessary to choose appropriately
the degree of centralization in terms of control plane functionalities and
NGSON capabilities, depending on the considered scenario. SDN, NFV
and NG-SON are considered the enabling technologies to achieve these
goals.

6.2 OpenAirInterface/FlexRAN
based testbed

As regards CDSA and SON, in literature most of the works that
explore these concepts are based on simulations, which cannot model all
the peculiarities of real networks such as signaling delays, effect of
implementation and measurement inaccuracies, and delays in channel
and measurement reports. At the best of our knowledge, one of the few
works which considers a CDSA testbed is [27], where the authors
validate their spectrum management application.

Following the above assumptions, in order to deploy a flexible,
programmable and virtualized RAN, we design a second implementation
of our testbed, based on our proposed hierarchical layered software
defined architecture, aiming to provide new features that facilitate

	

SDN/NFV integration in future mobile networks.
The main contribute of our work is to cover the need for a CDSA

based testbed, enabling the investigation of the NG-SON capabilities for
practical implementations. The SDN Controller logical area, the NFV
Orchestrator logical area and the Resource Management Controller
logical area functionalities, proposed in our SDN/NV C-RAN
architecture, can be considered as perfect examples of NG-SON
capabilities.

We deploy these NG-SON capabilities through OpenAirInterface
and FlexRAN, because after an in-depth understanding of the inherent
features of these software tools, we realized that these features would
have enabled us to implement in a SDN/NFV based real-time testbed the
designed logical areas.

In particular, in the following we describe two implemented use
cases, presented in two different papers, regarding features of the NFV
Orchestrator logical area and the Resource Management Controller
logical area functionalities. An implementation of the functionalities
related to the SDN Controller logical area, based on the
OpenAirInterface and FlexRAN software tools, is a work in progress and
is described in the next chapter.

Furthermore, aside from the implementation of these proposed
functionalities, the testbed aims to address certain open research
problems, e.g., optimal location of the DBSs when the static 3D channel
mapping of the environment is available, DBS switching on/off for
energy saving and impact of user and traffic distribution on specific
KPIs. We focus our proposal on two experimental setups, a real one and
a virtualized one, both based on the FlexRAN and OpenAirInterface
software tools.

	

The first Testbed in Catania (TestbedCT), based on Network
Function Virtualization to set-up an entirely emulated environment. A
subsequent Testbed in Glasgow (TestbedGLA), as a real environment
deployment, using SDRs and real user equipments. Both the testbed
deployments enable novel research and provides teaching opportunities
in next generation RAN architectures and several other areas of system-
level research. Furthermore, they act as benchmark for many use cases
with a significant proximity to real network deployment criticalities.

6.2.1 Virtualized testbed

The virtualized setup runs on the 5G-SDN/NFV testbed at the
University of Catania and is performed through virtualized entities. In
particular, the FlexRAN controller entity, as for the OAI entities, are
deployed trough the virtual machine (VM) technology. In particular, as
shown in Fig. 6.2, we deploy the OAI and FlexRAN entities each one on
a dedicated VM.

Figure 6.2: Virtualized Testbed

	

The deployment can be performed by changing the considered

parameters in terms of Operating system, kernel version, vCPU and
vRAM. In particular, as regards the releases for each involved entity, we
utilize OAI RAN tag 2018.w41 (with agent support), OAI CN v 0.5 and
FlexRAN Real Time Controller v2.0. The wireless medium is obtained
using PHY abstraction unit feature of OAI, causing the emulation of the
RAN, RFs and UEs entities. As regards the hardware machines the
Testbed exploit one SuperMicro Server Intel Xeon CPU E5-4610 v2 @
2.30GHz, RAM 256 GB.

6.2.2 Real testbed

The real setup runs on the 5G-SON testbed at the University of
Glasgow. As shown in Fig. 6.3, the real testbed is performed through
servers and real RF, i.e., Software Defined Radio (SDR) Platforms. As
regards the hardware machines the Testbed is composed of:

• one Mini PC Kit NUC7i7 DNHE, for OAI RAN 2018.w36 tag
• one Intel Server System R1304SPOSHBNR Intel Xeon E3-1220

v6 Quad-core @3 GHz, for OAI Core Network v.0.5
• one Tower Desktop with the same processor model as the Server

machine, for FlexRAN Controller v 2.0
• Universal Software Radio Peripheral (USRP) B205mini for small

cell acting as RF, connected to the RAN machine through a USB
3.0 connection

• USRP X310 for macrocell, acting as RF. The X310 could be
connected to a different RAN machine through a 10Gigabit
Ethernet connection with SFP+ termination

	

The said machines are connected each other to a Netgear Prosafe

XS716E 10Gigabit switch, with 10Gigabit Ethernet cables. The
University holds an experimental license in the Band 7 frequency range.
The UE is performed with two different solutions, a COTS phone and a
USB dongle. In the COTS phone case, we exploit a real smartphone as
UE, properly programmed the USIM, in order to be able to perform the
attach to the network triggered with the OAI emulation platform. In the
USB dongle, we deploy the UE through a NUC mini-pc, connecting it to
a USB dongle, with a properly programmed embedded USIM performing
the UE.

Figure 6.3: Real Testbed

	

6.3 First case study: RAN entities life-cycle
management

In this paper, first we describe the implementation of a specific case
study, i.e., the RAN entities activation/deactivation procedures. We
consider three steps.

First, we create an application, in order to dynamically trigger the
instantiation of a base station in terms of virtualized or real entities.
Second, editing the native code, we implement specific commands,
running on top of FlexRAN/OpenAirInterface, to dynamically manage
the RAN entities life-cycle. Finally, we performed time measurements,
concerning the RAN entities activation/deactivation procedures, to prove
the proper Testbed functioning.

6.3.1 The application
	
	

The application is designed on the basis of the native
FlexRAN/OpenAirInterface instructions. As shown in Fig. 6.4, after the
initialization step, properly issuing the specified instructions as input
parameters, the application is able to dynamically trigger the creation of
RAN and core network entities, exploiting the output parameters
computed in the computation step. The instantiation, depending on the
considered testbed setup, can be executed by the creation of the related
real or virtualized entities. So, the specific instructions issued in the
computation and the creation steps are strictly related to the specific
testbed setup.

