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Abstract
The aim of this short paper is to show that some assumptions in Guarnotta et al. (Adv
Nonlinear Anal 11:741–756, 2022) can be relaxed and even dropped when looking for weak
solutions instead of strong ones. This improvement is a consequence of two results concerning
gradient terms: an L∞ estimate, which exploits nonlinear potential theory, and a compactness
result, based on the classical Riesz-Fréchet-Kolmogorov theorem.
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1 Introduction

In this brief note, whose starting point is [10], we consider the problem
⎧
⎪⎪⎨

⎪⎪⎩

−�pu = f (x, u, v,∇u,∇v) in R
N ,

−�qv = g(x, u, v,∇u,∇v) in R
N ,

u, v > 0 in R
N ,

(P)

where N ≥ 2, 1 < p, q < N , �r z := div(|∇z|r−2∇z) denotes the r -Laplacian of z for
1 < r < +∞, while f , g : RN × (0,+∞)2 ×R

2N → (0,+∞) are Carathéodory functions
satisfying the following hypotheses.

H1(f) There exist α1 ∈ (−1, 0], β1, δ1 ∈ [0, q − 1), γ1 ∈ [0, p − 1), m1, m̂1 > 0, and a
measurable a1 : RN → (0,+∞) such that

m1a1(x)sα1
1 sβ1

2 ≤ f (x, s1, s2, t1, t2) ≤ m̂1a1(x)
(

sα1
1 sβ1

2 + |t1|γ1 + |t2|δ1
)

in R
N × (0,+∞)2 × R

2N . Moreover, ess inf
Bρ

a1 > 0 for all ρ > 0.
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H1(g) There exist β2 ∈ (−1, 0], α2, γ2 ∈ [0, p − 1), δ2 ∈ [0, q − 1), m2, m̂2 > 0, and a

measurable a2 : RN → (0,+∞) such that

m2a2(x)sα2
1 sβ2

2 ≤ g(x, s1, s2, t1, t2) ≤ m̂2a2(x)
(

sα2
1 sβ2

2 + |t1|γ2 + |t2|δ2
)

in R
N × (0,+∞)2 × R

2N . Moreover, ess inf
Bρ

a2 > 0 for all ρ > 0.

H1(a) There exist ζ1, ζ2 ∈ (N ,+∞] such that ai ∈ L1(RN ) ∩ Lζi (RN ), i = 1, 2, where

1

ζ1
< 1 − p

p∗ − θ1,
1

ζ2
< 1 − q

q∗ − θ2,

with

θ1 := max

{
β1

q∗ ,
γ1

p
,
δ1

q

}

< 1 − p

p∗ , θ2 := max

{
α2

p∗ ,
γ2

p
,
δ2

q

}

< 1 − q

q∗ .

H2 If η1 := max{β1, δ1} and η2 := max{α2, γ2} then
η1η2 < (p − 1 − γ1)(q − 1 − δ2).

In the sequel, by H1 we mean the set of hypotheses H1(f), H1(g), and H1(a).
Unlike [10], we restrict our attention to weak solutions instead of strong ones, which

allows us to weaken several conditions. In particular,

• p, q > 2 − 1
N is relaxed to p, q > 1,

• assumption H3 (cf. [10, p. 743]), ensuring a high local summability of reactions, is
dropped, and

• no high local summability for a1, a2 is required (cf. H1(f)–H1(g)).

Let us briefly comment these improvements, focusing our attention on the first equation of
(P), since arguments do not exploit any system structure. The lower bound concerning p was
used to prove [10, Lemma 2.1] and, jointly with H3, to guarantee the strong convergence

of {|∇un |p−2∇un} in L p′
loc(R

N ), being {un} a sequence of solutions (precisely, their first
components) to problems that approximate (P); see [10, formula (4.5)]. On the other hand,
in hypothesis a1 ∈ L

sp
loc(R

N ) the number sp was supposed to be greater than p′N . Thanks to
[5, p. 830], this ensures the local C1,α-regularity of each un ; cf. [10, Lemma 3.1]. However,
by [12], the same holds true once sp > N , so that we can take sp := ζ1 with no additional
conditions, where ζ1 stems from H1(a). Moreover, exploiting [12] instead of [5] yields that
H′
3 in [10, Remark 4.4] can be relaxed to

1

sp
+ max

{
γ1

p
,
δ1

q

}

<
1

N
,

1

sq
+ max

{
γ2

p
,
δ2

q

}

<
1

N
.

