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ABSTRACT 
 
 
 
 
In these years, various standardization entities are defining the 
features regarding the future 5G Radio Access Network (RAN) 
architecture. A considerable innovation concerning the design of 
5G mobile networks will be a concrete step towards enabling 
effective high throughput and low latency services.  

A novel architecture design for RANs to address critical 
elements in resources management and to achieve the 5G mobile 
networks performances is needed. In this context, Cloud-Radio 
Access Network (C-RAN), a new mobile network architecture 
characterized by a functionalities redistribution, is considered as 
the most suitable solution.  

The principle of C-RAN is related to a functional splitting 
turning the monolithic 4G evolved NodeB (eNB) into a two or 
three tier Node B, namely Next Generation NodeB (gNB), 
comprising two or three types of entities, the remote unit (RU), the 
distributed unit (DU) and the centralized unit (CU).  Software 
Defined Networking (SDN), Network Function Virtualization 
(NFV) and Self Organized Network (SON) are considered the 
enabling technologies to achieve these goals.  
 
 
 
 
 



	  

SDN focuses on decoupling control and data plane, NFV performs 
the functionalities abstraction from the underlying hardware, 
whereas SON permits to maximize automation of various the 
aspects. 

In this dissertation, a hierarchical layered software-defined 
architecture for future 5G networks is proposed. The architecture 
relies on SDN, NFV and SON principles. As further contribution, 
our solution aims to provide new features in order to facilitate 
SDN/NFV/SON application in mobile networks.  

The research project related to my PhD has been conducted in 
the context of an international academic collaboration between the 
University of Glasgow and the University of Catania. I have 
technically coordinated this research activity and the relative 
participation of our team, in representation of the University of 
Catania, to the “Mosaic5G” research project, as contributor 
member. 

In order to implement the aforementioned software defined 
architecture, we design and implement a flexible SDN/NFV-based 
SON testbed for future 5G mobile networks. The main contribute 
of our work is to cover the need for a SDN/NFV-based SON 
testbed, enabling the investigation of the potential of these 
paradigms for practical implementations. We exploit, FlexRAN, as 
a Software Defined RAN (SD-RAN) platform enabling the SDN 
concept and OpenAirInterface, as an open source software-based 
implementation of the 3GPP full protocol stack.  

Research work led to two different Testbed deployments. A 
first Testbed in Catania (TestbedCT), based on NFV to set-up an 
entirely emulated environment. A subsequent Testbed in Glasgow 
(TestbedGLA), as a real environment deployment, using Software 



	  

Defined Radios (SDRs) and real user equipments.  
Both the testbed deployments enable novel research and 

provides teaching opportunities in next generation RAN 
architectures and several other areas of system-level research. 
Furthermore, they act as benchmark for many use cases with a 
significant proximity to real network deployment criticalities.   

The research activities during the PhD involve another 
research collaboration with Bristol Is Open, a joint venture 
between the University of Bristol and Bristol City Council, with 
the aim of deploying a SDN/NFV based testbed to prove the 
application of this two paradigms in the context of mobile core 
networks, exploiting OpenDaylight as SDN controller. 

Finally, a research collaboration with the telco research team 
in Milan of Altran, engineering consulting company, is conducted, 
focusing on the virtualization of the IP Multimedia Subsystem 
(IMS) network architecture in the context of the Voice over 5G 
(Vo5G). 
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1   INTRODUCTION  
 

 
 
 
 
 

1.1   Introduction 
	  
	  
	  

5G networks will be innovative networks able to provide revolutionary 
services, functionalities and capabilities hard to obtain by exploiting the 
actual network technologies. Therefore, 5G networks should be re-
designed in order to accomplish the new requirements.  

Recently, the progress regarding various aspects of the IT world has 
contributed to the creation and the evolution of an open ecosystem. The 
users will leverage on various types of devices, which will allow the 
connection to different types of networks in order to access different kind 
of services.  

Actually, this progress and the relative flexibility mainly regards 
services and applications, whereas the network architectures are not 
suitable for these new technologies, leading to the need of a next 
generation mobile networks. 



	  

 
Therefore, the next generation mobile networks will be characterized 

by the presence of different kind of physical networks. The coexistence 
of these networks, by overcoming economical and juridical constraints, 
can be exploited to provide to the end-users an enhanced experience 
related to the requested service.  

 
 

 
Figure 1.1: 5G requirements 

 
 



	  

 
As can be seen in Fig. 1.1, strict requirements are envisioned for the 

5G networks: 
 

•   Ensuring a wireless capacity 1000 times greater than the 
actual 

•   Ensuring a services diversification  
•   Achieving an energy saving up to 90%, primarily as regards 

the RAN side, which is responsible for the 80% of the energy 
consumption in a mobile network.  

•   Decreasing the time to create services  
•   Creating a new network architecture based on the concepts of 

availability and reliability, 
•   Ensuring a perceived down time close to zero.  

 
 
This focus on the services and their requirements is based on the 

assumption that, in contrast to the previous mobile networks generations, 
the 5G is not centered on the end-user but on the services, or more 
specifically, the verticals, i.e., the different vertical markets, such as 
automotive, energy, city management, government, healthcare, 
manufacturing, and intelligent transport systems. The definition of 
verticals remarks the definition introduced by IMT Vision 
recommendation ITU-R M.2083-0, regarding three principal use cases 
as: 

 
•   Enhanced Mobile Broadband (eMBB), mainly regarding the 

human-devices involved in high data rate and large payload 
transmission with a moderate reliability, typical of high quality 



	  

streaming, augmented and virtual reality. 
 
•   Ultra-reliable and Low Latency Communications (uRLLC), 

mainly regarding devices involved in tactile internet or remote 
control. These communications are characterized by small 
payload transmissions with low latency and high reliability, since 
concern mission critical communications such as medical or 
emergency items. 

 
•   Massive Machine Type Communications (mMTC), mainly 

regarding communication among a high number of devices with 
small payload and non-delay-sensitive transmissions, typical of 
Internet of Things (IoT). 

 
In order to exploit this heterogeneity of services and relative 

requirements, changes and enhancements, regarding the management of 
the mobile networks, are needed. The major challenges in terms of 
research and innovation concerning the mobile networks in the context of 
5G cover different aspects. In particular, the European Union funded 5G 
Public Private Partnership (5GPPP) supported different projects focusing 
on a wide range of aspects, from physical layer to the overall 
architecture, network management and software networks. The 
motivation relies on the assumption that 5G is not only an innovation 
related to a new radio but mainly focuses on the attempt to create a new 
framework allowing the integration of previous and new technologies in 
order to achieve the 5G requirements. 

This process is conducted by a specific working group of the 5GPPP 
Initiative, the 5G Architecture Working Group. The work of the group 
has been organized in three phases. Each one of these phases led to the 



	  

production of a white paper in the versions 1.0, 2.0 and 3.0, respectively 
published in July 2016, January 2018 and July 2019 [1-3]. The view 
given by the 5G PPP contributors and the results coming from the 5G 
PPP projects deeply contributed to the standardization process of the 5G 
mobile networks conducted by various standardization entities, e.g., the 
Third Generation Partnership Project (3GPP), as shown in Fig. 1.2. 

 
 

 
 

Figure 1.2:  The standardization process regarding the 5G networks 
 
The standardization process regards both the RAN and the CN. As 

shown in Fig. 1.3, 5G network is composed of a 5G access network, 
called 5G Next Generation RAN (NG-RAN) and a 5G core network 
(5GC) [4]. The NG-RAN consists of 5G new radio interface (NR) access 
nodes and/or of non-3GPP access network nodes, both connected to the 
5GC.  

 



	  

On the basis of the user plane/control plane terminations, the 5G 
access network node can be defined as:  
 

•   evolved NodeB (eNB) - LTE access network node from 3GPP 
Rel-8 up to Rel-14. 

 
•   Next generation eNodeB (ng-eNB) – LTE access network node 

from 3GPP Rel-15, providing user plane and control plane 
protocol termination towards the user equipment (UE), connected 
via the NG interface to the 5CG. 
 
 

 
 

Figure 1.3: 5G network architecture 
 

•   Next generation NodeB (gNB) – 5G access network from 3GPP 
Rel-15, providing NR user plane and control plane protocol 
terminations towards the UE, via the NG interface to the 5GC. 

Furthermore, as shown in Fig. 1.4, different deployment options are 



	  

defined on the basis of the RAN-CN interconnections. In particular, the 
various options can be divided in standalone (SA) and non-standalone 
(NSA). In the SA options (1,2,5) only one radio access technology is 
deployed, 5G NR or the evolved Long Term Evolution (LTE) connected 
to the corresponding generation of core network. In the NSA options 
(3,4,7), NR radio access nodes are combined with LTE access nodes and 
the core network may be either Evolved Packet Core (EPC) or 5GC. 
  
 
 

 
Figure 1.4: 5G Deployments and migration strategies 

 
Finally, different migration strategies are defined in order to move 

from a previous type of deployment to another. Considering a starting 
configuration, it is possible the migration only to a restricted number of 
available deployment options. 

 
 



	  

Finally, as regards the network functions, in 5G networks generally 
they will be exposed as services, so the 5G core is said to have a service-
based architecture. More specifically, the procedures related to specific 
network functions are defined as services. Furthermore, in previous 
mobile networks generations a standardized real or logical point-to-point 
interface interconnecting two network entities is defined, and this 
interface uses a specific bit-oriented protocol. In the 5GC, service-based 
interfaces are exploited, supported by web-oriented tools such as 
HTTP/2, REST and JSON. Consequently, the 5G architecture has been 
designed to enable the softwarization of the network functions.  

This led to an evolution regarding the network design, characterized 
by a new need of flexibility and programmability, different from the 
“ossified” hardware previous network architecture.  

Software defined networking (SDN), network function virtualization 
(NFV) and cloud computing are recognized as the key enabling 
technologies to enable these enhancements. In Chapter 2, a detailed 
overview of the RAN evolution will permit to better understand how 
these paradigms are contributing to this software revolution.  

 
 
 
 
 
 
 
 
 
 
 



	  

1.2   Structure of this Dissertation 
	  

The dissertation is organized as follows. In Chapter 2 is presented a 
brief overview on 5G technology and a State-of-the-art overview. 
In Chapter 3 we introduce the system model and the network model 
being considered and then present a detailed description of the proposed 
software defined architecture. In Chapter 4 the first version of the 
testbed, based on the ns-3 simulator. In Chapter 5 we present the 
software tools utilized in the second version of the testbed, 
OpenAirInterface and FlexRAN. In Chapter 6 we expose the testbed 
based on these two software tools, as well exposing the results and the 
relative considerations. 

Finally, in Chapter 7 the conclusion remarks, where discuss also the 
works in progress. The list of related publications is presented as well. 
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CHAPTER 

                                                                     TWO 
 
 

2   BACKGROUND AND RELATED WORK  
 
 
 
 
 

2.1   Background 
 
 
 

In next decade, as exposed in [2], future mobile networks will fulfill 
multiple 5G features in terms of guaranteed user data rate, high 
throughput, low delay, number of UEs and mobility support at high 
speed. Cell densification is considered as a key solution in order to 
realize these enhancements. In this context, the basic idea is to deploy the 
access nodes as close as possible to the end users, in order to satisfy the 
required Quality of Service (QoS) and maximize system throughput. Due 
to the increasing user density, small cells become smaller and denser, 
leading to the ultra-dense networks concept. In [5] a quantitative measure 
of the cell density for which a network can be considered ultra-dense 
(103 cells / km2) is provided.  

In this line, future networks will be realized as a set of multiple base 
stations with different features, in terms of connected users, transmitted 
power and coverage areas, i.e., small cell and macro cell deployment.  

 
Among the main aspects available in literature concerning 

densification, we focus on dual connectivity and centralization. Based on 



	  

Dual Connectivity scheme standardized by 3GPP for Release 12 small 
cell enhancements [6], DOCOMO proposes in [7] the Phantom Cell 
Concept, as a solution for the next ultra-dense networks. 
 
 

 
Figure 2.1: Docomo splitting solution 

 
 
As shown in Fig. 2.1, this solution is mainly focused on a splitting 
between control plane (C-Plane) and user data plane (U-Plane). 
Moreover, different frequency band allocation in Macro cell and small 
cell coverage areas is considered. In particular, for a UE in a phantom 
cell coverage area, C-Plane is provided by the Macro eNodeB at low 
frequency band (2 GHz), in order to improve connectivity and mobility 
management, whereas U-Plane is provided by Phantom base station at 
higher frequency band (3.5 GHz), in order to boost user data rate.  
 
 

As regards the centralization aspect, we observe that in the 
traditional LTE RAN, see Fig.2.2a, the eNodeB is composed of a radio 



	  

front-end entity, referred as Remote Radio Head (RRH) and a base band 
computational unit, called Base Band Unit (BBU). In this context, the 
BBUs are located in a distributed mode (i.e., each BBU is co-located 
with the related RRH). As shown in Fig.2.2b, in the last few years, 
mobile RAN is slightly evolving to a more centralized architecture, 
known as Centralized-Radio Access Network (C-RAN) [8].  
 
 

 
 

Figure 2.2: (a) CPRI based Distributed RAN - (b) CPRI based Centralized 
RAN 

 
 

In C-RAN architecture, base band computational resources are pooled in 
remote locations, still hardware-based, known as BBU Pools, whereas 
RRHs are placed in edge locations. Centralization feature provides 
notable advantages in terms of CAPEX/OPEX, since enables operators to 
centralize hardware, significantly reducing energy consumption and 
maintenance costs. Exploiting the positive aspects of dual connectivity 



	  

and centralization in an ultra-dense scenario enables to perform a 
centralized radio resource management capable of addressing significant 
issues as severe interference between co-tier small cells, support and co-
deployment of LTE-Advanced and 5G RAN entities (inter-technology 
compatibility). Furthermore, a RAN evolution is also required in order to 
support Multi-Radio Access Technology (RAT) feature and seamlessly 
integrate new radio access technologies, e.g. millimeter waves, with 
existing ones.  