	

Figure 6.4: Flowchart

	
	

Generically, the OAI instruction which permits to trigger the
instantiation of a base station is:

sudo -E ./lte-softmodem -O
/home/user/openairinterface5g/targets/
PROJECT/GENERIC-LTE_EPC/CONF/file.conf

In the performance evaluations section, we will contextualize the
specific instructions issued in the computation and creation steps.

	

6.3.2 Start and stop commands

In order to dynamically issue through the application, the activation
and the deactivation of a given base station, we exploit a native
FlexRAN/OpenAirInterface command and its related API endpoint,
properly editing it to perform the considered tasks. In the vanilla
FlexRAN/OpenAirInterface code, the so-called Cell Reconfiguration
command permits to change the cell configuration of the specified base
station. The issue of this command causes the so-called soft-restart of the
base station. The soft-restart is intended as the restart of the L1/L2/L3
protocol stack layers. The cell reconfiguration command is performed
through a command like:

curl -X POST http://FLEXRAN-URL:PORT
/conf/enb/:id? --data-binary "@file.json"

The parameters which can be modified are specified in “file.json”
file. At the time of writing it is possible to change the associated value
only for these parameters: dlBandwidth, ulBandwidth, dlFreq, ulFreq end
eutraBand. The file has the following format:

“dlBandwidth” : value ,
“ ulBandwidth” : value ,
“dlFreq” : value ,
“ulFreq” : value ,
“eutraBand” : value

The design of the application and the command leverages on an
appropriate code editing conducted thanks to a in depth understanding of

	

the FlexRAN/OpenAirInterface files and functions involved in the cell
reconfiguration command workflow.

	

Figure 6.5: Command workflow
	
	

As shown in Fig. 6.5, the command, issued through the command

line, causes the creation of the enb-config-reply message. This message
is managed by the agent through the flexran-agent-handle-enb-config-
reply function defined in the flexran-agent-common.c. This function has
a double task. In particular, checking the message type field, if the
specific message is a enb-reconfiguration-message it is charge to call the
initiate-soft-restart function, which is defined in the flexran-agent-
common-internal.c. This function has the scope of setting the values
specified in the json file for the given parameters. Furthermore, it
performs a check in order to accept only the allowed values. The
effective restart of the base station is performed through the stop-L1L2
and the restart-L1L2 functions defined in the lte-softmodem.c.

	

The functions perform respectively the stop and the restart of a given
base stations by deactivating and reactivating the L1/L2/L3 protocol
stack layers. The interconnection with the core network and FlexRAN
controller entities are not interested by the procedure. This is the reason
for naming this procedure softrestart. Finally, the handle-reconfiguration
function, which is defined in the enb-app.c checks the correctness of the
cell reconfiguration procedure.

Considering the native soft-restart as the track command, our
contribution comes with the creation of three different commands: stop,
start and Stop&Restart. The stop command permits to stop a given base
station specifying its agent id. In a dual way, the start command triggers
the start of a particular base station given the specific agent id. Finally,
the Stop&Restart command, as a mix of the two aforementioned
commands, permits to dynamically control the life-cycle of a given base
station. More specifically, the start and the stop commands have been
implemented by isolating the related code entities and by disabling them.

In order to realize the stop command, the start related code entities
have been disabled, whereas the stop part of the code is disabled for the
start command. The in depth understanding of the considered
FlexRAN/OpenAirInterface code permits us to implement a more
complex command, the Stop&Restart command.
By editing the related code, we implement a dynamic control of the state
of the base station. In particular, we can manage the life-cycle of the base
station in terms of activation and de-activation time, respectively called
Ton and Toff.

Furthermore, we can manage the activation/deactivation of a specific
base station performing, at the end of the Ton time interval, a check
regarding the attached UEs. If one or more UEs are attached, in order not
to cause a discontinuity of the service for the considered UEs, the base

	

station is maintained active. If no UE is attached we can decide to
deactivated the base station or let it in the active state.

Figure 6.6: Stop&Restart

The Fig. 6.6 shows an example of a specific execution of the

Stop&Restart command. By changing the considered values, we are able
to manage the life-cycle of the base station. In this particular case, Toff is
set to 60 seconds and Ton to 120 seconds.

6.3.3 Timing evaluations

In order to prove the effectiveness of our proposal, we conduct
timing evaluations, concerning the RAN entities activation/deactivation
procedures, both on the real and the virtualized testbed. In the case of the
real testbed setup, the deployment computation step for a base station is
performed through the issue of the following instruction:

sudo -E ./lte-softmodem -O
/home/user/openairinterface5g/targets/
PROJECT/GENERIC-LTE_EPC/CONF/
enb.band7.tm1.50PRB.usrpb205.conf

	

The lte-softmodem is the software process which permits to perform
all the functionalities related to the considered protocol stack concerning
the base station. The lte-uesoftmodem is the counterpart concerning the
UE. The issue of this command permits us to deploy a base station
performing the RF through an USRP b205-mini, exploiting the
transmission mode 1, 50 physical resource blocks (PRBs) and band 7
working mode. As regards the real testbed setup, the lte-uesoftmodem
process is automatically triggered by in the case of the USB dongle,
whereas it is not needed in the case of the COTS phone.

In the case of the virtualized setup, the deployment computation step
for a base station is performed through the issue of two different
instructions, one for the RAN entity and one for the emulated UE.

More specifically these two instructions, respectively for the RAN
entity and the UE entity, are:

sudo -E ./lte-softmodem O
/oai-ran/targets/PROJECTS/PROJECTS/
GENERIC-LTE-EPC/CONF/
rcc.band7.tm1.if4p5.50PRB.lo.conf

sudo ./lte-uesoftmodem O
/oai-ran/targets/PROJECTS/PROJECTS/
GENERIC-LTE-EPC/CONF/rru.oaisim.conf -r
50 --siml1

For the virtualized testbed setup, the issue of two different
instructions is needed since in the OAI environment the virtualization of
a base station and the associated UEs can be performed only considering
a two-tier base station, composed of the base band processing unit and

	

the RF (respectively specified as rcc and rru in the instruction,
considering the IF4P5 functional splitting between these entities). This
approach causes the creation of three different software entities, two for
the lte-softmodem process (rcc and rru), one for the lte-uesoftmodem
(UE). In this case, we deploy an emulated RF which works considering
50 physical resource blocks (PRBs), the band 7, the transmission mode 1.