The following example aims to catch the essence of these improvements.

Example 1.1 Let 0 < ε < 1
N and let σ > N . Then the functions

f (x, s1, s2, t1, t2) := |x |− N
N+2σ (1 + |x |)−N

[(
sε
2

s1

) 1
2 + |t1| ε

2 + |t2| ε
2

]

,

g(x, s1, s2, t1, t2) := |x |− N
N+2σ (1 + |x |)−N

[(
sε
1

s2

) 1
2 + |t1| ε

2 + |t2| ε
2

]
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satisfy hypotheses H1–H2 with p = q := 1 + 2ε. In fact, pick β1 = α2 = γ1 = γ2 = δ1 =
δ2 := ε

2 , m1 = m̂1 = m2 = m̂2 := 1, and ζ1 = ζ2 := N + σ . To verify H1(a), observe at
first that

1 + 2ε

N
− ε/2

1 + 2ε
>

1

N
− ε

2
>

1

2N
,

(
1 + 2ε

N
− ε/2

1 + 2ε

)−1

− N < 2N − N = N

by the choice of ε. So,

1

ζ1
< 1 − p

p∗ − θ1 ⇔ 1

N + σ
<

1 + 2ε

N
− ε/2

1 + 2ε

⇔ σ >

(
1 + 2ε

N
− ε/2

1 + 2ε

)−1

− N ,

which is true because σ > N . It is worth noticing that p, q ≤ 2− 1
N , namely 1+2ε ≤ 2− 1

N ,
whenever ε ≤ 1

2N ′ , as well as ζ1, ζ2 ≤ p′N , i.e. N + σ ≤ 1+2ε
2ε N , when ε ≤ N

2σ . A concrete
case can be obtained taking N := 3, σ := 4, and ε := 1

4 .

Convergence of gradient terms comes into play whenever a second-order differential
problem needs to be approximated: this can occur due to the lack of ellipticity (or uniform
ellipticity) of the principal part and/or the presence of non-smooth nonlinearities; see, e.g.,
[11, Theorem 3.3]. An approximation procedure is necessary also in the context of singular
problems, that is, problems whose reaction term blows up when the solution approaches to
zero, as (P). The very recent papers [8, 9] provide an account on this topic.

Here, we proceed as follows. Lemma 2.1 of [10] is restated in a new, general fashion and
its proof is made adapting the one of [10]; vide Lemma 2.4. Next, we establish a compact-
ness result (Lemma 2.5) for gradient terms, which is self-contained (unlike the alternative
arguments mentioned in Remark 2.6) and relies on the classical Riesz-Fréchet-Kolmogorov
L p-compactness criterion. Finally, the proof of [10, Lemma 4.1] is modified to get a weak
solution of (P) under assumptions H1–H2 and the unavailability of [10, Lemma 4.3], pertain-
ing strong solutions, in this context is commented (see Remark 2.7).

Notations

Hereafter, denotes a bounded domain inRN , N ≥ 2,while p ∈ (1,+∞).We set p′ := p
p−1

and, provided p < N , p∗ := N p
N−p . If p ≥ N then p∗ := ∞ and (p∗)′ := 1.Write dist(A, B)

for the distance between the nonempty sets A, B ⊆ R
N . The symbol BR(x) indicates the

(open) ball having center x ∈ R
N and radius R > 0, while B R(x) stands for the closure

of BR(x). Moreover, BR(x) �  means that B R(x) ⊆ . Centers of balls will be omitted
when they are irrelevant. We denote by |E | the N -dimensional Lebesgue measure of the set
E ⊆ R

N .
Let C∞

c (RN ) be the space of compactly supported test functions and let ‖ ·‖p be the usual

norm in L p(RN ). The Beppo Levi space D1,p
0 (RN ) is defined as the closure of C∞

c (RN )

with respect to the norm

‖u‖1,p := ‖∇u‖p.

We know thatD1,p
0 (RN ) is a reflexive Banach space. Moreover, the Sobolev-type embedding

D1,p
0 (RN ) ↪→ L p∗

(RN ) entails

D1,p
0 (RN ) = {u ∈ L p∗

(RN ) : |∇u| ∈ L p(RN )}.
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Given f ∈ L1
loc(R

N ), a distributional solution to the equation

− �pu = f (x) in R
N (1.1)

is a function u ∈ W 1,p
loc (RN ) such that

∫



|∇u|p−2∇u · ∇φ dx =
∫



f φ dx ∀φ ∈ C∞
c (RN ). (1.2)

If f ∈ L(p∗)′(RN ) then by weak solution of (1.1) we mean a function u ∈ D1,p
0 (RN )

satisfying (1.2) for all φ ∈ D1,p
0 (RN ). Analogous definitions hold when  replaces RN or

f depends also on u,∇u. Further details can be found in [10, Section 2].
Finally, C and C(·) represent generic positive constants, which may change value at each

passage. Possible arguments emphasize their dependence on written variables.