These significant requirements cannot be achieved without new key 
features as softwarization, programmability, virtualization, fronthaul and 
radio interface redesigning and resource coordination. The control and 
data plane splitting proposed by DOCOMO could be realized through 
SDN. In its native wired nature, SDN focuses on decoupling control and 
data plane of network forwarding elements as switches. The 
communication between the forwarding entity and the control entity, i.e. 
the controller, is performed by the OpenFlow protocol. Accordingly, the 
data plane is performed by OpenFlow enabled switches, whereas the 
control plane is performed by logically centralized but physically 
distributed SDN controllers. 

In order to take full advantage of SDN capabilities in mobile and 
wireless environments, a first critical issue is related to its possible 
integration. NFV, focusing on virtualization of hardware based 
functionalities, can be take in account in virtualization process of the 
BBU entities forming the BBU Pool. NFV permits to realize in a 
software fashion the hardware based baseband functionalities. These 
enhancements make RAN architecture more scalable and reliable, since a 
programmable management of virtualized functionalities is achievable. 
At this aim, as depicted in [9], SDN and NFV are considered as the 
enabling technologies to realize these enhancements. 



	  

Following to the above assumptions, in a further evolution of the 
Centralized-RAN, BBUs can be not only centralized but also virtualized 
and coordinated by a centralized entity, in order to optimize resource 
allocation, leading to Cloud-RAN or Virtual-RAN. Accordingly, Cloud-
RAN, SDN and NFV are recognized as the key enabling solutions for 
future mobile networks. 

 
 

2.2   Overview on related works 
 
 
As mentioned above and depicted in [10], in terms of centralization and 
architecture redesigning, in the last few years mobile RAN has already 
slightly evolved to a more centralized and coordinated fashion, C-RAN. 
As shown in Fig. 2.3, the transport network connecting RRHs to the 
related BBU Pool is called Fronthaul. Fronthaul links could be 
implemented using different technologies like Ethernet, optical fiber or 
millimeter wave communication.  

On the one hand, due to high bandwidth and low delay requirements 
optical fiber communication would be the proper solution for C-RAN 
fronthaul, but its deployment is usually high costly and not flexible. On 
the other hand, wireless solutions, such as millimeter wave 
communication, are cheaper and easy to deploy, but characterized by 
lower bandwidth and higher delay. 
 



	  

  
Figure 2.3: RAN evolution 

 
The selection of the appropriate frounthaul link option is strictly 

related to a further significant aspect, i.e., centralization option. In fact, 
centralization could be implemented in different patterns, i.e., full 
centralization, partial centralization and hybrid centralization. These 
patterns are related to various functional splits proposed by different 
organizations, e.g., SCF [11], NGMN [12] and 3GPP [13], as shown in 
Fig. 2.4.  
 

 
Figure 2.4: 3GGP Functional splitting options - Source: 3GPP TR 38.801 

V.14.0.0. 



	  

In full centralization, coinciding with option 8, only RF 
functionalities are deployed in RRH site, PHY Layer and upper layers in 
BBU Pool site, in order to maximize management capacity, making 
easier operation and maintenance. On the other hand, as exposed in [14], 
due to high bandwidth and overhead related to IQ data transmission, this 
solution suffers from performance limitations.  

In partial centralization, coinciding with option 6, PHY layer 
functions are implemented in RRHs, upper layers in the central unit 
(BBU). As opposed to fully centralized option, bandwidth and overhead 
requirements are reduced, since the demodulated signal is carried rather 
than the modulated one, but pooling gain is limited. In hybrid 
centralization, coinciding with option 7, also known as LLS (Lower 
Layer Split), part of the physical layer functions are implemented in 
RRHs, remaining functions in BBU.  

In conclusion, partially and hybrid centralized solutions are 
characterized by lower requirements than fully centralized, in terms of 
bandwidth and overhead, allowing to deploy an Ethernet fronthaul, rather 
than fiber. Furthermore, fully centralized option is better in terms of 
pooling gain, since aggregating computational resources related to the 
entire protocol stack permits to implement more advanced processing 
algorithms. Thus, an appropriate functional splitting should take into 
account a trade-off between these solutions. 

As regards the interface redesigning, we observe that in the 
traditional LTE RAN, as shown in Fig.2.2a, the interface between RRHs 
and BBUs is a Common Public Radio Interface (CPRI). CPRI was 
developed for local link between BBU and RRH in antenna sites and to 
support lower bandwidth transmissions. Moreover, as shown in Fig.2.2b, 
first implementations of C-RAN fronthaul are still CPRI-based. As 
depicted in [15], different solutions are present in literature. In particular, 



	  

two examples of Centralized RAN are considered.  
The first example is China Mobile Research Institute C-RAN 

proposal [8], deploying a centralized control, in particular virtualized 
BBU pool are connected to RRHs through fiber connections. The second 
example is proposed by DOCOMO and is considered as an Advanced C-
RAN, since implements Phantom Cell Concept, based on carrier 
aggregation and small cell technologies [16]. These two solutions are 
based on a full centralization, thus suffer from the IQ data transport 
related issues, which causes a bottleneck in Fronthaul Network.  

In order to resolve it, in [17] is proposed by Akyildiz et al. a 
Software Defined architecture based on hybrid centralization, but still 
implementing the CPRI as Fronthaul Interface. Nevertheless, in next few 
years, increasing the distance between RRHs and BBUs, the fronthaul 
link will be extended in the range of Kms, so traditional CPRI will not be 
the proper solution. In fact, one of the most significant issues will be the 
high data rate requirements related to the increasing number of antennas, 
as effect of massive MIMO deployments [2]. In addition, strict 5G 
requirements in terms of higher bandwidth and lower delay, leads to a 
further evolution of fronthaul and interface designing. 

In this line, in recent times IEEE NGFI working group defines a new 
transport fronthaul interface for future mobile networks, called Next 
Generation fronthaul interface (NGFI). This solution aims to resolve the 
abovementioned issues related to CPRI, thanks to features as adaptive 
bandwidth, statistical multiplexing, support for high-gain coordinated 
algorithms, data rate decoupled from the number of antennas at RRUs, 
support for different air interface technology.  
 



	  

 
Figure 2.5: NGFI based Centralized RAN 

 
 

As shown in Fig. 2.5, according to [18], BBU and RRH 
functionalities are redefined, since part of BBU functionalities are moved 
to the edge location. Consequently, Remote Radio System (RRS) 
concept is introduced. In particular, the RSS concerns network elements 
as antennas, Remote Radio Units (RRUs) and Remote Aggregation Unit 
(RAU). RRUs will be an enhanced radio frontend performing part of 
base band processing, the RAU will be a logical entity performing local 
aggregation functionality and part of BBU processing.  

Accordingly, BBU will be redesigned as Radio Cloud Center (RCC), 
since will exploit softwarization and virtualization features. The RCC 
will perform the remaining BBU processing. The RRU coverage will be 
equivalent to a metrocell. The fronthaul network will be redesigned, 
since fronthaul links will evolve from point-to-point to multipoint-to-



	  

multipoint, exploiting the aggregation feature of the RAU. According to 
this redesign, since bandwidth requirements will be relaxed, the fronthaul 
transport technology would be packet based, i.e. Ethernet, in order to 
facilitate NGFI standardization and real deployment. 
 

	  	  



	  

	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  



	  

                                                                                                                                                                   
CHAPTER 
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3   PROPOSED ARCHITECTURE  
 
 
 
 
 

3.1   SYSTEM MODEL 
 
 

 
 
In this thesis, a hierarchical layered architecture for future 5G networks 
is proposed. The solution exploits SDN/NFV features, in order to deploy 
a programmable and virtualized architecture. We aim to propose new 
features that could facilitate SDN/NFV integration in wireless/mobile 
environment, concretizing Docomo proposed solution in an ultra-dense 
scenario. 
 
The hierarchical architecture scheme includes different logical layers, as 
shown in Fig. 3.1. The considered scenario concerns a group of macro 
cells. Exploiting a NGFI based architecture, each macro and the RRUs 
deployed in the related coverage area form the infrastructure layer. 

 
 
 



	  

 
Figure 3.1: Proposed SDN/NFV based C-RAN architecture 

 
The baseband processing layer is composed of BBU Pools, 

concerning the entire computational capacity, connected through 
fronthaul links and RAU to RRUs. The control layer is performed by a 
set of SDN controllers, each controller takes care of several management 
aspects, performing various functionalities. The application layer as the 
various applications deployed on top of the SDN controllers.  

A detailed description of the proposed architecture is provided, the 
proposed SDN/NFV based C-RAN architecture comprises the following 
layers. 



	  

3.1.1   Infrastructure Layer 
 

As opposed to CPRI-based SoftAir proposal, inspired by NGFI-
based architecture, in particular by the RAU, we consider NGFI as 
fronthaul interface. This permits to overcome the CPRI related issues 
still present in SoftAir proposal and to deploy an Ethernet based 
fronthaul network. Inspired by [17], in order to softwarize mobile 
networks, as novelty we propose to deploy an OpenFlow agent upon the 
RAU entity, which in conjunction with OpenFlow-enabled forwarding 
devices, performs a programmable forwarding on the basis of SDN 
Controller rules. Furthermore, in the fronthaul and backhaul network, 
OpenFlow enabled forwarding devices are deployed. In this line, control 
and data plane splitting is achieved and the data plane becomes 
programmable.  

 

3.1.2   Baseband processing layer  
	  

The baseband processing layer concerns a set of BBU Pools, 
representing the entire computational capacity. In particular, as regards 
functional splitting options, we design virtualized base band 
functionalities also in RAU, in order to dynamically implement a 
particular functional splitting option. Furthermore, as opposed to a CPRI 
based architecture, the flexibility of the designed virtualized base band 
processing in RAU, permits to relax the fronthaul link requirements, 
enabling the deploy of an Ethernet fronthaul network. This enhancement 
is appropriate, e.g., when a fronthaul link suffers from a fault or the 
capacity of a BBU Pool is not sufficient in relation to the experienced 
data traffic. 



	  

3.1.3   Low and upper control Layer 
 

Furthermore, as opposed to a CPRI based architecture, the flexibility 
of the designed virtualized base band processing in RAU, permits to 
relax the fronthaul link requirements, enabling the deploy of an Ethernet 
fronthaul network. This enhancement is appropriate, e.g., when a 
fronthaul link suffers from a fault or the capacity of a BBU Pool is not 
sufficient in relation to the experienced data traffic. 

The control layer is composed of a set of SDN controllers, each 
controller takes care of several management aspects, performing various 
functionalities. The architectural control layer is logically centralized but 
physically distributed, as a set of slave controllers and master controllers.  

Master controllers, forming the upper control layer and located in 
remote sites, manage a group of macro cells, keeps in account long time 
scale and less fine grained parameters, acting as reference entities for 
slave controllers.  

Slave controllers, forming the lower control layer, located in edge 
sites, as opposed to master controllers, keep in account short time scale 
and more fine grained parameters, acting as management entity for a 
group of small cells.  

In order to realize these enhancements, is necessary to customize 
northbound and southbound interfaces. In particular, the southbound 
interface is performed by the OpenFlow interface, enabling 
programmable management of underlying network elements. 
Northbound interfaces allow applications to interact with controller. On 
the basis of the reports sent by RAN entities, the algorithms running in 
applications computes the related output. 

 
 



	  

3.2   Logical controller areas and new 
proposed functionalities 

 
As shown in Fig. 3.2, the proposed slave controller, focusing on 

different features, can be seen as composed of different logical areas, 
corresponding to the related northbound applications. These proposed 
functionalities could allow to fulfill strict 5G requirements, since 
elaborating and combining reports from network entities, will be able to 
perform optimum rules in terms of switching, resource allocation and 
virtual function instantiation/migration. 
 
 

 
Figure 3.2: Proposed Slave Controller 

	  



	  

3.2.1   SDN Controller logical area 
 

 
We design this logical area as strictly related to the particular 

designed fronthaul network. In fact, in our design, fronthaul network will 
evolve from a point-to-point CPRI-based network to multipoint-to-
multipoint NGFI/Ethernet based network. Since fronthaul topology will 
be more complex, manage forwarding in a fast, programmable and 
dynamic fashion exploiting OpenFlow will be necessary, realizing 
control and data plane splitting related to forwarding functionalities. This 
SDN enhancement in the proposed mobile RAN architecture is deployed 
in OpenFlow native scope, i.e. wired network forwarding, but could be 
very useful to achieve strict 5G requirements. The proposed 
functionalities related to this area are: 

	  
	  

•   Forwarding functionalities in fronthaul network. 
  

As exposed above since fronthaul network will be more complex, 
this controller area will allow to manage the mobile 

network in a centralized way, coordinating forwarding behavior among 
OpenFlow enabled network entities, like RAU and switches. This is 
achievable only through a centralized entity which perform an overall 
and continuously updated view of the network state.  

An Ethernet-like fronthaul will permit to exploit actual OpenFlow 
capabilities. Moreover, will be possible, through an extended OpenFlow 
protocol, adding new matching fields, realize splitting based on different 
rules (simple control and data plane splitting, UE-related and cell-related, 
different types of splitting in downlink and uplink). In this case, in a 
dynamic fashion, would be created a Virtual cluster, as a set of RRU 



	  

dynamically associated with a BBU Pool and consequently to a slave 
controller. 

	  
	  

•   Forwarding functionalities in Multi-RAT RAN. 
 

Since 5G environment will be a Multi-RAT environment, this new 
functionality will concern Multi-RAT support. Interconnecting different 
wired and wireless involved subsystems, should be possible only 
deploying an intelligent and fast forwarding, in order to comply with 5G 
delay requirements. In fact, will be necessary a convergence entity which 
will be able to select optimum options in terms of switching, security 
issues and reliability. These enhancements could be realized in our slave 
controller, in association to the aggregation feature performed by the 
RAU. As opposed to the abovementioned functionality, in which slave 
controllers would manage a group of small cells based on the same 
technology, in this case our slave controller would manage a group of 
access point based on different technologies. This would be achievable 
exploiting a Virtual Multi-RAT cluster, dynamically related to a 
particular BBU POOL and consequently to a particular slave controller. 

 
 

3.2.2   NFV Orchestrator logical area 
 
 

We design this logical area in order to realize a NFV Orchestrator, 
which would be able to allocate dynamically computational resources 
related to BBU Pool.  
 