As regards the emulated UE, with the issue of the related command,
we consider 50 PRBs and the L1 emulation (the lower physical layer and
the over the air medium). Once the deployment creation step is
completed for both the testbed setups, we perform the time
measurements by editing the OAI source code using the CPU clock
signal. In order to perform the time measurements considering an overall
time synchronization, we sync all the involved entities through the
Network Time Protocol (NTP).

The first considered parameter is the so-called Time-to- Trigger
(T2T), defined as the time between the FlexRAN command triggering
and its effective reception performed by the specified agent. As
underlined in [27], this parameter depends on the collocation of
application, controller and agent (e.g., locally or remotely). Even if in
[27] the authors define this parameter, they do not provide any related
time measurement. At this aim, we conduct the time measurements, as
regards the virtualized testbed setup, both in local and remote case,
whereas as regards the real testbed only in the remote case.

The other two parameters are the aforementioned T2ON and T2OFF.
As regards the T2ON parameter the time measurement is conducted only
in the real testbed setup, since it is not possible, due to code constraints
to deploy the restart functionality in the case of two-tier base station, as
that required for the virtualization in the OAI environment.

	

6.3.4 Results and considerations

Figure 6.7: T2T and T2OFF - Virtualized Testbed

With regards to the virtualized testbed, as shown in Fig. 7, we on

average measured:

• T2T of 15 ms, with a minimum value of 11 ms and a
maximum value of 19 ms, for the local case (Fig. 7a)

• T2T of 55 ms, with a minimum value of 50 ms and a
maximum value of 60 ms, for the remote case (Fig. 7b)

• T2OFF of 130 ms, with a minimum value of 140 ms and
a maximum value of 150 ms (Fig. 7a / Fig. 7b)

Figure 6.8: T2T, T2OFF and T2ON - Real Testbed

	

Regarding the real testbed, as shown in Fig. 8, we averagely measured:

• T2T of 0.1 seconds (Fig. 8a / Fig. 8b)
• T2OFF of 1.2 seconds (Fig. 8a)
• T2ON of 1.5 seconds (Fig. 8b)

Furthermore, the time measurements permit us to establish a

minimum value of 15 seconds for the Ton parameter, defined as the time
interval needed to check the attach for a UE on the basis of the messages
exchange between the involved entities. Finally, it is useful noting that
the values of T2OFF and T2ON as regards, e.g., the virtualized testbed
setup do not vary. The explanation is that the implemented Stop&Restart
is an example of Hybrid-SON approach, since thanks to the particular
architecture design and inherent features of FlexRAN, it mixes
centralized-SON (C-SON) and distributed-SON (DSON) approaches. In
fact, if the application runs on top of the Master controller it is possible
to follow a C-SON approach, whereas in the case of the Slave controller
a D-SON approach. Furthermore, if the control delegation feature of
FlexRAN controller (the application is performed directly in the context
of the agent) is considered, it is possible to implement a fine-grained D-
SON approach. So, these considerations are validated by the values of
the T2OFF and T2ON parameters.

In fact, as can be seen in the Fig. 6.5, the first step involves
FlexRAN (remote or local controller), the subsequent steps involve only
the specified agent. So, the D-SON nature of these steps makes the
T2OFF and T2ON values independent of any possible external parameter
with respect to the context of the agent.

	

6.4 Second case study: Motion Sensor based
Small Cell Sleep Scheduling

The fifth-generation mobile communication network, 5G, promises

to stretch the limits of the Key Performance Indicators (KPIs) of current
systems by taking into account several criteria such as latency, resilience,
connection density and coverage area, alongside the traditional spectral
efficiency and Energy Efficiency (EE) criteria in its design. 5G has
performance targets of sub-millisecond end-to-end latency, 100-fold
increase in typical user data rates, 100 times increase in connection
density and 10 times increase in EE, compared to current systems [28].
These targets will have a different importance in the several usage
scenarios introduced by IMT Vision recommendation ITU-R M.2083-0
as eMBB, URLLC and mMTC.

Network densification is one of the keys to meet the demand for
higher data rates. Network densification refers to adding more cells by
deploying new base stations (BSs) in order to achieve higher capacity
within an area of interest. However, including more BSs requires
consuming more energy to run the network, as the energy consumption
of a network is directly proportional to the number of BSs it contains.
Since BSs constitute the main part of the energy consumption in mobile
cellular networks [29], network densification would make the case
severer in terms of EE. An effective and efficient network densification
can be accomplished by adopting the CDSA concept as authors underline
in [24]. CDSA approach allows a logical separation between signaling
and data traffic in RAN. In this architecture, intelligence is partially or
completely removed from most of the nodes in the network to be
concentrated in fewer central nodes. This results in cost saving, higher
performance and resource efficiency [24].

	

The promotion of the CDSA is closely linked to the concept of the
SON which contributes to the flexibility required for 5G. Initially, SON
was identified as a key design principle for LTE, focusing on its
distributed declination [30]. However, as shown in [25], a NG-SON for
future 5G networks, designed in order to maximize automation of all the
aspects at all the possible levels, depending on the specific use cases is
required. In fact, NGSON provides optimization based on a higher level
(cell cluster scale) scenario, Centralized-SON (C-SON), or on a smaller
scale, Distributed-SON (D-SON). Each solution has its advantages and a
Hybrid-SON (H-SON) architecture brings together all the advantages of
D-SON and C-SON. It will be necessary to choose appropriately the
degree of centralization in terms of control plane functionalities and SON
capabilities, depending on the considered scenario. SDN, NFV and C-
RAN are considered the enabling technologies to realize these
enhancements. In this context, keeping in mind the paradigms and
technologies that will enable ultra-densification, some issues need to be
addressed.