2 Main results

The main result of the paper is the following.

Theorem 2.1 Let H1–H2 be satisfied. Then problem (P) possesses a weak solution (u, v) ∈
D1,p
0 (RN ) × D1,q

0 (RN ).

For every f ∈ L2
loc(), we define the nonlinear potential

Pf (x, R) :=
∫ R

0

( | f |2(Bρ(x))

ρN−2

) 1
2 dρ

ρ
, where | f |2(Bρ(x)) := ‖ f ‖2L2(Bρ(x))

.

The following basic result was established in [6].

Proposition 2.2 Let u ∈ W 1,p
loc () be a distributional solution to

− �pu = f (x) in , (2.1)

with f ∈ Lr
loc(), r := max{2, (p∗)′}. Then there exists C = C(N , p) > 0 such that

‖∇u‖L∞(BR) ≤ C

[(
1

|B2R |
∫

B2R

|∇u|p dx

) 1
p + ‖Pf (·, 2R)‖

1
p−1
L∞(B2R)

]

for any B2R � .

Remark 2.3 As observed in [6, p. 1363], the condition r ≥ (p∗)′ is not used to prove the
result, but it guarantees that u is a weak solution, and not merely a very weak solution. In
the latter case, an approximation procedure yields the existence of a very weak solution
u ∈ W 1,p−1() of (2.1). For a thorough treatment on approximable solutions, see [3].

Lemma 2.4 Let u ∈ D1,p
0 (RN ) be a distributional solution to

−�pu = f (x) in R
N ,

with f ∈ Lr (RN ), r > N. Then∇u ∈ L∞(RN ). More precisely, there exists C = C(N , p) >

0 such that

‖∇u‖p−1
L∞(RN )

≤ C
(
‖∇u‖p−1

L p(RN )
+ ‖ f ‖Lr (RN )

)
.
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Proof Pick any x ∈ R
N . By Proposition 2.2 and Hölder’s inequality (with exponents r

2 and
r

r−2 ), after observing that r > N ≥ max{2, (p∗)′}, we get

|∇u(x)|p−1 ≤ ‖∇u‖p−1
L∞(B1(x))

≤ C

[(
1

|B2(x)|
∫

B2(x)

|∇u|p dx

) 1
p′

+ ‖Pf (·, 2)‖L∞(B2(x))

]

≤ C

[

‖∇u‖p−1
L p(RN )

+ sup
y∈B2(x)

∫ 2

0
ρ− N

2 ‖ f ‖L2(Bρ(y)) dρ

]

≤ C

[

‖∇u‖p−1
L p(RN )

+ ‖ f ‖Lr (RN )

∫ 2

0
ρ− N

r dρ

]

≤ C
(
‖∇u‖p−1

L p(RN )
+ ‖ f ‖Lr (RN )

)
.

Taking the supremum in x ∈ R
N on the left yields the conclusion. ��

For every u ∈ W 1,p
loc (), x ∈ BR � , and h ∈ R

N such that |h| < dist(BR, ∂), we set

uh(x) := u(x + h), δhu := uh − u.

Analogous definitions hold for vector-valued functions.

Lemma 2.5 Let {un} ⊆ W 1,p
loc () and { fn} ⊆ Lr ′

loc(), r ∈ (1, p∗), be such that un is a
distributional solution to

−�pun = fn(x) in 

for all n ∈ N. Suppose that:

(K1) {∇un} is bounded in L p
loc();

(K2) { fn} is bounded in Lr ′
loc();

(K3) un → u in L p
loc() ∩ Lr

loc().

Then {∇un} admits a strongly convergent subsequence in L p
loc().