 



	  

The novelty introduced with this logical area comes with these 
enhancements: 

 
•   Dynamic instantiation of BBU/RAU/RRU related 

functionalities 
 

Since part of the protocol stack processing will be implemented in a 
virtualized fashion, would be possible to dynamically instantiate 
virtualized base band processing functionalities based on fronthaul link 
requirements, activating or dis-activating the related virtual entities, in 
order to dynamically deploy different functional splitting options. These 
variations could be related to the capacity required in a particular time 
interval or period of the day. 

 
 
•   Dynamic instantiation/migration of slave controllers 

 
In order to follow capacity demands or the need for a convergence 

controller in multi-rat environment, would be possible to instantiate or 
migrate slave controller, implemented in a virtualized fashion. In this 
case could be useful realize a “lighter virtualization”, in a container 
fashion. 

	  
	  

3.2.3   Resource Management Controller logical area 
 
 

This logical area is designed to instantiate rules based on related 
resource management algorithms, in order to allocate resources on the 



	  

basis of instantaneous requirements in terms of capacity, rate and link 
state. Moreover, would be possible to deploy a mobility management in a 
single or multi RAT environment. 

	  
	  

•   Resource management in single or Multi RAT RAN 
 

This functionality concerns algorithms implementation based on a 
programmable resource management. Slave controller, on the basis of 
parameters regarding the actual state of the network, elaborates the 
optimum resource allocation. This logical area would permit to realize an 
efficient allocation through cooperative concepts, exploiting the overall 
point of view of the slave controller, in the above mentioned Virtual 
Cluster. 

 
•   Resource management for single or Multi RAT handover. 

 
Handover algorithms implementation and resource reallocation 

based on the related requested service. Thanks to the concept of Virtual 
Multi-RAT cluster, would be possible to associate the best Multi-RAT 
neighbor, in order to manage a transparent handover between related 
technologies. 

 

3.3  Docomo use case 
 

On the basis of the above assumptions, we design an architectural 
solution for DOCOMO proposed control and data plane splitting. This 
proposed architecture realizes the abovementioned splitting and exploit 
SDN/NFV features described in the previous section. Furthermore, as 



	  

opposed to Docomo Advanced C-RAN, exploiting the flexibility of the 
proposed virtual base band processing in RAU. We are able to overcome 
IQ data transmission issues and to dynamically implement a specific 
functional splitting option. As regards the control and data plane splitting 
proposed by Docomo, two different cases are considered in the proposed 
architecture: 
 

•   UEs in the coverage area of a macrocell 
 

In this case control and data plane traffic would be routed by 
OpenFlow enabled RAN entities, on the basis of no splitting option rules 
specified by the SDN Controller, since Macro RRU provide both control 
and data plane. 
 

•   UEs in the coverage area of a phantomcell 
 

In this case is necessary a splitting between control and data plane. 
In particular, data plane traffic is routed to Phantom RRU, control plane 
traffic is routed to Macro RRU, through OpenFlow enabled RAN 
entities, according to the rules specified by the SDN Controller. 

 
In addition, as designed by DOCOMO in a further evolution of the 

Phantom Cell Concept, the interface between Macro RRU and BBU Pool 
is designed as the X3 Interface, the interface between phantom RRU and 
BBU Pool is designed as the X4 interface.  In this specific considered 
scenario, we are focusing on slave controller case. On the basis of 
different considerations regarding the strict throughput and delay 
requirements, the slave controller could be located in the same site of the 
macro RRU. 



	  
	  

	   	  
Figure 3.3: Docomo Use Case 

	  
	  
	  
	  
	  

In this case, the X3 interface would be an internal interface used to 
manage the communication between Macro RRU and the related BBU 
Pool. In case of slave controller is located in a remote site, different from 
Macro RRU site, the X3 interface would also accomplish the related 
requirements in terms of delay and synchronization. Following the above 
considerations would be more suitable to locate the slave controller in 
the same location of Macro RRU, in order to exploit as well as possible 
the enhancements related to the proposed architecture. The application 
running on top of the slave controller would be able to communicate 
through customized northbound interface API. These applications would 



	  
be strictly related to the above mentioned logical areas, but would work 
on a cooperative fashion in order to enhance the overall architecture 
performances. Through a customized southbound interface, the 
OpenFlow interface, would be possible to exploit SDN capabilities, 
thanks to an OpenFlow agent running on the specified RAN entities.
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4   NS-3 BASED TESTBED  
 
 
 
 
 

4.1   PRELIMINARY STEPS 
	  

 
In order to implement the proposed architecture, among the designed 

logical areas, we design and implement a first deployment of the testbed 
focusing on the functionalities related to the SDN Controller logical area 
of the SDN/NFV based C-RAN architecture proposed in the Chapter 3. 
We decide to deploy and to prove firstly this proposed feature, as a 
control/data plane splitting aspect, because we consider it as more 
straightforward than the other proposed functionalities, being an 
enhancement in OpenFlow native scope, i.e. wired network forwarding 
in the RAN and in the interconnections with the core network. 

Following these assumptions, the topology considered in this first 
testbed implementation reflects the fronthaul network proposed in our C-
RAN architecture, as a multipoint-to-multipoint NGFI/Ethernet based 
network. Since fronthaul topology will be more complex, manage 
forwarding in a fast, programmable and dynamic fashion exploiting 
OpenFlow will be necessary, realizing control and data plane splitting 
related to forwarding functionalities.  



	  

At this aim, we realize, in a simulated environment, a first software 
defined deployment of the proposed LTE RAN architecture trough the 
ns-3 simulator. In particular, we configured two different ns-3 modules, 
known in literature as LENA ns-3 LTE Module [19] and the OFSwitch13 
module [20].  

The environment has been implemented on top of a SuperMicro 828-
14 server. We decided to install and configure Ubuntu 16.04.2 LTS 
Xenial Xerus as operating system, in order to respect the requirements 
and the compatibility of the used ns-3 software modules with the specific 
operating system. We decided to assign a public class B IP address to 
permit the remote interconnection with the server and with the aim of 
conducting remote testing sessions. Furthermore, a Virtual Private 
Network has been implemented in order to secure the aforementioned 
remote interconnection through the open-vpn and the easy-rsa packages.  

The ns-3 environment has been installed and configured firstly in a 
virtualized entity and subsequently in a real environment, i.e., the Linux 
Ubuntu 16.04 operating system installed on top of the server. At this aim 
the VirtualBox software tool has been installed to deploy virtual 
machines. On top of these virtual machines the ns-3 environment has 
been deployed. This choice permits us to conduct the installation and 
configuration phases in isolated environments, in order not to cause 
potential issues or instability on top of the operating system of the server.  
Only when a good confidence with the software tools has been achieved 
and the correct functioning of the environments has been proved the 
aforementioned steps have been reproduced on top of the real operating 
system. 
 
 

 



	  

In the next sections a brief description of these software tools is given. 
	  
	  

4.2  ns-3 simulator  
 

The ns-3 simulator is a discrete-event network simulator, targeted 
primarily for research and educational use. ns-3 is free software, licensed 
under the GNU GPLv2 license, and is publicly available for research, 
development, and use.  

The software is written in C++ and Python languages. In this 
simulation environment are defined different types of classes whose 
permit to conduct tests regarding different types of networks (fixed, 
wireless and mobile). 

For our purpose, i.e., the simulation of the LTE architecture, we 
leverage on the LENA ns-3 LTE module. The LENA ns-3 LTE module 
permits to simulate a LTE RAN / LTE-EPC standard architecture.  

In particular, the installation and configuration phases regarded the 
release 3.26 of the ns-3 simulator. The two aforementioned phases have 
been conducted on top of a Linux Ubuntu 16.04 virtual machine, with the 
aim of reproducing later the same procedures in the real operating 
system, as previously underlined. The Fig. 4.1 depicts the LTE-EPC 
simulation model used in ns-3 simulator. The model is composed of two 
different components: 
 

•   the LTE Model, including the LTE Radio Protocol stack (RRC, 
PDCP, RLC, MAC, PHY), exploiting the UE and eNB nodes. 
 

•   the EPC Model, including the network interfaces, protocols and 
entities regarding the core network, exploiting the SGW, PGW, 
MME and the eNB nodes. 



	  

 

	  
Figure 4.1: LTE and EPC models 

 
 
The setup and configuration processes are conducted through the helper 
objects. The main helper objects are related to the two aforementioned 
models. In this line, we can distinguish: 
 

•   the LteHelper object, which permits to configure the LTE radio 
access network entities, and to manage the setup and release of 
EPS bearers. In the LteHelper class both the API definition and 
its implementation are provided. 
 

•   the EpcHelper object, which permits to configure the Evolved 
Packet Core entities. Unlike the LteHelper class, the EpcHelper 
class is an abstract base class, providing only the API definition. 
Thus, the relative implementation is realized through the child 
classes in order to allow for different EPC network models. 



	  

The simulation environment permits to conduct LTE-only 
simulations, if only the LteHelper is used, or complete LTE-EPC 
simulations if both LteHelper and EpcHelper are used. In this case, a 
master-slave relation between the two helper is created. Furthermore, the 
LteHelper acts as the Master that interacting directly with the user 
program, whereas the EpcHelper acts as the slave, configuring the EPC 
models through explicit methods called by LteHelper.  

	  
	  

4.3  OpenFlow 1.3 Module 
 

The OpenFlow 1.3 module, called also OFSwitch13 module, has 
been designed to integrate the updated SDN capabilities in ns-3 
simulator. In fact, in the ns-3 simulator a module supporting the 
OpenFlow functionalities was already implemented, but this module was 
based on a very outdated OpenFlow protocol, the 0.8.9 version (2008). 
Thus, the integration of the OFSwitch13 permitted to use the features of 
the version 1.3 of the OpenFlow protocol, both in terms of switch nodes 
and controller application interface.  

	  

	  
 Figure 4.2: OFSwitch 1.3 Module 



	  

As shown in Fig, 4.2, the OFSwitch13 permits to interconnect the 
ns-3 nodes, orchestrating the network through the controller application 
interface in order to implement the desired control logic. The 
interconnection between the controller and the switch entities is 
conducted through the standard ns-3 protocol stack, devices and 
channels. Furthermore, the external OpenFlow 1.3 Software Switch for 
ns-3 is compiled as a library, the ofsoftswitch13 library, in order to 
implement the switch data path and to make possible the conversion of 
the OpenFlow messages to and from wire format.  

Finally, the dpctl utility tool for configuring the switch from the 
command line is deployed. The source code that permits the 
implementation of the OFSwitch13 module is located in the directory 
src/ofswitch13. The version of the OFSwitch 1.3 used in the testbed is 
the 3.0.0, compatible with the 3.26 version of ns-3. In particular, we 
made these choices because the version 3.0.0 has been developed and 
tested together with ns-3 versions 3.26. 

 
 

 
	  
	  



	  

4.4  Script-based simulations: Fixed networks and 
OFSwitch 1.3 

 
The first objective has been the practical demonstration, for our 

purpose, of an efficient OpenFlow integration in the LTE simulation 
environment in order to prove the SDN capabilities underlined in the 
proposed software defined architecture.  

At this aim, a C++ script has been used to simulate a scenario in 
which two host are interconnected to an OpenFlow switch through a 
CSMA link. The proper functioning of the test is conducted by the ping 
process between the two hosts, passing through the OpenFlow switch. 

It follows a brief description of the used C++ scripts and an 
overview of the first results: 

 
#include	  <ns3/core-‐module.h>	  
#include	  <ns3/network-‐module.h>	  
#include	  <ns3/csma-‐module.h>	  
#include	  <ns3/internet-‐module.h>	  
#include	  <ns3/ofswitch13-‐module.h>	  
#include	  <ns3/internet-‐apps-‐module.h>	  
	  
using	  namespace	  ns3;	  
	  
int	  
main	  (int	  argc,	  char	  *argv[])	  
{	  
//	  Enable	  checksum	  computations	  (required	  by	  OFSwitch13	  module)	  
GlobalValue::Bind("ChecksumEnabled",BooleanValue	  (true));	  
	  
	  
 



	  
In ns-3 it is necessary to define the objects acting as container for the 

nodes of the simulated networks. It is possible through the 
NodeContainer class, which permits to instantiate multiple nodes. The 
nodes have been created through the smart pointer Ptr<Node>. In our 
case, we created two different hosts nodes and an OpenFlow switch 
node: 
 
 
//	  Create	  two	  host	  nodes	  
	  	  	  NodeContainer	  hosts;	  
	  	  	  hosts.Create	  (2);	  
	  
	  	  	  //	  Create	  the	  switch	  node	  
	  	  	  Ptr<Node>	  switchNode	  =	  CreateObject<Node>	  ();	  

 
 

Subsequently, through the use of the helper class CsmaHelper, it has 
been possible to model and to configure the networks. Before the use of 
this helper, it has been necessary to instantiate the objects of the 
NetDeviceContainer class, whose represents an abstraction of the 
network interfaces connecting the nodes. In particular, we created the 
interfaces of the hosts and the switch ports through two different 
NetDeviceContainer objects. In the for loop, through the Install() method 
and the related to the CSMA helper it has been possible to create the 
links between the hosts and the switch.  

 
 
 
 
 



	  
Finally, through the smart pointer Ptr<Node>, the node 

controllerNode has been created. 
 
 

	  	  	  //	  Use	  the	  CsmaHelper	  to	  connect	  the	  host	  nodes	  to	  the	  switch.	  
	  	  	  CsmaHelper	  csmaHelper;	  
	  	  	  NetDeviceContainer	  hostDevices;	  
	  	  	  NetDeviceContainer	  switchPorts;	  
	  
	  	  	  for	  (size_t	  i	  =	  0;	  i	  <	  hosts.GetN	  ();	  i++)	  
	  	  	  {	  
	  	  	  	  	  	  NodeContainer	  pair	  (hosts.Get	  (i),	  switchNode);	  
	  	  	  	  	  	  NetDeviceContainer	  link	  =	  csmaHelper.Install	  (pair);	  
	  	  	  	  	  	  hostDevices.Add	  (link.Get	  (0));	  
	  	  	  	  	  	  switchPorts.Add	  (link.Get	  (1));	  
	  	  	  }	  
	  
	  
	  	  	  //	  Create	  the	  controller	  node	  
	  	  	  Ptr<Node>	  controllerNode	  =	  CreateObject<Node>	  ();	  
 

 
 
 
 
 
 
 
 
 
 
 



	  
The OFSwitch13InternalHelper helper class permits to represent and 

to configure an OpenFlow network domain, installing the controllerNode 
previously created through the InstallController() method. Furthermore, 
this permits to enable the switch node to support the OpenFlow Datapath 
on the relative ports.  