As predicted by the SCF [26] over 70 million Small Cells (SCs) will
be deployed by 2025, with a corresponding annual energy consumption
of more than 3 TWh, special care should be given to EE to avoid
enormous energy consumption within the networks. Spatio-temporal
changes in data traffics of BSs pave the way for EE by allowing
switching unused (or lightly used) BSs off to reduce the energy
consumption of the whole network [24]. In other words, since the traffic
loads of cells often present various patterns over different days of a week
and/or time of a day, BSs could be switched off during low traffic (or no
traffic) periods.

Cell switching strategies based on traffic conditions and/or proximity
of SCs to a macro cell (MC) have been widely studied in the literature

	

[31-34]. In [31], the authors propose a traffic load based cell on/off
switching mechanism using actor-critic reinforcement learning. Both
centralized and distributed solutions are proposed in [32] by considering
BS on/off switching, user association, and power control jointly in order
to enhance EE of the system.

A mixed integer programming formulation was used for the
centralized approach and near optimal solution was obtained. A
proximity based SC sleeping technique for Heterogeneous Networks
(HetNets) was presented in [33]. SCs, which are far from the MC with a
certain threshold, are opportunistically switched off and covered by the
neighboring SCs using cell range extension, while the traffic in the SCs
closer to the MC is offloaded to the MC in case of switching off. The
authors in [34] proposed a joint user association and cell switching
algorithm, where activation states are first determined, and then EE is
further improved by associating the users accordingly.

In [35], the authors propose a centralized solution which aims to
compute the optimum number of base stations to switch off in order to
maximize the energy saving, while maintaining coverage, capacity and
Quality of Service. It adopts tools in order to include multiple criteria
with different priorities in the switch off decision making process. The
introduction of multiple decision inputs allows to capture efficiently
spatial and temporal traffic fluctuation and, as a consequence, to
optimize the set of switched off stations.

Nonetheless, most of the existing techniques related to cell switching
rely on complex algorithms, since they often employ centralized
approach in order to determine which SCs to switch on/off and/or when
to do so. These proposals could be classified as C-SON solutions. To
cope with all the envisaged scenarios, the C-SON and D-SON solutions
will have to coexist and be suitably adopted. However, in the D-SON

	

case, complex and expensive methods would be no more feasible to
implement due to the large number of SCs.

6.4.1 Proposed algorithm

In this dissertation, a low-cost, low-complexity SC scheduling
algorithm is proposed. More particularly, a motion sensor is used in the
system in order to detect user presence in an environment of interest. The
SC goes into sleep mode if there is no user detected, while it wakes up
when the presence of a user is detected by the motion sensor. After
waking up, the SC waits for a certain amount of time to check if the
detected user is associated with it. If the user is not associated with the
SC, then it goes back into sleep mode; however, in case the SC has
attachment with the detected user, then it keeps being active and
checking whether the attachment is maintained at certain intervals.

Therefore, the proposed cell sleep scheduling is a good example of
D-SON, as it introduces a distributed (i.e. the decisions are made locally
and there is no need for a central entity) and low-complexity (i.e. it is
merely a binary decision process, which is triggered by a motion sensor,
for an individual SC) algorithm.

The experimental setup runs on the 5G Self-Organized Network
(5GSON) testbed at the University of Glasgow, which is based on OAI.
OAI is a software tool enabling an open-source implementation of both
the CN and RAN based on 3GPP standards. OAI entities can be either
deployed on separate machines or in an all-in-one setting.

With inherent features of FlexRAN, it is therefore possible to enable
C-SON and D-SON solutions, performing both centralized and
distributed control. In a higher-level control (many macro cells) the
FlexRAN performs complex controls with a wider overview: traffic

	

loads, user density, etc. While, in a local control (distributed), we can
delegate the control logic to the Agents activated only in the first
instance by FlexRAN. In the latter case, it needs to apply control
strategies with low computational complexity. As shown in Fig. 6.9, both
the OAI software entities run on an Intel NUC minicomputer. The Radio
Frontend (RF) is provided by an Ettus B205mini USRP SDR platform.

Figure 6.9: Testbed network architecture

The proposed D-SON algorithm is designed to minimize the energy

consumption of SCs by utilizing a motion detection circuit. We utilize an
Arduino Uno board and an HC-SR501 PIR motion sensor. The motion
sensor is connected to and powered by the Arduino board, which draws
its power from the Intel NUC computer via USB. The USRP is also
powered by the computer via a USB 3.0 port, with a USB power meter
connected between them to measure the energy consumption of the
USRP. On the other hand, the Intel NUC computer draws its power via a
power meter that is connected to the mains to measure the energy
consumption of the whole system.

	

6.4.2 Algorithm design

In this section, we present our proposed D-SON algorithm to
minimize the energy consumption of SCs by utilizing a motion detection
circuit. The proposed algorithm has been designed using OAI and
FlexRAN to switch off the RF frontend of the ng-eNB SDR without
affecting the ng-eNB connection with the CN. The ng-eNB goes into
sleep mode by leveraging on FlexRAN functionalities to switch off
layers 1 and 2, and Radio Resource Control (RRC) sub-layer of the
3GPP protocol stack and free all resources. Subsequently, the RF front-
end of the USRP is turned off. This implies that the ng-eNB always
maintains connection with the CN.

While in sleep mode, the ng-eNB machine periodically scans its
serial port every y seconds for updates from the motion detection circuit
to wake up. The moment motion is detected, the Arduino board writes
the binary value “1”, denoting “ON”, to the serial port of the ng-eNB
machine for w seconds before writing binary “0” to reset the serial port
and then waiting for the motion to be detected again for the process to
repeat. The length of w is set such that the ng-eNB does not miss any
event between successive probes of the serial port, that is w > y. Once
the ng-eNB reads this ON value, it wakes up for x seconds and waits for
users to connect to it. If no users connect within this time, the ng-eNB
goes back to sleep and starts scanning the serial port again. However, if
there is a user connected, the ng-eNB will not go to sleep and will
periodically check every z seconds until no user is connected before
going back to sleep. Fig. 6.10 gives the flowchart of the proposed
algorithm.

	

Given that the goal of this paper is to reduce energy consumption of
SC networks, it is important to minimize the energy consumption of the
motion detection circuit so as not to undo the gains of this algorithm.
Accordingly, we put the Arduino board in sleep mode and utilize its
interrupt pins to power it up whenever motion is detected. Once motion
is detected, the Arduino board is powered on and it writes to the serial
port of the ng-eNB machine and goes back to sleep. This results in about
45% reduction in power consumption of the motion detection circuit
compared to when the Arduino board is always on.

