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Research highlights 

 RS modelling has allowed deriving spatially distributed crop 

evapotranspiration. 

 High resolution irrigation maps have been derived by using optical 

RS. 

 Climate reanalysis has provided reliable reference 

evapotranspiration estimates. 

 Topography heterogeneity affects the reanalysis precipitation 

estimates accuracy. 

  



Abstract  

Under the current water scarcity scenario, the promotion of 

water saving strategies is essential for improving the irrigated 

agriculture sustainability. The general aim of this Thesis was to 

implement a methodological approach, based on the use of satellite RS 

and alternative agrometeorological data sources (including reanalysis 

and forecast data) for supporting farmers and water management 

authorities into the better management of the irrigation volumes and 

for the detection of the irrigated areas. 

In particular, a RS-based model (i.e., ArcDualKc, Ramírez-

Cuesta et al., 2019b) was tested at farm scale in a DI orange orchard 

for deriving spatially distributed estimates of Kc and ETc using both 

observed and forecast agrometeorological data provided by COSMO 

model. Overestimations on Kc and ETc resulted when forecast 

agrometeorological data was used. Differences in terms of Kc and ETc 

were identified among the irrigation strategies, mainly due to 

variations of the Kcb.  

The unsupervised classification on NDVI was coupled with 

OPTRAM for detecting actual irrigated areas under different climate 

conditions. The proposed methodology was validated at the Marchfeld 

Cropland (Austria), showing a good overall accuracy. Then, it was 

applied at the irrigation district Quota 102,50 (Italy), where the results 

were compared with the information provided by the Reclamation 

Consortium, finding an overestimation of irrigated areas. 

The reliability and consistency of the reanalysis dataset (global 

ERA5 and ERA5-Land) for predicting the main agrometeorological 

variables, including the ET0, was explored at the irrigation district 

level under different climates and topography conditions in Italy. A 

general good agreement was obtained between observed and 

reanalysis agrometeorological data, at both daily and seasonal scales, 

confirming the potential of using reanalysis dataset as an alternative 

data source and overcoming the unavailability of observed 

agrometeorological data. 



Additionally, the use of ERA5-Land and the interpolation 

methods was combined for enhancing the spatially distributed 

precipitation estimates at the basin scale. Underestimations on the 

ERA5-Land precipitation estimates were observed at monthly and 

seasonal scale. The performance was significantly improved when the 

interpolation estimates were corrected with local observations. The 

spatial distribution of the estimation errors associated to the climate 

reanalysis revealed a significant positive correlation with the altitude 

variation. 

 

Keywords: Sentinel-2; Vegetation indexes, Precision irrigation; 

Weather ground-based observation; Missing data; Climate reanalysis; 

Unsupervised classification; Soil moisture; Irrigated areas; Water 

management. 

 

  



Riassunto 

Nell’attuale scenario globale di scarsità d’acqua, l’impiego di 

strategie di risparmio idrico è essenziale al fine di migliorare la 

sostenibilità dell’agricoltura irrigua. Lo scopo generale della Tesi è 

stato di implementare un approccio metodologico, basato sull’utilizzo 

del telerilevamento da satellite e di fonti alternative di dati 

meteorologici (i.e., dati agrometeorologici previsionali e di rianalisi) 

a supporto degli agricoltori e delle autorità preposte alla gestione delle 

risorse idriche per migliorare la programmazione irrigua e il 

monitoraggio delle aree irrigate. 

In particolare, un modello basato su dati telerilevati e 

agrometeorologici (ArcDualKc, Ramírez-Cuesta et al., 2019b) è stato 

testato alla scala di campo in un agrumeto in condizioni di deficit 

idrico controllatoper determinare stime spazialmente distribuite del Kc 

e dell’ETc. Il modello è stato implementato sia utilizzando dati 

agrometeorologici misurati a terra sia con dati previsionali forniti dal 

modello COSMO. Sovrastime di Kc e ETc sono state ottenute 

utilizzando i dati previsionali rispetto ai dati meteorologici osservati a 

terra. Differenze in termini di Kc e ETc sono state, inoltre, osservate tra 

le strategie irrigue applicate, principalmente legate a seguito delle 

variazioni del Kcb. 