 
//	  Configure	  the	  OpenFlow	  network	  domain	  
	  	  	  Ptr<OFSwitch13InternalHelper>	  of13Helper	  =	  	  	  	  	  	  	  	  	  	  
CreateObject<OFSwitch13InternalHelper>	  ();	  

	  	  	  of13Helper-‐>InstallController	  (controllerNode);	  
	  	  	  of13Helper-‐>InstallSwitch	  (switchNode,	  switchPorts);	  
	  	  	  of13Helper-‐>CreateOpenFlowChannels	  ();	  

 
 

The InternetStackHelper helper permits to create a default TCP/IP 
protocol stack and to install it on the hosts nodes of the network.  
 
	  	  	  //	  Install	  the	  TCP/IP	  stack	  into	  hosts	  nodes	  
	  	  	  InternetStackHelper	  internet;	  
	  	  	  internet.Install	  (hosts);	  

 
 
The definition of the pool of IP addresses and the relative assignment to 
the associate nodes has been possible through Ipv4AddressHelper class. 
 
	  	  	  //	  Set	  IPv4	  host	  addresses	  
	  	  	  Ipv4AddressHelper	  ipv4helpr;	  
	  	  	  Ipv4InterfaceContainer	  hostIpIfaces;	  
	  	  	  ipv4helpr.SetBase	  ("10.1.1.0",	  "255.255.255.0");	  
	  	  	  hostIpIfaces	  =	  ipv4helpr.Assign	  (hostDevices);	  
	  



	  
Among the available Helpers we have chosen to use the 

V4PingHelper, which permits to configure a ping session between two 
hosts. In our case, the packet flow is forwarded by the OpenFlow Switch, 
that is managed by the previously configured controller, managing the 
data path regarding the two hosts.  
 
	  	  	  //	  Configure	  ping	  application	  between	  hosts	  
	  	  	  V4PingHelper	  pingHelper	  =	  V4PingHelper	  (hostIpIfaces.GetAddress	  (1));	  
	  	  	  pingHelper.SetAttribute	  ("Verbose",	  BooleanValue	  (true));	  
	  	  	  ApplicationContainer	  pingApps	  =	  pingHelper.Install	  (hosts.Get	  (0));	  
	  	  	  pingApps.Start	  (Seconds	  (1)); 

 
Finally, through the methods of the Simulator class, we defined the 

duration of the simulation, managing the life cycle of the simulation 
through the Run() and the Destroy() methods. 

 
	  	  //	  Run	  the	  simulation	  
	  	  	  Simulator::Stop	  (Seconds	  (10));	  
	  	  	  Simulator::Run	  ();	  
	  	  	  Simulator::Destroy	  ();	  
}	  

 
This script permits us to demonstrate a proper functioning of the 

OFSwitch 1.3 module in simulation concerning a generic fixed network. 
	  

 
 

	  
	  



	  
	  

4.5  Script-based simulations: LTE networks and 
OFSwitch 1.3 

 
In this section, we prove the proper integration and functioning of 

the OFSwitch 1.3 module in the case of simulation concerning LTE 
networks. The simulation is script-based and the script is similar to the 
one used for the fixed network simulation. For this reason, the overview 
of the script regards only the new entities deployed in the simulation.  

In this case, the script permitted us to run a simulation demonstrating 
the effective connection managed by the configured controller through a 
single Openflow Switch, between a UE and a remote fixed host. 

The first step has been the creation of the LteHelper and of the 
EpcHelper through the relative methods in order to properly create both 
the RAN and the EPC architecture models. 
 
//	  Create	  LTE/EPC	  helper	  	  
	  
Ptr<LteHelper>	  lteHelper	  =	  CreateObject<LteHelper>	  ();	  
Ptr<PointToPointEpcHelper>epcHelper	  =	  
CreateObject<PointToPointEpcHelper>	  ();	  
lteHelper-‐>SetEpcHelper	  (epcHelper);	  

	  
 
 
 
 
 
 
 



	  
The second step has been the creation of the remotehost node 

through the relative container, installing the internet protocol stack. 
	  
//	  Create	  a	  single	  RemoteHost	  	  
	  NodeContainer	  remoteHostContainer;	  
	  remoteHostContainer.Create	  ();	  
	  Ptr<Node>	  remoteHost	  =	  remoteHostContainer.Get	  (0);	  
	  InternetStackHelper	  internet;	  
	  internet.Install	  (remoteHostContainer);	  

 
 

Then through the relative NodeContainer and the method the node 
for the Openflow switch is created. 
	  
	  
//	  Create	  switch	  nodes	  	  
	  NodeContainer	  switches;	  
	  switches.Create	  (1);	  	  
	  

	  
The following lines permitted us to create, through the appropriate 

NodeContainer, the nodes for the UE and for the enb. 
	  
//	  Create	  ueNodes/enbNodes	  
	  NodeContainer	  ueNodes;	  
	  NodeContainer	  enbNodes;	  
	  enbNodes.Create	  ();	  
	  ueNodes.Create	  ();	  

 
 
 
 



	  
The creation of the nodes for the controller and for the pgw have 

been realized through the smart pointer Ptr<Node>. 
	  

//	  Create	  the	  controller	  node	  	  
	  Ptr<Node>	  controllerNode	  =	  CreateObject<Node>	  ();	  
	  	  	  
	  	  //	  Create	  the	  pgw	  node	  	  
	  	  Ptr<Node>	  pgw	  =	  epcHelper-‐>GetPgwNode	  ();	  
	  

The following lines permitted us to realize the configuration of the 
Internet connection through the PointToPointHelper, setting different 
values.  
	  
	  	  //	  Create	  the	  Internet	  	  
	  	  PointToPointHelper	  p2ph;	  
	  	  p2ph.SetDeviceAttribute	  ("DataRate",	  DataRateValue	  
(DataRate	  ("100Gb/s")));	  
	  	  p2ph.SetDeviceAttribute	  ("Mtu",	  UintegerValue	  (1500));	  
	  	  p2ph.SetChannelAttribute	  ("Delay",	  TimeValue	  (Seconds	  
(0.010)));	  

	  
	  

The following lines configures the interconnection between the fixed 
remote host and the pgw, setting the chosen ip address pools. 
	  
	  	  NetDeviceContainer	  internetDevices	  =	  p2ph.Install	  (pgw,	  
remoteHost);	  
	  	  Ipv4AddressHelper	  ipv4h;	  
	  	  ipv4h.SetBase	  ("1.0.0.0",	  "255.0.0.0");	  
	  	  Ipv4InterfaceContainer	  internetIpIfaces	  =	  ipv4h.Assign	  
(internetDevices);	  
	  	  Ipv4Address	  remoteHostAddr	  =	  internetIpIfaces.GetAddress	  ();	  



	  
	  	  Ipv4StaticRoutingHelper	  ipv4RoutingHelper;	  
	  	  Ptr<Ipv4StaticRouting>	  remoteHostStaticRouting=	  	  	  	  
ipv4RoutingHelper.GetStaticRouting	  (remoteHost-‐
>GetObject<Ipv4>	  ());	  
	  	  remoteHostStaticRouting-‐>AddNetworkRouteTo	  (Ipv4Address	  
("7.0.0.0"),	  Ipv4Mask	  ("255.0.0.0"),	  1);	  	  	  
	  remoteHostStaticRouting-‐>SetDefaultRoute	  (Ipv4Address	  
("10.0.0.5"),	  1);	  
	  
	  

Through the mobilityHelper it has been possible to configure the 
mobility model of the nodes involved in the simulation. In our case, we 
decided to implement a constant position mobility model, i.e., all the 
nodes persist in the same position during the simulation.  
	  
//	  Install	  Mobility	  Model	  	  
MobilityHelper	  mobility;	  
	  	  
mobility.SetMobilityModel("ns3::ConstantPositionMobilityMod
el");	  
	  	  mobility.Install(enbNodes);	  
	  	  mobility.Install(ueNodes);	  
	  	  mobility.Install(remoteHostContainer);	  	  
	  	  mobility.Install(switches);	  
	  	  mobility.Install(controllerNode);	  
	  	  mobility.Install(pgw);	  
	  	  	  
	  	  

We created the devices on top of previously created nodes, and we 
configured the mac scheduler, in this case a proportional fair MAC 
scheduler. 

	  



	  
	  //	  Create	  Devices	  and	  install	  them	  in	  the	  Nodes	  	  
	  (eNB	  and	  UE)	  	  
NetDeviceContainer	  enbDevs	  =	  lteHelper-‐>InstallEnbDevice	  
(enbNodes);	  
	  	  NetDeviceContainer	  ueDevs	  =	  lteHelper-‐>InstallUeDevice	  
(ueNodes);	  
	  	  //	  Default	  scheduler	  is	  PF,	  uncomment	  to	  use	  RR	  
	  	  //lteHelper-‐>SetSchedulerType	  ("ns3::RrFfMacScheduler");	  
	  
	  

The following permits to install the IP stack on top of the UE 
devices, to set the relative interfaces and to assign to each UE device one 
IP address from those previously specified. Finally, the default gateway 
for the UEs is configured.  
 
	  //	  Install	  the	  IP	  stack	  on	  the	  UEs	   
	  
internet.Install	  (ueNodes);	  
	  Ipv4InterfaceContainer	  ueIpIface	  =	  epcHelper-‐
>AssignUeIpv4Address	  (NetDeviceContainer	  (ueDevs));	  
	  	  	  
	  	  //	  Assign	  IP	  address	  to	  UEs,	  and	  install	  applications	  
	  	  for	  (uint32_t	  u	  =	  0;	  u	  <	  ueNodes.GetN	  ();	  ++u)	  
	  	  	  	  {	  
	  	  	  	  	  	  Ptr<Node>	  ueNode	  =	  ueNodes.Get	  (u);	  

	  
	  	  	  	  	  	  //	  Set	  the	  default	  gateway	  for	  the	  UE	  
	  	  	  	  	  	  Ptr<Ipv4StaticRouting>	  ueStaticRouting	  =	  
ipv4RoutingHelper.GetStaticRouting	  (ueNode-‐
>GetObject<Ipv4>	  ());	  
	  	  	  	  	  	  ueStaticRouting-‐>SetDefaultRoute	  (epcHelper-‐
>GetUeDefaultGatewayAddress	  (),	  1);	  
	  	  	  	  }	  	  



	  
	  

The next lines are necessary to set the attach of the specified UE to 
the chosen enb. 
	  
//	  Attach	  one	  UE	  per	  eNodeB	  	  
	  	  for	  (uint16_t	  i	  =	  0;	  i	  <	  numberOfNodes;	  i++)	  
	  	  	  	  	  	  {	  
	  	  	  	  	  	  	  	  lteHelper-‐>Attach	  (ueDevs.Get(i),	  enbDevs.Get(0));	  
	  	  	  	  	  	  }	  
	  	  	  
	  

These lines are used to configure the application that causes the 
traffic generation and the relative intercommunication between the Ue 
node and the remote host node, specifying the necessary parameters. 

	  
//	  Configure	  applications	  to	  generate	  traffic	  
UdpEchoServerHelper	  echoServer	  (9);	   	  
ApplicationContainer	  serverApps	  =	  echoServer.Install	  
(remoteHost1);	   	   	   	  	  	  
	  serverApps.Start	  (Seconds	  (1.0));	  
	  serverApps.Stop	  (Seconds	  (20.0));	  
UdpEchoClientHelper	  echoClient	  (remoteHostAddr1,	  9);	  	  
echoClient.SetAttribute	  ("MaxPackets",	  UintegerValue	  (5));	  
echoClient.SetAttribute	  ("Interval",	  TimeValue	  (Seconds	  (1.0)));	  
	  echoClient.SetAttribute	  ("PacketSize",	  UintegerValue	  (512));	  
ApplicationContainer	  clientApps	  =	  echoClient.Install	  
(ueNodes.Get(0));	   	  
clientApps.Start	  (Seconds	  (2.0));	  
clientApps.Stop	  (Seconds	  (20.0));	  
serverApps.Start	  (Seconds	  (2));	  
clientApps.Start	  (Seconds	  (4));	  
	  
	  



	  
Finally, the simulation is configured and the NetAnim tool is used in 
order to visualize the different information during the execution of the 
simulation. The NetAnim tool is an offline animator based on the Qt 
toolkit. Through this tool, we animated the simulation using the XML 
trace file collected during simulation. Furthermore, the following lines 
permit to set the necessary parameters in order to visualize the node 
position statistics with node trajectory plotting (path of a mobile node), 
and to show IP and MAC information, including peer IP and MAC for 
point-to-point links. 
	  
//	  Run	  the	  simulation	  
	  
Simulator::Stop(Seconds(simTime));	  
	  
ns3::AnimationInterface	  anim	  (animFile);	  
anim.SetConstantPosition(ueNodes.Get(0),	  10.0,	  20.0);	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  anim.UpdateNodeDescription(ueNodes.Get(0),	  "Ue0");	  
anim.SetConstantPosition	  (enbNodes.Get(0),	  10.0,	  30.0);	  
anim.UpdateNodeDescription(enbNodes.Get(0),	  "EnodeB	  0");	  
anim.SetConstantPosition	  (switches.Get(0),	  20.0,	  20.0);	  
anim.UpdateNodeDescription(switches.Get(0),	  "Switch");	  
anim.SetConstantPosition	  (controllerNode,	  30.0,	  20.0);	  
anim.UpdateNodeDescription(controllerNode,	  "Controller");	  
anim.SetConstantPosition	  (remoteHostContainer.Get(0),	  40.0,	  
40.0);	  
anim.UpdateNodeDescription(remoteHostContainer.Get(0),	  
"Remote	  Host	  0");	  
anim.SetConstantPosition	  (pgw,	  30.0,	  30.0);	  
anim.UpdateNodeDescription(pgw,	  "P-‐GW");	  
Simulator::Run();	  
Simulator::Destroy();	  
}	  	  



	  

4.6  Results and considerations 
 

As can be seen in Fig. 4.3, the build and compile processes related to 
the C++ script described in the previous section have been successfully 
executed. Furthermore, after the run process, thanks to the NetAnim tool, 
we visualized the configured positions of all the specified nodes. As set 
in the script, the simulation generated six different nodes: the UE, the 
OpenFlow Switch, the controller, the P-GW, the enb and the remote host. 
 