	

Figure 6.10: Proposed motion sensor-based sleep scheduling flowchart

	

6.4.3 Power consumption model

According to [29], the power consumption of a base station with a
single transceiver chain can be modeled as:

Pin = P0 + Δp Pout; 0 < Pout ≤ Pmax (1)

where P0 and Pout denote the power consumption of the base station at the
minimum non-zero output power and the RF output power radiated at the
antenna elements, respectively. The parameters p and Pmax represent the
slope of the load dependent power consumption and the average transmit
power of the base station, respectively. It can be deduced from (1) that
the power consumption model consists of a fixed part (P0) and a load-
dependent part (Δp Pout). With regards to the SDR platform, the
B205mini USRP consists of an FPGA and RF front end. The RF front-
end comprises of one transceiver chain that is made up of a power
amplifier and an RF small-signal transceiver module. Focusing on active
and sleep modes, the USRP has been measured to draw roughly 2 W
when the ng-eNB is in sleep mode, while it consumes about 2.5 W when
in active mode. Hence, we assume that the FPGA module and the RF
front-end denote the fixed and variable parts of the USRP power
consumption, respectively. Accordingly, in this paper, P0 comprises of
the power consumptions of the USRP FPGA and the intel NUC
minicomputer that relates to the CN, FlexRAN and maintaining a
connection between the ng-eNB and the CN, whereas the RF front-end,
motion sensing circuit and the power requirement for running ng-eNB
layers 1-3 on the Intel NUC minicomputer make up the variable part. In
the remainder of this dissertation, we will refer to the Intel NUC
minicomputer as the ng-eNB machine, unless stated otherwise.

	

6.4.4 Performance evaluation

In this section, we present the performance results of our motion
sensor-based SC sleep scheduling algorithm against the no sleep
scheduling approach, whereby the SC does not employ any form of
energy saving and is always active. The experimental setup was
deployed in a 16 m2 lab that hosts the 5GSON testbed at the University
of Glasgow and the ng-eNB was toggled between active and sleep modes
based on movements in the lab. No user equipment was allowed to
connect to the network during the experiments in order to mimic a
deployment location that experiences low-to-medium user activity such
as staircases, areas around toilets or even office rooms. In this paper, we
assume w = y = 1 second, x = 60 seconds and z = 30 seconds.

Figure 6.11: Total energy consumption comparison of our proposed SC

sleep scheduling algorithm versus the no sleep scheduling approach

	

Fig. 6.11 shows the total energy consumption comparison of our SC
sleep scheduling algorithm versus the benchmark no sleep scheduling
approach. For both approaches, the energy consumption of the full setup,
including the Intel NUC minicomputer, motion detection circuit and
USRP was measured at 24 hour intervals over 5 days, from Monday to
Friday. It can be seen that our approach achieves an average of 8%
energy saving compared to the no sleep scheduling approach due to no or
low user activity at certain times in the lab which results in the ng-eNB
going into sleep. Note that this energy saving performance is highly
dependent on the power rating of the computer used as a computer with
high power consumption rating would overshadow the energy gains of
using our proposed algorithm.

Figure 6.12: USRP energy consumption comparison of our proposed SC

sleep scheduling algorithm versus the no sleep scheduling approach

	

Fig. 6.12 shows the USRP energy consumption comparison of our
algorithm against the no sleep scheduling approach. It can be seen that
the no sleep scheduling approach has a constant USRP energy
consumption across the days of the week as it is always in the active
mode irrespective of user presence. On the other hand, there is a slight
variation in energy consumption of our proposed algorithm across the
days of the week. This is because the lab sees different levels of user
presence and activity across different days of the week and the effect of
switching off the RF front-end is more pronounced when only the USRP
is considered as it constitutes a fifth of the USRP power consumption.
Accordingly, our algorithm achieves about 20% reduction in energy
consumption when compared to the no sleep scheduling approach. It is
worthy of note that the energy consumption of the USRP does not reach
zero as the FPGA consumes about 80% of the power consumed by the
USRP, even when the USRP is not transmitting.

	

	

CHAPTER

 SEVEN

7 CONCLUSIONS

7.1 CONCLUDING REMARKS
	
	
	

We propose new functionalities, on top of a SDN/NFV architecture
inspired by work in [17]. As opposed to the SoftAir proposal, we deploy
a NGFI based architecture, in order to overcome CPRI issues related to
massive MIMO deployment. Furthermore, in order to implement
dynamically different functional splitting options, a virtualized RAU
entity is proposed. On the other hand, in order to realize the proposed
SDN enhancements, optimized controller is designed. The architectural
controller is logically centralized but physically distributed, as a set of
slave controllers and master controllers. Master controllers, located in
remote sites and managing a group of macro cells, keeps in account long
time scale and less fine grained parameters, acting as reference entities
for slave controllers, located in edge sites, which as opposed to master
controllers, keep in account short time scale and more fine grained
parameters.

	

In particular, the proposed slave controller, focusing on different
features, can be considered as different logical controller areas,
corresponding to related northbound applications. These proposed
functionalities could allow to fulfill strict 5G requirements, since
elaborating and combining reports from network entities, will be able to
perform optimum rules in terms of switching, resource allocation and
virtual function instantiation/migration.

On the basis of the above assumptions, we designed an architectural
solution for ultra-dense scenarios, in order to concretize, trough
SDN/NFV features, the Phantom cell concept proposed by Docomo.
Furthermore, as opposed to Docomo Advanced C-RAN, exploiting the
flexibility of the proposed virtual base band processing in RAU, we are
able to overcome IQ data transmission issues.

We designed a simulation testbed, in order to evaluate a first subset
of the proposed functionalities. A programmable and virtualized RAN
architecture has been implemented, in order to deploy SDN/NFV
enhancements and to test radio resource management algorithms, in a
real-time like environment.