Proof Fix R > 0 fulfilling BR � . A density argument produces
∫

BR

|∇un |p−2∇un · ∇φ dx =
∫

BR

fnφ dx (2.2)

for every n ∈ N and φ ∈ W 1,p
0 (BR). Now, pick t, s > 0 such that Bt � Bs � BR and

η ∈ C∞
c (Bs) such that 0 ≤ η ≤ 1, η ≡ 1 on Bt , and |∇η| ≤ C

s−t for some C > 0. If
Vn := |∇un |p−2∇un then using (2.2) with φ := η2δhun , where |h| < R − s, gives

∫

BR

η2 Vn · δh(∇un) dx + 2
∫

BR

η δhun Vn · ∇η dx =
∫

BR

fnφ dx . (2.3)

Next, exploit (2.2) with φ−h , perform the change of variable x �→ x + h on the left-hand
side, and recall that Bs+|h| ⊆ BR , to achieve

∫

BR

η2 (Vn)h · δh(∇un) dx + 2
∫

BR

η δhun (Vn)h · ∇η dx =
∫

BR

fnφ−h dx . (2.4)
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Subtracting (2.3) from (2.4) yields

∫

BR

η2 δh Vn · δh(∇un) dx + 2
∫

BR

η δhun δh Vn · ∇η dx =
∫

BR

fnδ−hφ dx .

Since supp η ⊆ Bs , this entails

∫

Bt

δh Vn · δh(∇un) dx ≤
∫

BR

η2 δh Vn · δh(∇un) dx

≤ 2
∫

BR

|δhun ||δh Vn ||∇η| dx +
∫

BR

| fn ||δ−hφ| dx

≤ C

s − t
‖δhun‖L p(Bs )‖δh Vn‖L p′

(Bs )
+ ‖ fn‖Lr ′

(Bs )
‖δ−hφ‖Lr (Bs )

≤ C

s − t
‖δhun‖L p(BR)

(
‖(Vn)h‖L p′

(Bs )
+ ‖Vn‖L p′

(Bs )

)

+ ‖ fn‖Lr ′
(BR)

(‖φ−h‖Lr (Bs ) + ‖φ‖Lr (Bs )

)

≤ 2C

s − t
‖δhun‖L p(BR)‖Vn‖L p′

(BR)
+ 2 ‖ fn‖Lr ′

(BR)
‖δhun‖Lr (BR)

≤ C
(
‖δhun‖L p(BR)‖∇un‖p−1

L p(BR) + ‖ fn‖Lr ′
(BR)

‖δhun‖Lr (BR)

)
,

(2.5)

where Hölder’s inequality has been used twice, while C = C(N , t, s) > 0. Notice that,
thanks to (K1)–(K3) and [2, Exercise 4.34], the last term of (2.5) vanishes as h → 0+
uniformly in n. Let us now distinguish two cases, namely p ≥ 2 and p ∈ (1, 2).

Case 1. If p ≥ 2 then

∫

Bt

δh Vn · δh(∇un) dx =
∫

Bt

(|∇(un)h |p−2∇(un)h − |∇un |p−2∇un) · (∇(un)h − ∇un) dx

≥ C ‖(∇un)h − ∇un‖p
L p(Bt )

= C ‖δh(∇un)‖p
L p(Bt )

,

(2.6)

with C > 0 small enough; cf. [13, Chapter 12, inequality (I)]. By (2.5)–(2.6) we thus obtain
δh(∇un) → 0 in L p(Bt ) as h → 0+ uniformly in n, and the Riesz-Fréchet-Kolmogorov
L p-compactness criterion yields the conclusion, because t > 0 was arbitrary.

Case 2. For p ∈ (1, 2) one has (see [13, Chapter 12, inequality (VII)])

∫

Bt

δh Vn · δh(∇un) dx =
∫

Bt

(|∇(un)h |p−2∇(un)h − |∇un |p−2∇un) · (∇(un)h − ∇un) dx

≥ C
∫

Bt

(1 + |∇(un)h |2 + |∇un |2) p−2
2 |∇(un)h − ∇un |2 dx

= C
∫

Bt

Wnh |δh(∇un)|2 dx,

(2.7)
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where C > 0 is sufficiently small while Wnh := (1 + |∇(un)h |2 + |∇un |2) p−2
2 . Hölder’s

inequality with exponents 2
p and 2

2−p , besides (K1), produce

‖δh(∇un)‖p
L p(Bt )

=
∫

Bt

W
p
2

nh |δh(∇un)|p W
− p

2
nh dx

≤
(∫

Bt

Wnh |δh(∇un)|2 dx

) p
2

(∫

Bt

W
p

p−2
nh dx

) 2−p
2

≤
(∫

Bt

Wnh |δh(∇un)|2 dx

) p
2 (

|Bt | + 2 ‖∇un‖p
L p(BR)

) 2−p
2

≤ C

(∫

Bt

Wnh |δh(∇un)|2 dx

) p
2

.