 
 Figure 4.3: ns-3 simulations, node positons  

 
 

The Fig.4.4 shows the proper communication between the Ue and 
the remote host. The relative packets exchange flows through the 
OpenFlow switch and it is managed by the configured controller.   
 



	  

	  
 Figure 4.4: ns-3 simulations, node interactions  

 
 

The considerations based this first version of the testbed, based on 
the ns-3 simulator are this simulation environment permitted us, through 
the execution of the two aforementioned C++ scripts, to test a proper use, 
for our objectives, of the OpenFlow protocol when it is embedded in a 
mobile network context. It has been possible thanks to the configuration 
work conducted in order to properly use ns-3 and the OFSwitch 1.3 
module. Despite these positive aspects, the use of ns-3 simulator and the 
OFSwitch 1.3 module, permitted us only to prove a proper integration of 
the OpenFlow protocol in its nature context, i.e. the wired side of the 
mobile networks. Thus, utilizing a testbed based on these tools it has not 
been possible to prove the remaining innovative aspects of the proposed 
software defined architecture. In order to prove these concepts in a 
wireless/mobile context we have decided to base our testbed on another 
solution, exploiting other types of software tools.  
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5   MOSAIC5G RESEARCH PROJECT 
 
 
 
 
 

5.1   MOTIVATIONS 
	  
	  
	  
	  

In order to overcome the negative aspects of the ns-3 based testbed, 
with the aim of implementing an emulated environment, closer to the real 
networks than the ns-3 environment, that permits to deploy only a 
simulated environment, we decided to design and to implement a new 
flexible SDN/NFV-based SON testbed for future 5G mobile networks 
based on distinct software tools. The main contribute of our work is to 
cover the need for a SDN/NFV-based testbed, enabling the investigation 
of the potential of these paradigms for practical implementations. The 
research project related to my PhD has been conducted in the context of 
an international academic collaboration between the University of 
Glasgow and the University of Catania.  

I have technically coordinated this research activity and the relative 
participation of our team, in representation of the University of 

Catania, to the “Mosaic5G” research project, as contributor member. 
 



	  

5.2  Mosaic5G  
	  

As specified in [21], the Mosaic5G initiative is created in order to 
provide an open, flexible and agile 4G/5G experimentation platform. The 
main objective is to share an ecosystem of open-source platforms and use 
cases for 5G system research exploiting SDN, NFV and MEC as key 
technology enablers. Mosaic-5G Ecosystem consists of the following 
elements: 
 

•   OpenAirInterface (OAI) [22], composed of OAI-RAN and 
OAI-CN as 3GPP compatible implementations of a subset of 
RAN (Release 14) and CN (Release 12) features, respectively.  

 
•   FlexRAN [23], as a flexible and programmable platform 

developed to implement the SDN concepts at the RAN domain, 
enabling a SD-RAN. 

 
•   JOX is an event-driven Juju-based service orchestrator core with 

several plugins to interact with different network domains, e.g., 
RAN and CN. 

 
•   Store includes a constellation of platform packages, software 

development kits, network control applications and datasets. 
 

•   LL-MEC is an ETSI-aligned MEC platform that can act as a 
software-defined core network controller. 

 
  



	  
	  

 
 

 
 Figure 5.1: MOSAIC5G platform 

 
In the research activity only OpenAirInterface RAN, 

OpenAirInterface CN and FlexRAN controller entities are used, so in the 
next section only these will be described in details. 
 
 

5.3  OpenAirInterface 
 

As described in [22] OpenAirInterface is an open experimentation 
and prototyping platform created by the Mobile Communications 
Department at EURECOM to enable innovation in the area of 
mobile/wireless networking and communications, as an open-source 
software-based implementation of the 3GPP LTE protocol stack. As 
stated in the previous section, the specific release referenced by the 
research activity is the LTE Release 14 (OAI RAN), because actually a 



	  

full 5G release of the platform is still under development. Since 2018, it 
has been included in the Mosaic5G initiative. 
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 Figure 5.2: OpenAirInterface LTE entities 

 
 

The RAN and CORE sides of the 3GPP protocol stack are developed 
through two different branches: 
 

•   openairinterface5g as a software implementation of the RAN 
side. 
 

•   openair-cn as a software implementation of the EPC side. 
 

In order to realize a better comprehension of the functionalities 
created by leveraging on these software platforms, it is very useful to 
have a brief overview of Network Elements and Source Code 
architecture of OpenAirInterface. Indeed, specific OAI files and 
functions have been identified, properly editing the related code in order 
to achieve the research objectives, as will be described in the next 
chapters. 
 



	  

 
 

Different deployment scenarios can be considered with the 
EURECOM eNB and UE as follows:  
 

•   Commercial UE    <-> OAI eNB + Commercial EPC 
•   Commercial UE <-> OAI eNB + OAI EPC  
•   Commercial UE <-> Commercial eNB + OAI EPC  
•   OAI UE <-> Commercial eNB + OAI EPC (experimental) 
•   OAI UE <-> Commercial eNB + EPC (experimental) 
•   OAI UE <-> OAI eNB + Commercial EPC (experimental) 
•   OAI UE <-> OAI eNB + OAI EPC 
•   OAI UE <-> OAI eNB 

 
In particular, each entity can be deployed on the same host, in an all-

in-one deployment, or in a dedicated host. As regards, the code, each 
repository is available through two different branches, the Master Branch 
and Develop Branch. The develop branch is used to prove the stability of 
the new features, which after are embedded in the develop branch. These 
two branches are the main ones, but several additional branches called 
tags are available and permits to test specific use cases or research 
aspects. The OAI source code in a release directory or in the trunk 
directory is organized as follows: 
 

•   cmake_targets, Openair build system (latest) 
•   common, Common code to all layers 
•   openair1, Physical layer source code  
•   openair2, Layer 2 (MAC, RLC, RRC, PDCP) source code 



	  

•   openair3, Middleware code (mainly unused) 
•   targets, Specific code for executables  

 
The OAI code needs a powerful x86 system to be properly executed. 

The following are the requirements regarding the type of supported CPU: 
 

•   Intel Core i5, i7 Generation 3/4/5/6  
•   Intel Xeon  
•   Intel Atom  
•   At least 4 cores > 3GHz 

 
In order to realize the RF layers’ functionalities, it is necessary to 

connect via a wired link these systems to a Software Defined Radio 
(SDR) platform. SDR is a radio communication system which permits to 
execute in a software fashion (on top of the systems), traditionally 
implemented in hardware (e.g. mixers, filters, amplifiers, 
modulators/demodulators, detectors, etc.). Only a subset of the available 
SDR platforms are compatible with the OAI platform, others are still 
under testing:  
 

•   ExpressMIMO2  
•   USRP B2xx, X300 and X310 
•   Blade RF  
•   LMS-SDR  
•   Sidekiq (experimental)  

 
In particular, during the research activity the USRP PC-hosted 

software radio platforms B2xx and X310 have been used, based on the 
USRP Hardware Driver software (UHD).  



	  

 
 

In addition to the real-time mode exploiting the aforementioned SDR 
platforms, the full protocol stack can be executed in the emulation mode 
for validation and performance evaluation from both system and link 
level perspectives. The emulation mode capability is developed in order 
to properly reproduce the behavior of the wireless access technology in a 
real network setting while respecting the temporal frame timing of the 
air-interface. In particular, two distinct emulation modes are available:  
 

•   PHY Abstraction mode: This mode leverages on the PHY 
abstraction unit which simulates error events in the channel 
decoder;  
 

•   Full PHY Layer mode:  This is a more detailed and 
computationally intensive mode, which exploits convolution of 
the real PHY signal with an emulated channel in real-time.  
 

The emulator permits to exploit the available the 3GPP channel 
models, with specific path loss, shadow fading and stochastic small scale 
fading parameters. The emulation modes can be a proper way of testing 
of new functionalities prior to its deployment in real RF environment 
exploiting the SDR platforms. Thanks to these features OAI is a more 
suitable solution compared to system-level simulations through, e.g., 
MATLAB, which are based on analytical approach with no notion of 
time. Discrete-event simulator as ns-3 models the protocol layers 
abstracting them or executes the relative functionalities in an abstracted 
mode, whereas the OAI implements the full protocol stack to run on a 
real execution environment respecting frame timing constraints. These 



	  

aspects permit to OAI to be a more realistic platform (even in emulation 
mode) compared to the aforementioned alternatives.  

These are the positive aspects and the reasons that pushed us to use 
the OpenAirInterface platform instead of the ns-3 simulator. 
 
 

5.4  FlexRAN 
 

In order to implement the Control Data Separation concept in our 
proposed architecture, we have exploited the FlexRAN software 
platform. In fact, as previously exposed, our proposal envisages a 
centralized entity that is in charge of managing various control decisions 
related to a set of cells. The FlexRAN platform is designed to accomplish 
these requirements, as an open-source SD-RAN platform able to flexibly 
separate control and user plane operations. Furthermore, due to its 
specific design it permits to centralize RAN domain control logics 
among multiple base stations (either monolithic or disaggregated RAN) 
or to delegate control decisions in a distributed fashion.  

In this line, FlexRAN allows to exploit different control functions in 
a hierarchical control framework performing a “real-time” monitoring, 
control delegation and reconfiguration in the RAN domain. The 
FlexRAN software platform is a good solution thanks to peculiar 
characteristics as flexibility and programmability. These features enable 
a productive deployment of different types of functionalities. Finally, its 
open source nature permits to edit the code and create new 
functionalities.  
 



	  

 
Figure 5.3: FlexRAN  

 
 
As shown in Fig. 5.3, the two main entities composing the FlexRAN 
software platform are: 
 

•   FlexRAN Master Controller, enabling coordinated control over 
multiple RANs, providing high/low-level primitives and 
provision SDKs for control application. 
  

•   FlexRAN Agent, acting as a local control entity, virtualizing the 
underlying RAN radio resources, and enabling distributed control 
applications.  

 
Control plane is composed of a Master Controller connected to a 

number of FlexRAN Agents, one for each eNodeB. Control and data 
plane separation is provided by the FlexRan Agent API, which act as the 
southbound API with FlexRAN control plane on one side and eNodeB. 



	  

Thanks to this architecture, FlexRAN can support various slice 
requirements (e.g., isolation) and also improve multiplexing benefits 
(e.g., sharing) in terms of radio resource abstractions. The 
communication between the FlexRAN Master Controller and the 
FlexRAN Agent is performed through the FlexRAN protocol, a protocol 
a la OpenFlow, providing capabilities as statistics, reconfiguration, 
triggering of events and control delegation. FlexRAN software platform 
is strictly related to the OpenAirInteface software platform. In fact, it is 
born as an extension to a modified version of the OpenAirInterface 
platform. 
 
  
 
 
 
 
 
 
  

	  
	  
	  
	  
	  
	  

 
 

 
Figure 5.4: FlexRAN entities 

 



	  

 
 

FlexRAN Master controller leverages on the RIB (RAN Information 
Base), a database storing the statistics and configuration regarding UEs, 
eNodeBs and the relative FlexRAN agents, to manage the Network. In 
particular, the RIB is structured as a forest graph. The root note of each 
tree is an Agent and the nodes of the second level are the cells associated 
with a specific agent. Leaves are UEs associated to a specific cell. Each 
RIB modification is managed by the RIB updater. More specifically, the 
applications are not allowed to modify the RIB but send information 
about modifications to the agents through the northbound interface. 
Modifications are delivered back to the Master through the Statistics 
reports and event notifications sent by the agent. 
 

 
Figure 5.5: FlexRAN VSFs 

 



	  

 
FlexRAN Agent provides a number of eNodeB Control Modules, 

e.g., the RRC Control Module for the Radio Resource Management and 
the RLC/MAC Control Module for scheduling. Each Control Module is 
executed by one or more Virtual Subsystem Function (implemented in 
C), for the actual action of the specific functionality performed by the 
Agent. The Number and Type of VSFs per each control module is 
defined through a CMI (Control Module Interface). CMI is placed at 
higher level, allowing the Agent to abstract the set of operations of the 
Control Module. It is worth noting that new operations can be introduced 
by extending the Control Module Interface. In order to reduce signalling 
overhead, Master is able to decide to perform Control Delegation 
functionalities (FlexRAN Agent Management module). This can be a 
very useful (and sometimes essential) solution when considering 
centralized time-critical applications (for example remote scheduling of 
more eNodeBs). Indeed, when operations require low-latency decision-
making, Master Controller could be not quite fast enough. Consequently, 
individual agents get the delegation for time critical decision. 

Finally, as said Master and Agent sides interact each other through 
the FlexRAN Protocol and more specifically through FlexRAN protocol 
messages. A message handler and dispatcher entity residing at the agent 
side is responsible to receive FlexRAN protocol messages from the 
FlexRAN master controller and forward them to be handled by the 
appropriate VSF of the corresponding control module, using the 
FlexRAN Agent API. TCP is used for the communication of the agents 
with the master and the exchange of protocol messages.



	  

	  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



	  

                                                                                                                                                                   
CHAPTER 

                                                                        SIX 
 
 

6   OPENAIRINTERFACE/FLEXRAN  
BASED TESTBED 

 
 
 
 
 

6.1   MOTIVATIONS 
 

As underlined in [24], the enabling aspects of the envisioned 5G 
RAN architecture will be the Network Function Virtualization (NFV) 
paradigm and the control plane/data plane (CP/DP) splitting concept. The 
CP/DP splitting is explicated through the Control Data Separated 
Architecture (CDSA) in the RAN context and the SDN paradigm in the 
core network context. CDSA is considered a necessary step towards the 
developing of the fifth generation of mobile networks. CDSA approach 
allows a logical separation between signaling and data traffic in RAN, 
also guaranteeing traffic off-loading. 
 