In our simulations, we will firstly focus on the control and data plane
splitting aspect of the proposed architectural design. Regarding the
OpenFlow integration in the simulation scenario, we implemented a first
software defined implementation of the proposed LTE RAN architecture
trough ns-3 simulator. In particular, we configured two different ns-3
modules, known in literature as LENA ns-3 LTE Module [19] and the
OFSwitch13 module [20]. The LENA ns-3 LTE Module permits to
simulate a LTE RAN / LTE-EPC standard architecture. The OFSwitch13
module is an OpenFlow based module, deploying the OpenFlow 1.3
protocol in ns-3 simulation model. First results demonstrated, for our
purpose, an efficient OpenFlow integration in our LTE simulation

	

environment. Evaluating the negative aspects of the ns-3 simulator based
testbed, we have chosen to deploy the testbed based on software tools
which permitted us to exploit an emulation environment in contrast to the
previously deployed simulation environment.

At this aim, a flexible SDN/NFV-based SON testbed for future 5G
mobile networks. The main contribute of our work is to cover the need
for a CDSA based testbed, enabling the investigation of the potential of
CDSA for practical implementations. We focus our proposal on two
experimental setups, a real one and a virtualized one, both based on the
FlexRAN and OpenAirInterface software tools. SDR, VM, FlexRAN
controller and OpenAirInterface offer us the flexibility, programmability
and high performance capabilities needed, making the testbed an ideal
enabler for the development of various 5G use cases.

We implement a first case study, i.e., the RAN entities
activation/deactivation procedures, performing time measurements,
concerning the aforementioned procedures, in order to prove proper
Testbed functioning. Furthermore, we validate the C-SON and D-SON
capabilities of our testbed, considering the features of the obtained
results.

As second case study, we have proposed and implemented on the
real testbed, a low-cost, low-complexity SC sleep scheduling algorithm
to minimize the energy consumption of SCs in 5G and beyond networks.
Our algorithm is based on the DSON approach and it leverages on a
motion detection circuit to instantaneously toggle the SC between sleep
and active modes based the presence of a mobile user, without the need
for complex traffic prediction algorithms. Experimental results show that
our algorithm can achieve up to 20% USRP energy consumption saving
when compared to the no sleep scheduling approach.

	

Both the testbed deployments enable novel research and provides
teaching opportunities in next generation RAN architectures and several
other areas of system-level research. Furthermore, they act as benchmark
for many use cases with a significant proximity to real network
deployment criticalities.

	

7.2 Work in progress
	
	

7.2.1 RAN Slicing Application
	

A RAN Slicing application capable of dynamically performing RAN
slicing, based on a real-time evaluation of the RAN capabilities. The
module operates in a learning fashion in a first training phase and in a
self-adaptive fashion in a second routine functioning. In particular, we
focus our proposal on a flexible instantiation of virtualized
functionalities implementing the different layers of the protocol stack.
The flexibility is related to the given traffic classification and to the
architectural design. We are designing and implementing the application
in order to prove its effectiveness on top of our testbed deploying the
RAN entities by means of Docker container and/or virtual machines,
triggering the dynamic instantiation through a script.

	

Figure 7.1: End-to-end slicing

	

The figure 7.1 shows a potential implementation of the end-to-end

network slicing concept, through which logical networks, comprising
different type of resources in terms of RAN, transport network and core
network entities, can be created and associated to particular users or to
serve specific type of service requests. A particular functional split is
executed for each type of service, thus implementing the related protocol
stack layers in the RU, DU and CU instances. Furthermore, the core
network entities can be executed on top of DU or CU instances.
Following these assumptions, we are deploying the aforementioned
conceptual view on top of our testbed. Certain specific functional splits
are executed through the related OpenAirInterface code, permitting the
deployment of the related RU, DU and CU instances.

The Figure 7.2 focuses on the RAN, showing a potential RAN
slicing executed on top of our testbed. We are realizing performance
evaluations in terms of delay and throughput for each type of service
request served through a particular functional split deployed in our RAN
entities. The same performance evaluations are made for the core
network and transport networks, permitting us to realize and to test an
end-to-end slicing.

	

	

	
	

Figure 7.2: RAN Slicing in our testbed

	

7.2.2 Machine Learning based Switch ON/OFF

We are developing an improved and more efficient version of the
algorithm exploiting Machine-learning techniques, in the context of the
research collaboration with the University of Glasgow. We are exploiting
network traffic pattern prediction to determine small cell switching on-
off (URRP B205mini) based on datasets processed by machine learning.
To this end, the EE algorithm code will be optimized and input from
machine learning included. An initial edit at the code oriented to support
machine learning in the algorithm, has been already implemented and
consequent additional UK plug power meter measurement showed a
significant improving on the OAI RAN machine energy saving.

Figure 7.3: Activity levels, predicted and actual values

	

Energy consumption of the full setup, including the Intel NUC mini
computer and USRP has been measured at 24 hour intervals over 7 days.
The Figure 7.3 shows the matching between the effective activity levels
of the considered days and the predictions realized with the machine
learning application. These preliminary results show an appropriate
matching, only few differences occur for each considered level.
Additional work is in progress in order to improve the prediction
performances. The objective is to control the activation and the
deactivation through the predicted values in order to reduce the energy
consumption of the full setup. In these terms, preliminary results, as can
be seen in Figure 7.4, show that when eNB is always on (no EE enabled,
blue curve), energy consumption is higher compared to the Energy
consumption achieved while the improved version of Stop&Restart EE
algorithm is running (orange curve).

Figure 7.4: Energy consumption comparison, no EE algorithm (blue curve),
Stop&Restart EE algorithm (orange curve)

	

	

7.2.3 Fronthaul/Core networks and OpenStack/OpenDaylight
	

The research activities during the PhD involve another research
collaboration, with Bristol Is Open, a joint venture between the
University of Bristol and Bristol City Council, with the aim of deploying
a SDN/NFV based testbed to prove the application of this two paradigms
in the context of fronthaul/core networks of future 5G networks,
exploiting OpenDaylight as SDN controller.