(2.8)

Reasoning as in the case above, the conclusion directly follows from (2.5), (2.7), and (2.8).
��

Remark 2.6 Lemma 2.5 can be proved also (in a less direct way) through a result by Boccardo
and Murat [1] which, under the hypotheses of Lemma 2.5, ensures that

∇un → ∇u in Lq
loc() ∀ q ∈ (1, p). (2.9)

Evidently, (2.9) implies ∇un(x) → ∇u(x) for almost every x ∈ . A development of
this approach, allowing q = p, is contained in [7, Lemma 2.5 and Remark 3]. Another
way [4, 11] to get convergence of gradient terms relies on a differentiability result for the
stress field, i.e., the field whose divergence represents the elliptic operator (as |∇u|p−2∇u
for the p-Laplacian). In fact, by Rellich-Kondrachov’s theorem [2, Theorem 9.16], such a
differentiability allows to gain compactness.

Proof of Theorem 2.1 The reasoning is patterned after that of [10, Lemma 4.1]. So, here, we
only sketch it. Pick r , s > 1 such that

1

ζ1
+ θ1 <

1

r ′ < 1 − p

p∗ ,
1

ζ2
+ θ2 <

1

s′ < 1 − q

q∗ , (2.10)

which is possible thanks to H1(a). Fix ρ > 0 and define εn := 1
n , n ∈ N. By [10, Lemmas

3.5–3.8], for every n ∈ N there exists (un, vn) ∈ (D1,p
0 (RN ) × D1,q

0 (RN )) ∩ C1,α
loc (RN )2

solution to

⎧
⎪⎪⎨

⎪⎪⎩

−�pu = f (x, u + εn, v,∇u,∇v) in R
N ,

−�qv = g(x, u, v + εn,∇u,∇v) in R
N ,

u, v > 0 in R
N ,

(Pεn )
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such that the following properties hold true, with appropriate (u, v) ∈ D1,p
0 (RN )×D1,q

0 (RN )

and M, σ2ρ > 0:

(un, vn)⇀(u, v) in D1,p
0 (RN ) × D1,q

0 (RN );
(un, vn) → (u, v) in W 1,p(B2ρ) × W 1,q(B2ρ);
(un, vn) → (u, v) in Lr (B2ρ) × Ls(B2ρ);

(∇un,∇vn) → (∇u,∇v) a.e. in R
N ;

max
{‖un‖L∞(RN ), ‖vn‖L∞(RN )

} ≤ M ∀ n ∈ N;
min

{

inf
B2ρ

un, inf
B2ρ

vn

}

≥ σ2ρ ∀ n ∈ N.

(2.11)

Hence, H1(f) and (2.11) yield, for almost every x ∈ B2ρ ,

f (x, un(x) + εn, vn(x),∇un(x),∇vn(x))

≤ m̂1a1(x)
[
(un(x) + εn)α1vn(x)β1 + |∇un(x)|γ1 + |∇vn(x)|δ1]

≤ m̂1a1(x)
(
σ

α1
2ρ Mβ1 + |∇un(x)|γ1 + |∇vn(x)|δ1

)
.

(2.12)

By (2.11) the sequence {(∇un,∇vn)} is bounded in L p(B2ρ) × Lq(B2ρ). Exploiting H1(a),
(2.10), and (2.12) we thus see that

{ f (·, un + εn, vn,∇un,∇vn)} is bounded in Lr ′
(B2ρ).

Accordingly, Lemma 2.5, with  := B2ρ , besides (2.11), produces ∇un → ∇u in L p(Bρ).
Now the proof goes on exactly as in [10, Lemma 4.1], ensuring that (u, v) is a distributional
solution to (P). The conclusion is achieved through [10, Lemma 4.2], which shows that any
distributional solution to (P) turns out a weak one. ��
Remark 2.7 Anadvantage of using differentiability results for the stress field (seeRemark 2.6)
in this context is the possibility to obtain strong solutions of (P), as done in [10, Lemma 4.3].
Indeed, otherwise we do not know how to give a pointwise (a.e.) sense to the p-Laplacian
operator, seen as the divergence of the stress field |∇u|p−2∇u. This issue is linked to a
well-known conjecture for (2.1), which can be stated as

f ∈ Lr
loc()

?⇔ |∇u|p−2∇u ∈ W 1,r
loc ().

For a discussion about this conjecture, see [11, Section 1].
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