	  

 
Figure 6.1: CDSA 

 
 
As shown in Fig. 6.1, Macro cells, also known as Control Base Stations 
(CBSs) are required to provide the control plane (signaling traffic), while 
Small cells, also known as Data Base Stations (DBSs), take care of data 
transmission. CBSs are conceived to provide continuous and reliable 
coverage at low frequency bands, while DBSs offer high data rate traffic 
by using higher frequency bands. Thus, the CDSA offers several 
advantages, e.g., improved energy efficiency, signaling efficiency, and 
mobility management. A further aspect which will play an integral role 
in future mobile networks is the SON concept. As underlined in [25], 
concerning the previous generations of mobile networks, the SON 
concept was introduced to automate the Operation and Maintenance 
(O&M) processes in order to improve network efficiency and 
performance. As regards 5G mobile networks, the SON concept will 
cover not only the O&M context, but a set of different aspects. Thus, it is 
required an optimization of the original view, leading to a so-called Next 



	  

Generation-SON (NG-SON). NG-SON will permit to achieve a full 
awareness of the current RAN and core network status, enabling a proper 
management through the determination of optimal network parameter 
values, thus minimizing the human intervention. 

As regards the small cells, the SCF has already predicted that there 
would be tens of millions of new SC deployed around within next couple 
of years [26], so centralized and complex methods would be no more 
feasible to implement. Thus, it will be necessary to choose appropriately 
the degree of centralization in terms of control plane functionalities and 
NGSON capabilities, depending on the considered scenario. SDN, NFV 
and NG-SON are considered the enabling technologies to achieve these 
goals.  
 
 

6.2   OpenAirInterface/FlexRAN 
based testbed 

 
 

As regards CDSA and SON, in literature most of the works that 
explore these concepts are based on simulations, which cannot model all 
the peculiarities of real networks such as signaling delays, effect of 
implementation and measurement inaccuracies, and delays in channel 
and measurement reports. At the best of our knowledge, one of the few 
works which considers a CDSA testbed is [27], where the authors 
validate their spectrum management application.  

Following the above assumptions, in order to deploy a flexible, 
programmable and virtualized RAN, we design a second implementation 
of our testbed, based on our proposed hierarchical layered software 
defined architecture, aiming to provide new features that facilitate 



	  

SDN/NFV integration in future mobile networks. 
The main contribute of our work is to cover the need for a CDSA 

based testbed, enabling the investigation of the NG-SON capabilities for 
practical implementations. The SDN Controller logical area, the NFV 
Orchestrator logical area and the Resource Management Controller 
logical area functionalities, proposed in our SDN/NV C-RAN 
architecture, can be considered as perfect examples of NG-SON 
capabilities. 

We deploy these NG-SON capabilities through OpenAirInterface 
and FlexRAN, because after an in-depth understanding of the inherent 
features of these software tools, we realized that these features would 
have enabled us to implement in a SDN/NFV based real-time testbed the 
designed logical areas. 

In particular, in the following we describe two implemented use 
cases, presented in two different papers, regarding features of the NFV 
Orchestrator logical area and the Resource Management Controller 
logical area functionalities. An implementation of the functionalities 
related to the SDN Controller logical area, based on the 
OpenAirInterface and FlexRAN software tools, is a work in progress and 
is described in the next chapter. 

Furthermore, aside from the implementation of these proposed 
functionalities, the testbed aims to address certain open research 
problems, e.g., optimal location of the DBSs when the static 3D channel 
mapping of the environment is available, DBS switching on/off for 
energy saving and impact of user and traffic distribution on specific 
KPIs. We focus our proposal on two experimental setups, a real one and 
a virtualized one, both based on the FlexRAN and OpenAirInterface 
software tools.  

 



	  

The first Testbed in Catania (TestbedCT), based on Network 
Function Virtualization to set-up an entirely emulated environment. A 
subsequent Testbed in Glasgow (TestbedGLA), as a real environment 
deployment, using SDRs and real user equipments.  Both the testbed 
deployments enable novel research and provides teaching opportunities 
in next generation RAN architectures and several other areas of system-
level research. Furthermore, they act as benchmark for many use cases 
with a significant proximity to real network deployment criticalities.   
 

6.2.1   Virtualized testbed 
 

The virtualized setup runs on the 5G-SDN/NFV testbed at the 
University of Catania and is performed through virtualized entities. In 
particular, the FlexRAN controller entity, as for the OAI entities, are 
deployed trough the virtual machine (VM) technology. In particular, as 
shown in Fig. 6.2, we deploy the OAI and FlexRAN entities each one on 
a dedicated VM.  
 

 
Figure 6.2: Virtualized Testbed 

 



	  

 
The deployment can be performed by changing the considered 

parameters in terms of Operating system, kernel version, vCPU and 
vRAM. In particular, as regards the releases for each involved entity, we 
utilize OAI RAN tag 2018.w41 (with agent support), OAI CN v 0.5 and 
FlexRAN Real Time Controller v2.0. The wireless medium is obtained 
using PHY abstraction unit feature of OAI, causing the emulation of the 
RAN, RFs and UEs entities. As regards the hardware machines the 
Testbed exploit one SuperMicro Server Intel Xeon CPU E5-4610 v2 @ 
2.30GHz, RAM 256 GB. 

 

6.2.2   Real testbed 
 

The real setup runs on the 5G-SON testbed at the University of 
Glasgow. As shown in Fig. 6.3, the real testbed is performed through 
servers and real RF, i.e., Software Defined Radio (SDR) Platforms.  As 
regards the hardware machines the Testbed is composed of: 
 

•   one Mini PC Kit NUC7i7 DNHE, for OAI RAN 2018.w36 tag 
•   one Intel Server System R1304SPOSHBNR Intel Xeon E3-1220 

v6 Quad-core @3 GHz, for OAI Core Network v.0.5 
•   one Tower Desktop with the same processor model as the Server 

machine, for FlexRAN Controller v 2.0 
•   Universal Software Radio Peripheral (USRP) B205mini for small 

cell acting as RF, connected to the RAN machine through a USB 
3.0 connection 

•   USRP X310 for macrocell, acting as RF. The X310 could be 
connected to a different RAN machine through a 10Gigabit 
Ethernet connection with SFP+ termination 



	  

 
The said machines are connected each other to a Netgear Prosafe 

XS716E 10Gigabit switch, with 10Gigabit Ethernet cables. The 
University holds an experimental license in the Band 7 frequency range. 
The UE is performed with two different solutions, a COTS phone and a 
USB dongle. In the COTS phone case, we exploit a real smartphone as 
UE, properly programmed the USIM, in order to be able to perform the 
attach to the network triggered with the OAI emulation platform. In the 
USB dongle, we deploy the UE through a NUC mini-pc, connecting it to 
a USB dongle, with a properly programmed embedded USIM performing 
the UE. 

 
Figure 6.3: Real Testbed 

 
 
 
 
 



	  

6.3  First case study: RAN entities   life-cycle 
management  

 
 

In this paper, first we describe the implementation of a specific case 
study, i.e., the RAN entities activation/deactivation procedures. We 
consider three steps.  

First, we create an application, in order to dynamically trigger the 
instantiation of a base station in terms of virtualized or real entities. 
Second, editing the native code, we implement specific commands, 
running on top of FlexRAN/OpenAirInterface, to dynamically manage 
the RAN entities life-cycle. Finally, we performed time measurements, 
concerning the RAN entities activation/deactivation procedures, to prove 
the proper Testbed functioning. 
 
 

6.3.1   The application 
	  
	  

The application is designed on the basis of the native 
FlexRAN/OpenAirInterface instructions. As shown in Fig. 6.4, after the 
initialization step, properly issuing the specified instructions as input 
parameters, the application is able to dynamically trigger the creation of 
RAN and core network entities, exploiting the output parameters 
computed in the computation step. The instantiation, depending on the 
considered testbed setup, can be executed by the creation of the related 
real or virtualized entities. So, the specific instructions issued in the 
computation and the creation steps are strictly related to the specific 
testbed setup.  
 



	  

 
Figure 6.4: Flowchart 

	  
	  

Generically, the OAI instruction which permits to trigger the 
instantiation of a base station is: 
 
sudo -E ./lte-softmodem -O 
/home/user/openairinterface5g/targets/ 
PROJECT/GENERIC-LTE_EPC/CONF/file.conf 
 

In the performance evaluations section, we will contextualize the 
specific instructions issued in the computation and creation steps. 
 
 
 
 



	  

6.3.2   Start and stop commands 
 

In order to dynamically issue through the application, the activation 
and the deactivation of a given base station, we exploit a native 
FlexRAN/OpenAirInterface command and its related API endpoint, 
properly editing it to perform the considered tasks. In the vanilla 
FlexRAN/OpenAirInterface code, the so-called Cell Reconfiguration 
command permits to change the cell configuration of the specified base 
station. The issue of this command causes the so-called soft-restart of the 
base station. The soft-restart is intended as the restart of the L1/L2/L3 
protocol stack layers. The cell reconfiguration command is performed 
through a command like: 
 
curl -X POST http://FLEXRAN-URL:PORT 
/conf/enb/:id? --data-binary "@file.json" 
 

The parameters which can be modified are specified in “file.json” 
file. At the time of writing it is possible to change the associated value 
only for these parameters: dlBandwidth, ulBandwidth, dlFreq, ulFreq end 
eutraBand. The file has the following format: 
 
“dlBandwidth” : value , 
“ ulBandwidth” : value , 
“dlFreq” : value , 
“ulFreq” : value , 
“eutraBand” : value 
 

The design of the application and the command leverages on an 
appropriate code editing conducted thanks to a in depth understanding of 



	  

the FlexRAN/OpenAirInterface files and functions involved in the cell 
reconfiguration command workflow. 
 

 
	  

Figure 6.5: Command workflow 
	  
	  

 
As shown in Fig. 6.5, the command, issued through the command 

line, causes the creation of the enb-config-reply message. This message 
is managed by the agent through the flexran-agent-handle-enb-config-
reply function defined in the flexran-agent-common.c. This function has 
a double task. In particular, checking the message type field, if the 
specific message is a enb-reconfiguration-message it is charge to call the 
initiate-soft-restart function, which is defined in the flexran-agent-
common-internal.c. This function has the scope of setting the values 
specified in the json file for the given parameters. Furthermore, it 
performs a check in order to accept only the allowed values. The 
effective restart of the base station is performed through the stop-L1L2 
and the restart-L1L2 functions defined in the lte-softmodem.c.  



	  

The functions perform respectively the stop and the restart of a given 
base stations by deactivating and reactivating the L1/L2/L3 protocol 
stack layers. The interconnection with the core network and FlexRAN 
controller entities are not interested by the procedure. This is the reason 
for naming this procedure softrestart. Finally, the handle-reconfiguration 
function, which is defined in the enb-app.c checks the correctness of the 
cell reconfiguration procedure. 

Considering the native soft-restart as the track command, our 
contribution comes with the creation of three different commands: stop, 
start and Stop&Restart. The stop command permits to stop a given base 
station specifying its agent id. In a dual way, the start command triggers 
the start of a particular base station given the specific agent id. Finally, 
the Stop&Restart command, as a mix of the two aforementioned 
commands, permits to dynamically control the life-cycle of a given base 
station. More specifically, the start and the stop commands have been 
implemented by isolating the related code entities and by disabling them.  

In order to realize the stop command, the start related code entities 
have been disabled, whereas the stop part of the code is disabled for the 
start command. The in depth understanding of the considered 
FlexRAN/OpenAirInterface code permits us to implement a more 
complex command, the Stop&Restart command.  
By editing the related code, we implement a dynamic control of the state 
of the base station. In particular, we can manage the life-cycle of the base 
station in terms of activation and de-activation time, respectively called 
Ton and Toff. 

Furthermore, we can manage the activation/deactivation of a specific 
base station performing, at the end of the Ton time interval, a check 
regarding the attached UEs. If one or more UEs are attached, in order not 
to cause a discontinuity of the service for the considered UEs, the base 



	  

station is maintained active. If no UE is attached we can decide to 
deactivated the base station or let it in the active state. 
 
 

 
Figure 6.6: Stop&Restart 

 
The Fig. 6.6 shows an example of a specific execution of the 

Stop&Restart command. By changing the considered values, we are able 
to manage the life-cycle of the base station. In this particular case, Toff is 
set to 60 seconds and Ton to 120 seconds. 
 

6.3.3   Timing evaluations 
 

In order to prove the effectiveness of our proposal, we conduct 
timing evaluations, concerning the RAN entities activation/deactivation 
procedures, both on the real and the virtualized testbed. In the case of the 
real testbed setup, the deployment computation step for a base station is 
performed through the issue of the following instruction: 
 
sudo -E ./lte-softmodem -O 
/home/user/openairinterface5g/targets/ 
PROJECT/GENERIC-LTE_EPC/CONF/ 
enb.band7.tm1.50PRB.usrpb205.conf 
 



	  

The lte-softmodem is the software process which permits to perform 
all the functionalities related to the considered protocol stack concerning 
the base station. The lte-uesoftmodem is the counterpart concerning the 
UE. The issue of this command permits us to deploy a base station 
performing the RF through an USRP b205-mini, exploiting the 
transmission mode 1, 50 physical resource blocks (PRBs) and band 7 
working mode. As regards the real testbed setup, the lte-uesoftmodem 
process is automatically triggered by in the case of the USB dongle, 
whereas it is not needed in the case of the COTS phone. 

In the case of the virtualized setup, the deployment computation step 
for a base station is performed through the issue of two different 
instructions, one for the RAN entity and one for the emulated UE.  

More specifically these two instructions, respectively for the RAN 
entity and the UE entity, are: 

 
sudo -E ./lte-softmodem O 
/oai-ran/targets/PROJECTS/PROJECTS/ 
GENERIC-LTE-EPC/CONF/ 
rcc.band7.tm1.if4p5.50PRB.lo.conf 
 
sudo ./lte-uesoftmodem O 
/oai-ran/targets/PROJECTS/PROJECTS/ 
GENERIC-LTE-EPC/CONF/rru.oaisim.conf -r 
50 --siml1 
 

For the virtualized testbed setup, the issue of two different 
instructions is needed since in the OAI environment the virtualization of 
a base station and the associated UEs can be performed only considering 
a two-tier base station, composed of the base band processing unit and 



	  

the RF (respectively specified as rcc and rru in the instruction, 
considering the IF4P5 functional splitting between these entities). This 
approach causes the creation of three different software entities, two for 
the lte-softmodem process (rcc and rru), one for the lte-uesoftmodem 
(UE). In this case, we deploy an emulated RF which works considering 
50 physical resource blocks (PRBs), the band 7, the transmission mode 1.  