Figure 7.5: Network topology, control plane/data plane spliting

	

	

The research activity aims to focus on the network performances of
fronthaul/core networks in which OpenFlow switches are deployed. A
proper testbed has been designed in order to prove the feasibility of the
proposal and to test the aforementioned network performances. We
exploit the hardware and software resources on top of the Bristol Is Open
research network. In particular, the testbed consists of an OpenStack
deployment with different virtual machines. On top of certain virtual
machines the OpenAirInterface RAN and Core network instances are
executed, whereas on top of other virtual machines OpenvSwich
instances are deployed. This implementation permits us to test the
network performances in the context of different functional splitting use
cases, both in fronthaul and core networks. Each use case is
characterized by the deployment of a different number of OpenVSwitch
instances in the considered links. These OpenVSwitches form the data
plane, directly controlled by the OpenDayLight SDN Controller, forming
the control plane.

The figure 7.5 shows a potential topology in which two different
sites are deployed. On the basis of the considered fronthaul scenario,
different entities of the OpenAirInterface RAN are executed on top of the
related virtual machines. The considered virtual machines can be located
on the same site or on a different site, permitting the performance
evaluation both in local or remote scenarios. The same performance
evaluations can be made in the case of the core network. The RAN and
the core network deployments can be concurrently evaluated, so
considering an end-to-end slicing in which the further aspect influencing
the network performance is the presence, the number and the locations of
OpenvSwich instances in the fronthaul or core network links.

	

Many features can be directly managed through the Administration
GUI provided by the OpenDaylight SDN Controller software tool, as can
be seen in the Figure 7.6. At the time of writing different performance
evaluation are conducted on top of the described SDN/NFV testbed. The
related results will be presented on dedicated papers.

	

	
Figure 7.6: OpenDaylight SDN Controller GUI

	
	
	
	
	
	
	
	

	

	

7.2.4 IMS Virtualization
	

Finally, a research collaboration with the telco research team in
Milan of Altran, engineering consulting company, is conducted focusing
on the virtualization of the IMS network architecture in the context of the
Voice over 5G. This research collaboration leads to the design and the
deployment of a IMS testbed in order to couple it with our
OpenAirInterface/FlexRAN based testbed. We are exploiting the
Clearwater IMS software tool. Clearwater is an open source software
implementation of the IMS mainly designed for Cloud environment,
capable of providing voice, video and messaging services to users.

The figure 7.7 shows the Clearwater architecture and the software-
based IMS entities.

Figure 7.7: Clearwater IMS software-based architecture

	

The Figure 7.8 shows a preliminary deployment based on virtual
machine instances. The OpenAirInterface RAN and core network
entities, the FlexRAN controller entity and the Clearwater IMS entity are
deployed on top of dedicated virtual machines instances.

	

	
	

Figure 7.8: Clearwater IMS coupled with our testbed.

	
	
	
	
	
	
	
	
	
	
	
	

	

	
	

7.3 List of publications
	
	

[1] G. C. Valastro, D. Panno, and S. Riolo, “A SDN/NFV based C-RAN
architecture for 5G Mobile Networks,” in 2018 International Conference
on Selected Topics in Mobile and Wireless Networking (MoWNeT),
June 2018, pp. 1–8.

[2] Y. A. Sambo, G. C. Valastro, G. M. M. Patanè, M. Ozturk, S.
Hussain, M. A. Imran and D. Panno “Motion Sensor-based Small Cell
Sleep Scheduling for 5G Networks,” in 2019 IEEE International
Workshop on Computer Aided Modeling and Design of Communication
Links and Networks (CAMAD 2019), September 2019.

[3] G. M. M. Patanè, G. C. Valastro, Y. A. Sambo, M. Ozturk, S.
Hussain, D. Panno and M. A. Imran, “Flexible SDN/NFV-based SON
testbed for 5G mobile networks,” in 2019 The 23rd International
Symposium on Distributed Simulation and Real Time Applications
(IEEE/ACM DS-RT 2019), October 2019.

[4] G. C. Valastro, Y. A. Sambo, G. M. M. Patanè, M. Ozturk, S.
Hussain, D. Panno and M. A. Imran, “Machine Learning based
Predictive Cell Switching,” in IEEE Communication Letters Journal,
IEEE, (Under Submission).

[5] G. C. Valastro, Y. A. Sambo, G. M. M. Patanè, M. Ozturk, S.
Hussain, D. Panno and M. A. Imran, “SDN/NFV based RAN Slicing
Application for 5G mobile networks,” (Under Submission).

	
[6] E. Catania, A. La Corte, D. Panno, G. C. Valastro, “IoT Privacy in Ultra-
Dense Networks,” (Under Submission).

	

	

BIBLIOGRAPHY
	
	
	
	
	
	
	

[1] 5G PPP, “View on 5G Architecture,” 5G PPP Architecture Working
Group, Version 1.0, July 2016

[2] 5G PPP, “View on 5G Architecture,” 5G PPP Architecture Working
Group, Version 2.0, December 2017

[3] 5G PPP, “View on 5G Architecture,” 5G PPP Architecture Working
Group, Version 3.0, June 2019

[4] A. Detti, “Functional Architecture”, 5G Italy White Book: From
Research to Market, CNIT

[5] M. Ding, D. Lopez-Perez, G. Mao, P. Wang, and Z. Lin, “Will the
area spectral efficiency monotonically grow as small cells go dense?” in
2015 IEEE Global Communications Conference (GLOBECOM), Dec
2015, pp. 1–7.

[6] 3GPP, “Study on Small Cell enhancements for E-UTRA and E-
UTRAN; Higher layer aspects,” 3rd Generation Partnership Project
(3GPP), Technical Report (TR) 36.842, 01 2014, version 12.0.0.

	

[7] H. Ishii, Y. Kishiyama, and H. Takahashi, “A novel architecture for
LTE-B: C-plane / U-plane split and Phantom Cell concept,” in 2012
IEEE Globecom Workshops, Dec 2012, pp. 624–630.

 [8] C. M. R. Institute, “C-RAN - The Road Towards Green RAN,”
China Mobile Research Institute, Whitepaper, 12 2013, version 3.0.

[9] I. F. Akyildiz, S. Nie, S.-C. Lin, and M. Chandrasekaran, “5G
roadmap: 10 key enabling technologies,” Computer Networks, vol. 106,
pp. 17 – 48, 2016.

[10] A. Checko, H. L. Christiansen, Y. Yan, L. Scolari, G. Kardaras, M.
S. Berger, and L. Dittmann, “Cloud ran for mobile networks - a
technology overview,” IEEE Communications Surveys Tutorials, vol.
17, no. 1, pp. 405–426, Firstquarter 2015.