As regards the emulated UE, with the issue of the related command, 
we consider 50 PRBs and the L1 emulation (the lower physical layer and 
the over the air medium). Once the deployment creation step is 
completed for both the testbed setups, we perform the time 
measurements by editing the OAI source code using the CPU clock 
signal. In order to perform the time measurements considering an overall 
time synchronization, we sync all the involved entities through the 
Network Time Protocol (NTP). 

The first considered parameter is the so-called Time-to- Trigger 
(T2T), defined as the time between the FlexRAN command triggering 
and its effective reception performed by the specified agent. As 
underlined in [27], this parameter depends on the collocation of 
application, controller and agent (e.g., locally or remotely). Even if in 
[27] the authors define this parameter, they do not provide any related 
time measurement. At this aim, we conduct the time measurements, as 
regards the virtualized testbed setup, both in local and remote case, 
whereas as regards the real testbed only in the remote case. 

The other two parameters are the aforementioned T2ON and T2OFF. 
As regards the T2ON parameter the time measurement is conducted only 
in the real testbed setup, since it is not possible, due to code constraints 
to deploy the restart functionality in the case of two-tier base station, as 
that required for the virtualization in the OAI environment. 
 



	  

6.3.4   Results and considerations 
 
 

 
Figure 6.7: T2T and T2OFF - Virtualized Testbed 

 
With regards to the virtualized testbed, as shown in Fig. 7, we on 

average measured: 
 

•   T2T of 15 ms, with a minimum value of 11 ms and a 
maximum value of 19 ms, for the local case (Fig. 7a) 

•   T2T of 55 ms, with a minimum value of 50 ms and a 
maximum value of 60 ms, for the remote case (Fig. 7b) 

•   T2OFF of 130 ms, with a minimum value of 140 ms and 
a maximum value of 150 ms (Fig. 7a / Fig. 7b) 

 

 
Figure 6.8: T2T, T2OFF and T2ON - Real Testbed 



	  

Regarding the real testbed, as shown in Fig. 8, we averagely measured: 
 

•   T2T of 0.1 seconds (Fig. 8a / Fig. 8b) 
•   T2OFF of 1.2 seconds (Fig. 8a) 
•   T2ON of 1.5 seconds (Fig. 8b) 

 
Furthermore, the time measurements permit us to establish a 

minimum value of 15 seconds for the Ton parameter, defined as the time 
interval needed to check the attach for a UE on the basis of the messages 
exchange between the involved entities. Finally, it is useful noting that 
the values of T2OFF and T2ON as regards, e.g., the virtualized testbed 
setup do not vary. The explanation is that the implemented Stop&Restart 
is an example of Hybrid-SON approach, since thanks to the particular 
architecture design and inherent features of FlexRAN, it mixes 
centralized-SON (C-SON) and distributed-SON (DSON) approaches. In 
fact, if the application runs on top of the Master controller it is possible 
to follow a C-SON approach, whereas in the case of the Slave controller 
a D-SON approach. Furthermore, if the control delegation feature of 
FlexRAN controller (the application is performed directly in the context 
of the agent) is considered, it is possible to implement a fine-grained D-
SON approach. So, these considerations are validated by the values of 
the T2OFF and T2ON parameters. 

In fact, as can be seen in the Fig. 6.5, the first step involves 
FlexRAN (remote or local controller), the subsequent steps involve only 
the specified agent. So, the D-SON nature of these steps makes the 
T2OFF and T2ON values independent of any possible external parameter 
with respect to the context of the agent. 

 
 



	  

6.4  Second case study: Motion Sensor based 
Small Cell Sleep Scheduling 

 
The fifth-generation mobile communication network, 5G, promises 

to stretch the limits of the Key Performance Indicators (KPIs) of current 
systems by taking into account several criteria such as latency, resilience, 
connection density and coverage area, alongside the traditional spectral 
efficiency and Energy Efficiency (EE) criteria in its design. 5G has 
performance targets of sub-millisecond end-to-end latency, 100-fold 
increase in typical user data rates, 100 times increase in connection 
density and 10 times increase in EE, compared to current systems [28]. 
These targets will have a different importance in the several usage 
scenarios introduced by IMT Vision recommendation ITU-R M.2083-0 
as eMBB, URLLC and mMTC.  

Network densification is one of the keys to meet the demand for 
higher data rates. Network densification refers to adding more cells by 
deploying new base stations (BSs) in order to achieve higher capacity 
within an area of interest. However, including more BSs requires 
consuming more energy to run the network, as the energy consumption 
of a network is directly proportional to the number of BSs it contains. 
Since BSs constitute the main part of the energy consumption in mobile 
cellular networks [29], network densification would make the case 
severer in terms of EE. An effective and efficient network densification 
can be accomplished by adopting the CDSA concept as authors underline 
in [24]. CDSA approach allows a logical separation between signaling 
and data traffic in RAN. In this architecture, intelligence is partially or 
completely removed from most of the nodes in the network to be 
concentrated in fewer central nodes. This results in cost saving, higher 
performance and resource efficiency [24]. 



	  

The promotion of the CDSA is closely linked to the concept of the 
SON which contributes to the flexibility required for 5G. Initially, SON 
was identified as a key design principle for LTE, focusing on its 
distributed declination [30]. However, as shown in [25], a NG-SON for 
future 5G networks, designed in order to maximize automation of all the 
aspects at all the possible levels, depending on the specific use cases is 
required. In fact, NGSON provides optimization based on a higher level 
(cell cluster scale) scenario, Centralized-SON (C-SON), or on a smaller 
scale, Distributed-SON (D-SON). Each solution has its advantages and a 
Hybrid-SON (H-SON) architecture brings together all the advantages of 
D-SON and C-SON. It will be necessary to choose appropriately the 
degree of centralization in terms of control plane functionalities and SON 
capabilities, depending on the considered scenario. SDN, NFV and C-
RAN are considered the enabling technologies to realize these 
enhancements. In this context, keeping in mind the paradigms and 
technologies that will enable ultra-densification, some issues need to be 
addressed. 

As predicted by the SCF [26] over 70 million Small Cells (SCs) will 
be deployed by 2025, with a corresponding annual energy consumption 
of more than 3 TWh, special care should be given to EE to avoid 
enormous energy consumption within the networks. Spatio-temporal 
changes in data traffics of BSs pave the way for EE by allowing 
switching unused (or lightly used) BSs off to reduce the energy 
consumption of the whole network [24]. In other words, since the traffic 
loads of cells often present various patterns over different days of a week 
and/or time of a day, BSs could be switched off during low traffic (or no 
traffic) periods.  

Cell switching strategies based on traffic conditions and/or proximity 
of SCs to a macro cell (MC) have been widely studied in the literature 



	  

[31-34]. In [31], the authors propose a traffic load based cell on/off 
switching mechanism using actor-critic reinforcement learning. Both 
centralized and distributed solutions are proposed in [32] by considering 
BS on/off switching, user association, and power control jointly in order 
to enhance EE of the system.  

A mixed integer programming formulation was used for the 
centralized approach and near optimal solution was obtained. A 
proximity based SC sleeping technique for Heterogeneous Networks 
(HetNets) was presented in [33]. SCs, which are far from the MC with a 
certain threshold, are opportunistically switched off and covered by the 
neighboring SCs using cell range extension, while the traffic in the SCs 
closer to the MC is offloaded to the MC in case of switching off. The 
authors in [34] proposed a joint user association and cell switching 
algorithm, where activation states are first determined, and then EE is 
further improved by associating the users accordingly.  

In [35], the authors propose a centralized solution which aims to 
compute the optimum number of base stations to switch off in order to 
maximize the energy saving, while maintaining coverage, capacity and 
Quality of Service. It adopts tools in order to include multiple criteria 
with different priorities in the switch off decision making process. The 
introduction of multiple decision inputs allows to capture efficiently 
spatial and temporal traffic fluctuation and, as a consequence, to 
optimize the set of switched off stations. 

Nonetheless, most of the existing techniques related to cell switching 
rely on complex algorithms, since they often employ centralized 
approach in order to determine which SCs to switch on/off and/or when 
to do so. These proposals could be classified as C-SON solutions. To 
cope with all the envisaged scenarios, the C-SON and D-SON solutions 
will have to coexist and be suitably adopted. However, in the D-SON 



	  

case, complex and expensive methods would be no more feasible to 
implement due to the large number of SCs. 

 

6.4.1   Proposed algorithm 
 

In this dissertation, a low-cost, low-complexity SC scheduling 
algorithm is proposed. More particularly, a motion sensor is used in the 
system in order to detect user presence in an environment of interest. The 
SC goes into sleep mode if there is no user detected, while it wakes up 
when the presence of a user is detected by the motion sensor. After 
waking up, the SC waits for a certain amount of time to check if the 
detected user is associated with it. If the user is not associated with the 
SC, then it goes back into sleep mode; however, in case the SC has 
attachment with the detected user, then it keeps being active and 
checking whether the attachment is maintained at certain intervals.  

Therefore, the proposed cell sleep scheduling is a good example of 
D-SON, as it introduces a distributed (i.e. the decisions are made locally 
and there is no need for a central entity) and low-complexity (i.e. it is 
merely a binary decision process, which is triggered by a motion sensor, 
for an individual SC) algorithm. 

The experimental setup runs on the 5G Self-Organized Network 
(5GSON) testbed at the University of Glasgow, which is based on OAI. 
OAI is a software tool enabling an open-source implementation of both 
the CN and RAN based on 3GPP standards. OAI entities can be either 
deployed on separate machines or in an all-in-one setting. 

With inherent features of FlexRAN, it is therefore possible to enable 
C-SON and D-SON solutions, performing both centralized and 
distributed control. In a higher-level control (many macro cells) the 
FlexRAN performs complex controls with a wider overview: traffic 



	  

loads, user density, etc. While, in a local control (distributed), we can 
delegate the control logic to the Agents activated only in the first 
instance by FlexRAN. In the latter case, it needs to apply control 
strategies with low computational complexity. As shown in Fig. 6.9, both 
the OAI software entities run on an Intel NUC minicomputer. The Radio 
Frontend (RF) is provided by an Ettus B205mini USRP SDR platform. 
 

 
Figure 6.9: Testbed network architecture 

 
The proposed D-SON algorithm is designed to minimize the energy 

consumption of SCs by utilizing a motion detection circuit. We utilize an 
Arduino Uno board and an HC-SR501 PIR motion sensor. The motion 
sensor is connected to and powered by the Arduino board, which draws 
its power from the Intel NUC computer via USB. The USRP is also 
powered by the computer via a USB 3.0 port, with a USB power meter 
connected between them to measure the energy consumption of the 
USRP. On the other hand, the Intel NUC computer draws its power via a 
power meter that is connected to the mains to measure the energy 
consumption of the whole system. 

 



	  

6.4.2   Algorithm design 
 

In this section, we present our proposed D-SON algorithm to 
minimize the energy consumption of SCs by utilizing a motion detection 
circuit. The proposed algorithm has been designed using OAI and 
FlexRAN to switch off the RF frontend of the ng-eNB SDR without 
affecting the ng-eNB connection with the CN. The ng-eNB goes into 
sleep mode by leveraging on FlexRAN functionalities to switch off 
layers 1 and 2, and Radio Resource Control (RRC) sub-layer of the 
3GPP protocol stack and free all resources. Subsequently, the RF front-
end of the USRP is turned off. This implies that the ng-eNB always 
maintains connection with the CN. 

While in sleep mode, the ng-eNB machine periodically scans its 
serial port every y seconds for updates from the motion detection circuit 
to wake up. The moment motion is detected, the Arduino board writes 
the binary value “1”, denoting “ON”, to the serial port of the ng-eNB 
machine for w seconds before writing binary “0” to reset the serial port 
and then waiting for the motion to be detected again for the process to 
repeat. The length of w is set such that the ng-eNB does not miss any 
event between successive probes of the serial port, that is w > y. Once 
the ng-eNB reads this ON value, it wakes up for x seconds and waits for 
users to connect to it. If no users connect within this time, the ng-eNB 
goes back to sleep and starts scanning the serial port again. However, if 
there is a user connected, the ng-eNB will not go to sleep and will 
periodically check every z seconds until no user is connected before 
going back to sleep. Fig. 6.10 gives the flowchart of the proposed 
algorithm.  

 
 



	  

Given that the goal of this paper is to reduce energy consumption of 
SC networks, it is important to minimize the energy consumption of the 
motion detection circuit so as not to undo the gains of this algorithm. 
Accordingly, we put the Arduino board in sleep mode and utilize its 
interrupt pins to power it up whenever motion is detected. Once motion 
is detected, the Arduino board is powered on and it writes to the serial 
port of the ng-eNB machine and goes back to sleep. This results in about 
45% reduction in power consumption of the motion detection circuit 
compared to when the Arduino board is always on. 
 



	  

 
Figure 6.10: Proposed motion sensor-based sleep scheduling flowchart 



	  

6.4.3   Power consumption model 
 

According to [29], the power consumption of a base station with a 
single transceiver chain can be modeled as: 
 
Pin = P0 + Δp Pout; 0 < Pout  ≤ Pmax (1) 
 
where P0 and Pout denote the power consumption of the base station at the 
minimum non-zero output power and the RF output power radiated at the 
antenna elements, respectively. The parameters p and Pmax represent the 
slope of the load dependent power consumption and the average transmit 
power of the base station, respectively. It can be deduced from (1) that 
the power consumption model consists of a fixed part (P0) and a load-
dependent part (Δp Pout). With regards to the SDR platform, the 
B205mini USRP consists of an FPGA and RF front end. The RF front-
end comprises of one transceiver chain that is made up of a power 
amplifier and an RF small-signal transceiver module. Focusing on active 
and sleep modes, the USRP has been measured to draw roughly 2 W 
when the ng-eNB is in sleep mode, while it consumes about 2.5 W when 
in active mode. Hence, we assume that the FPGA module and the RF 
front-end denote the fixed and variable parts of the USRP power 
consumption, respectively. Accordingly, in this paper, P0 comprises of 
the power consumptions of the USRP FPGA and the intel NUC 
minicomputer that relates to the CN, FlexRAN and maintaining a 
connection between the ng-eNB and the CN, whereas the RF front-end, 
motion sensing circuit and the power requirement for running ng-eNB 
layers 1-3 on the Intel NUC minicomputer make up the variable part. In 
the remainder of this dissertation, we will refer to the Intel NUC 
minicomputer as the ng-eNB machine, unless stated otherwise. 



	  

6.4.4   Performance evaluation 
 

In this section, we present the performance results of our motion 
sensor-based SC sleep scheduling algorithm against the no sleep 
scheduling approach, whereby the SC does not employ any form of 
energy saving and is always active. The experimental setup was 
deployed in a 16 m2 lab that hosts the 5GSON testbed at the University 
of Glasgow and the ng-eNB was toggled between active and sleep modes 
based on movements in the lab. No user equipment was allowed to 
connect to the network during the experiments in order to mimic a 
deployment location that experiences low-to-medium user activity such 
as staircases, areas around toilets or even office rooms. In this paper, we 
assume w = y = 1 second, x = 60 seconds and z = 30 seconds. 
 

 
Figure 6.11: Total energy consumption comparison of our proposed SC 

sleep scheduling algorithm versus the no sleep scheduling approach 



	  

Fig. 6.11 shows the total energy consumption comparison of our SC 
sleep scheduling algorithm versus the benchmark no sleep scheduling 
approach. For both approaches, the energy consumption of the full setup, 
including the Intel NUC minicomputer, motion detection circuit and 
USRP was measured at 24 hour intervals over 5 days, from Monday to 
Friday. It can be seen that our approach achieves an average of 8% 
energy saving compared to the no sleep scheduling approach due to no or 
low user activity at certain times in the lab which results in the ng-eNB 
going into sleep. Note that this energy saving performance is highly 
dependent on the power rating of the computer used as a computer with 
high power consumption rating would overshadow the energy gains of 
using our proposed algorithm. 
 

 
Figure 6.12: USRP energy consumption comparison of our proposed SC 

sleep scheduling algorithm versus the no sleep scheduling approach 



	  

Fig. 6.12 shows the USRP energy consumption comparison of our 
algorithm against the no sleep scheduling approach. It can be seen that 
the no sleep scheduling approach has a constant USRP energy 
consumption across the days of the week as it is always in the active 
mode irrespective of user presence. On the other hand, there is a slight 
variation in energy consumption of our proposed algorithm across the 
days of the week. This is because the lab sees different levels of user 
presence and activity across different days of the week and the effect of 
switching off the RF front-end is more pronounced when only the USRP 
is considered as it constitutes a fifth of the USRP power consumption. 
Accordingly, our algorithm achieves about 20% reduction in energy 
consumption when compared to the no sleep scheduling approach. It is 
worthy of note that the energy consumption of the USRP does not reach 
zero as the FPGA consumes about 80% of the power consumed by the 
USRP, even when the USRP is not transmitting. 
 
 

 
 
 

 
 
 
 
 
 
 
 



	  

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 



	  

                                                                                                                                                                   
CHAPTER 

                                                                 SEVEN 
 
 

7   CONCLUSIONS 
 
 
 
 
 

7.1   CONCLUDING REMARKS 
	  
	  
	  

We propose new functionalities, on top of a SDN/NFV architecture 
inspired by work in [17]. As opposed to the SoftAir proposal, we deploy 
a NGFI based architecture, in order to overcome CPRI issues related to 
massive MIMO deployment. Furthermore, in order to implement 
dynamically different functional splitting options, a virtualized RAU 
entity is proposed. On the other hand, in order to realize the proposed 
SDN enhancements, optimized controller is designed. The architectural 
controller is logically centralized but physically distributed, as a set of 
slave controllers and master controllers. Master controllers, located in 
remote sites and managing a group of macro cells, keeps in account long 
time scale and less fine grained parameters, acting as reference entities 
for slave controllers, located in edge sites, which as opposed to master 
controllers, keep in account short time scale and more fine grained 
parameters.  
 
 



	  

In particular, the proposed slave controller, focusing on different 
features, can be considered as different logical controller areas, 
corresponding to related northbound applications. These proposed 
functionalities could allow to fulfill strict 5G requirements, since 
elaborating and combining reports from network entities, will be able to 
perform optimum rules in terms of switching, resource allocation and 
virtual function instantiation/migration. 

On the basis of the above assumptions, we designed an architectural 
solution for ultra-dense scenarios, in order to concretize, trough 
SDN/NFV features, the Phantom cell concept proposed by Docomo. 
Furthermore, as opposed to Docomo Advanced C-RAN, exploiting the 
flexibility of the proposed virtual base band processing in RAU, we are 
able to overcome IQ data transmission issues. 

We designed a simulation testbed, in order to evaluate a first subset 
of the proposed functionalities. A programmable and virtualized RAN 
architecture has been implemented, in order to deploy SDN/NFV 
enhancements and to test radio resource management algorithms, in a 
real-time like environment.  

In our simulations, we will firstly focus on the control and data plane 
splitting aspect of the proposed architectural design. Regarding the 
OpenFlow integration in the simulation scenario, we implemented a first 
software defined implementation of the proposed LTE RAN architecture 
trough ns-3 simulator. In particular, we configured two different ns-3 
modules, known in literature as LENA ns-3 LTE Module [19] and the 
OFSwitch13 module [20]. The LENA ns-3 LTE Module permits to 
simulate a LTE RAN / LTE-EPC standard architecture. The OFSwitch13 
module is an OpenFlow based module, deploying the OpenFlow 1.3 
protocol in ns-3 simulation model. First results demonstrated, for our 
purpose, an efficient OpenFlow integration in our LTE simulation 



	  

environment. Evaluating the negative aspects of the ns-3 simulator based 
testbed, we have chosen to deploy the testbed based on software tools 
which permitted us to exploit an emulation environment in contrast to the 
previously deployed simulation environment.  

At this aim, a flexible SDN/NFV-based SON testbed for future 5G 
mobile networks. The main contribute of our work is to cover the need 
for a CDSA based testbed, enabling the investigation of the potential of 
CDSA for practical implementations. We focus our proposal on two 
experimental setups, a real one and a virtualized one, both based on the 
FlexRAN and OpenAirInterface software tools. SDR, VM, FlexRAN 
controller and OpenAirInterface offer us the flexibility, programmability 
and high performance capabilities needed, making the testbed an ideal 
enabler for the development of various 5G use cases. 

We implement a first case study, i.e., the RAN entities 
activation/deactivation procedures, performing time measurements, 
concerning the aforementioned procedures, in order to prove proper 
Testbed functioning. Furthermore, we validate the C-SON and D-SON 
capabilities of our testbed, considering the features of the obtained 
results.  

As second case study, we have proposed and implemented on the 
real testbed, a low-cost, low-complexity SC sleep scheduling algorithm 
to minimize the energy consumption of SCs in 5G and beyond networks. 
Our algorithm is based on the DSON approach and it leverages on a 
motion detection circuit to instantaneously toggle the SC between sleep 
and active modes based the presence of a mobile user, without the need 
for complex traffic prediction algorithms. Experimental results show that 
our algorithm can achieve up to 20% USRP energy consumption saving 
when compared to the no sleep scheduling approach. 

 



	  

Both the testbed deployments enable novel research and provides 
teaching opportunities in next generation RAN architectures and several 
other areas of system-level research. Furthermore, they act as benchmark 
for many use cases with a significant proximity to real network 
deployment criticalities.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



	  

7.2  Work in progress 
	  
	  

7.2.1   RAN Slicing Application 
	  

A RAN Slicing application capable of dynamically performing RAN 
slicing, based on a real-time evaluation of the RAN capabilities. The 
module operates in a learning fashion in a first training phase and in a 
self-adaptive fashion in a second routine functioning. In particular, we 
focus our proposal on a flexible instantiation of virtualized 
functionalities implementing the different layers of the protocol stack. 
The flexibility is related to the given traffic classification and to the 
architectural design. We are designing and implementing the application 
in order to prove its effectiveness on top of our testbed deploying the 
RAN entities by means of Docker container and/or virtual machines, 
triggering the dynamic instantiation through a script. 

 
 
 

 
	  

Figure 7.1: End-to-end slicing 



	  

 
 
The figure 7.1 shows a potential implementation of the end-to-end 

network slicing concept, through which logical networks, comprising 
different type of resources in terms of RAN, transport network and core 
network entities, can be created and associated to particular users or to 
serve specific type of service requests. A particular functional split is 
executed for each type of service, thus implementing the related protocol 
stack layers in the RU, DU and CU instances. Furthermore, the core 
network entities can be executed on top of DU or CU instances. 
Following these assumptions, we are deploying the aforementioned 
conceptual view on top of our testbed. Certain specific functional splits 
are executed through the related OpenAirInterface code, permitting the 
deployment of the related RU, DU and CU instances.  

The Figure 7.2 focuses on the RAN, showing a potential RAN 
slicing executed on top of our testbed. We are realizing performance 
evaluations in terms of delay and throughput for each type of service 
request served through a particular functional split deployed in our RAN 
entities. The same performance evaluations are made for the core 
network and transport networks, permitting us to realize and to test an 
end-to-end slicing. 
 
 
 

 
	  



	  

	  
	  

 
 

 
 
 
 

Figure 7.2: RAN Slicing in our testbed 
 
 
 
 
 
 
 



	  

7.2.2   Machine Learning based Switch ON/OFF 
 

We are developing an improved and more efficient version of the 
algorithm exploiting Machine-learning techniques, in the context of the 
research collaboration with the University of Glasgow. We are exploiting 
network traffic pattern prediction to determine small cell switching on-
off (URRP B205mini) based on datasets processed by machine learning. 
To this end, the EE algorithm code will be optimized and input from 
machine learning included. An initial edit at the code oriented to support 
machine learning in the algorithm, has been already implemented and 
consequent additional UK plug power meter measurement showed a 
significant improving on the OAI RAN machine energy saving.  
 

 
Figure 7.3:  Activity levels, predicted and actual values 

 
 



	  

Energy consumption of the full setup, including the Intel NUC mini 
computer and USRP has been measured at 24 hour intervals over 7 days. 
The Figure 7.3 shows the matching between the effective activity levels 
of the considered days and the predictions realized with the machine 
learning application. These preliminary results show an appropriate 
matching, only few differences occur for each considered level. 
Additional work is in progress in order to improve the prediction 
performances. The objective is to control the activation and the 
deactivation through the predicted values in order to reduce the energy 
consumption of the full setup.  In these terms, preliminary results, as can 
be seen in Figure 7.4, show that when eNB is always on (no EE enabled, 
blue curve), energy consumption is higher compared to the Energy 
consumption achieved while the improved version of Stop&Restart EE 
algorithm is running (orange curve).  
 

Figure 7.4: Energy consumption comparison, no EE algorithm (blue curve), 
Stop&Restart EE algorithm (orange curve) 

	  



	  

7.2.3   Fronthaul/Core networks and OpenStack/OpenDaylight  
	  

The research activities during the PhD involve another research 
collaboration, with Bristol Is Open, a joint venture between the 
University of Bristol and Bristol City Council, with the aim of deploying 
a SDN/NFV based testbed to prove the application of this two paradigms 
in the context of fronthaul/core networks of future 5G networks, 
exploiting OpenDaylight as SDN controller. 
 

 
Figure 7.5:  Network topology, control plane/data plane spliting 

	  
 
 
 
 
 
 
 



	  

The research activity aims to focus on the network performances of 
fronthaul/core networks in which OpenFlow switches are deployed. A 
proper testbed has been designed in order to prove the feasibility of the 
proposal and to test the aforementioned network performances. We 
exploit the hardware and software resources on top of the Bristol Is Open 
research network. In particular, the testbed consists of an OpenStack 
deployment with different virtual machines. On top of certain virtual 
machines the OpenAirInterface RAN and Core network instances are 
executed, whereas on top of other virtual machines OpenvSwich 
instances are deployed. This implementation permits us to test the 
network performances in the context of different functional splitting use 
cases, both in fronthaul and core networks. Each use case is 
characterized by the deployment of a different number of OpenVSwitch 
instances in the considered links. These OpenVSwitches form the data 
plane, directly controlled by the OpenDayLight SDN Controller, forming 
the control plane.  

The figure 7.5 shows a potential topology in which two different 
sites are deployed. On the basis of the considered fronthaul scenario, 
different entities of the OpenAirInterface RAN are executed on top of the 
related virtual machines. The considered virtual machines can be located 
on the same site or on a different site, permitting the performance 
evaluation both in local or remote scenarios. The same performance 
evaluations can be made in the case of the core network. The RAN and 
the core network deployments can be concurrently evaluated, so 
considering an end-to-end slicing in which the further aspect influencing 
the network performance is the presence, the number and the locations of 
OpenvSwich instances in the fronthaul or core network links.  

 
 



	  

Many features can be directly managed through the Administration 
GUI provided by the OpenDaylight SDN Controller software tool, as can 
be seen in the Figure 7.6. At the time of writing different performance 
evaluation are conducted on top of the described SDN/NFV testbed. The 
related results will be presented on dedicated papers. 

	  

	  
Figure 7.6:  OpenDaylight SDN Controller GUI 

	  
	  
	  
	  
	  
	  
	  
	  

	  



	  

7.2.4   IMS Virtualization  
	  

Finally, a research collaboration with the telco research team in 
Milan of Altran, engineering consulting company, is conducted focusing 
on the virtualization of the IMS network architecture in the context of the 
Voice over 5G. This research collaboration leads to the design and the 
deployment of a IMS testbed in order to couple it with our 
OpenAirInterface/FlexRAN based testbed. We are exploiting the 
Clearwater IMS software tool. Clearwater is an open source software 
implementation of the IMS mainly designed for Cloud environment, 
capable of providing voice, video and messaging services to users.  

The figure 7.7 shows the Clearwater architecture and the software-
based IMS entities. 

 
 

 
Figure 7.7:  Clearwater IMS software-based architecture 

 
 



	  

The Figure 7.8 shows a preliminary deployment based on virtual 
machine instances. The OpenAirInterface RAN and core network 
entities, the FlexRAN controller entity and the Clearwater IMS entity are 
deployed on top of dedicated virtual machines instances.  

 
	  

	  
	  

Figure 7.8:  Clearwater IMS coupled with our testbed. 
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