[11] SCF, “Small cell virtualization functional splits and use cases,”
Small Cell Forum (SCF), Technical Report (TR), 06 2015, version
SCF159.05.1.01.

[12] NGMN, “Further study on critical C-RAN technologies,” next
generation mobile networks (NGMN), Technical Report (TR), 03 2015,
version 1.0.

[13] 3GPP, “Study on new radio access technology: Radio access
architecture and interfaces,” 3rd Generation Partnership Project (3GPP),
Technical Report (TR) 38.801, 04 2017, version 14.0.0.

	
[14] A. de la Oliva, J. A. Hernandez, D. Larrabeiti, and A. Azcorra, “An
overview of the cpri specification and its application to c-ran-based lte
scenarios,” IEEE Communications Magazine, vol. 54, no. 2, pp. 152–
159, February 2016.

[15] I. F. Akyildiz, S.-C. Lin, and P. Wang, “Wireless software-defined
networks (W-SDNs) and network function virtualization (NFV) for 5G
cellular systems: An overview and qualitative evaluation,” Computer
Networks, vol. 93, pp. 66 – 79, 2015

[16] Docomo, “DOCOMO 5G White Paper 5G Radio Access:
Requirements, Concept and Technologies,” Docomo, Whitepaper, 2014.

[17] I. F. Akyildiz, P. Wang, and S.-C. Lin, “Softair: A software defined
networking architecture for 5g wireless systems,” Computer Networks,
vol. 85, pp. 1 – 18, 2015.

[18] C. M. R. Institute, “White Paper of Next Generation Fronthaul
Interface,” China Mobile Research Institute, Whitepaper, 2014.

[19] N. Baldo, M. Miozzo, M. Requena-Esteso, and J. Nin-Guerrero,
“An open source product-oriented lte network simulator based on ns-3,”
in Proceedings of the 14th ACM International Conference on Modeling,
Analysis and Simulation of Wireless and Mobile Systems, ser. MSWiM
’11. New York, NY, USA: ACM, 2011, pp. 293–298.

	

[20] L. J. Chaves, I. C. Garcia, and E. R. M. Madeira, “Ofswitch13:
Enhancing ns-3 with openflow 1.3 support,” in Proceedings of the
Workshop on Ns-3, ser. WNS3 ’16. New York, NY, USA: ACM, 2016,
pp. 33–40.

[21] N. Nikaein, C.-Y. Chang, and K. Alexandris, “Mosaic5G: Agile and
flexible service platforms for 5G research,” ACM SIGCOMM Comp.
Com. Rev., vol. 47, no. 3, Jul. 2018.

[22] N. Nikaein, R. Knopp, F. Kaltenberger, L. Gauthier, C. Bonnet, D.
Nussbaum, and R. Ghaddab, OpenAirInterface 4G: an open LTE
network in a PC, International Conference on Mobile Computing and
Networking, 2014.

[23] X. Foukas et al., “FlexRAN: A flexible and programmable platform
for software-defined radio access networks,” in Proc. of the 12th
International on Conference on Emerging Networking Experiments and
Technologies (CoNEXT ’16), Dec. 2016, pp. 427–441.

[24] A. Mohamed, O. Onireti, M. A. Imran, A. Imran, and R. Tafazolli,
Control-data separation architecture for cellular radio access networks: A
survey and outlook, IEEE Communications Surveys Tutorials, vol. 18,
no. 1, pp. 446/465, Firstquarter 2016.

[25] Huawei, Next Generation SON for 5G, Huawei Technologies Co.,
Tech. Rep., 2016.

[26] SCF, Small cells market status report, Small Cell Forum, Release
10.0 SCF050.10.03, Dec. 2018.

	
[27] C.-Y. Chang, L. Kuacz, R. Schmidt, A. Kliks, N. Nikaein,
“Spectrum Management Application - A Tool for Flexible and Efficient
Resource Utilization”, GLOBECOM 2018, IEEE Global
Communications Conference, December 2018.

[28] 3GPP, “5G; Study on scenarios and requirements for next
generation access technologies,” 3rd Generation Partnership Project
(3GPP), TS 38.913, Sept. 2018.

[29] G. Auer, V. Giannini, C. Desset, I. Godor, P. Skillermark, M.
Olsson, M. A. Imran, D. Sabella, M. J. Gonzalez, O. Blume, and A.
Fehske, “How much energy is needed to run a wireless network?” IEEE
Wireless Communications, vol. 18, no. 5, pp. 40–49, October 2011.

[30] O. G. Aliu, A. Imran, M. A. Imran, and B. Evans, “A survey of self
organisation in future cellular networks,” IEEE Communications Surveys
Tutorials, vol. 15, no. 1, pp. 336–361, First 2013.

[31] S. Sharma, S. J. Darak, and A. Srivastava, “Energy saving in
heterogeneous cellular network via transfer reinforcement learning based
policy,” in 2017 9th International Conference on Communication
Systems and Networks (COMSNETS), Jan 2017, pp. 397–398.

[32] M. Feng, S. Mao, and T. Jiang, “Boost: Base station on-off
switching strategy for green massive mimo hetnets,” IEEE Transactions
on Wireless Communications, vol. 16, no. 11, pp. 7319–7332, Nov 2017.

[33] R. Tao, W. Liu, X. Chu, and J. Zhang, “An energy saving small cell

	

sleeping mechanism with cell range expansion in heterogeneous
networks,” IEEE Transactions on Wireless Communications, vol. 18, no.
5, pp. 2451–2463, May 2019.

[34] W. Ur Rehman, A. Hussain, and M. M. Butt, “Joint user association
and bs switching scheme for green heterogeneous cellular network,” in
2018 IEEE Globecom Workshops (GC Wkshps), Dec 2018, pp. 1–6.

[35] A. Dudnikova, P. Dini, L. Giupponi, and D. Panno, “Multi-criteria
decision for small cell switch off in ultra-dense lte networks,” in 2015
13th International Conference on Telecommunications (ConTEL), July
2015, pp. 1–8.

	
	
	
	
	
	
	
	
	
	
	