La classificazione non supervisionata sul NDVI è stata 

combinata con OPTRAM per rilevare le aree irrigue effettive, in 

differenti condizioni climatiche. La metodologia proposta è stata 

validata in Marchfeld Cropland (Austria), mostrando una buona 

accuratezza generale. Successivamente è stata applicata al distretto 

irriguo Quota 102,50 (Italia), dove i risultati sono stati confrontati con 

i dati dichiarati dal Consorzio di Bonifica, individuando una 

sovrastima di aree irrigate. 

L’affidabilità e la consistenza dei dataset di rianalisi ERA5 ed 

ERA5-Land nel predire le principali variabili agrometeorologiche, 

così come l’ET0, è stata analizzata a scala di distretto irriguo in 

differenti condizioni climatiche e topografiche nel territorio italiano. 



Un buon accordo generale è stato osservato, tra i dati 

agrometeorologici osservati e di rianalisi, alle scale giornaliera e 

stagionale, confermando il potenziale nell’utilizzo dei dataset di 

rianalisi come fonte alternativa di dati, superando il limite 

dell’indisponibilità dei dati agrometeorologici osservati. 

Inoltre, l’utilizzo di ERA5-Land e dei metodi di interpolazione 

spaziale è stato combinato per migliorare le stime spazialmente 

distribuite di precipitazione alla scala di bacino idrografico. 

Sottostime nei dati di precipitazione di ERA5-Land sono state 

osservate alle scale temporali mensile e stagionale. La performance è 

migliorata significativamente quando le stime di interpolazione sono 

state corrette mediante osservazioni locali. La distribuzione spaziale 

degli errori di stima associati alla procedur di rianalisi climatica hanno 

mostrato una correlazione positiva, significativa rispetto alla 

variazione di altitudine. 

 

Parole chiave: Sentinel-2; Indici di vegetazione; Irrigazione di 

precisione; Dati meteorologici osservati; Dati mancanti; Rianalisi 

climatica; Classificazione non-supervisionata; Umidità del suolo; 

Aree irrigue; Gestione delle risorse idriche. 

 

  



1. Introduction 
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1 Introduction 

1.1 Preface 

As reported in The State of Food Security and Nutrition in the 

World 2021 of the Food and Agriculture Organization of the United 

Nations, there are currently nearly 60 million of undernourished 

people in the World and this number continues to increase slowly. 

Much of the recent increase in food insecurity is related to the greater 

number of conflicts, often exacerbated by climate-related shocks, and 

to the economic slowdowns. Consequently, it is expected that the 

global number of undernourished people in 2030 would exceed 840 

million. Additionally, COVID-19 pandemic was spreading across the 

globe, clearly threatening the food security. Preliminary assessments 

based on the latest available global economic prospects suggest an 

increase in 2020 between 83 and 132 million people to the total 

number of undernourished in the World, depending on the economic 

growth scenario.  

The 2030 Agenda for Sustainable Development of the United 

Nations (https://sdgs.un.org/) recognizes the global food security as 

part of the Sustainable Development Goals (SDGs). Specifically, 

SDG2 aims to end hunger, achieve food security, improve nutrition 

and promote sustainable agriculture. The projected increase of the 

World population growth rate suggests that higher food demand is 

expected in the future, with a direct effect on agricultural water usage 

(Mancosu et al., 2015). In fact, water represents the essential driving 

force of agriculture sector (Wriedt et al., 2009). To ensure food 

production for the future generations, agriculture will require at least 

an increase of 50 % in water resources, especially in arid and semi-

arid regions (Ozdogan et al., 2010).  

However, across the World, the availability and the access to 

suitable water resources are at risk, due to a combination of excessive 

https://sdgs.un.org/
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demographic pressure and unsustainable agricultural practices 

(Dubois, 2011). Moreover, being in a climate change context where 

more frequent and severe droughts are expected to occur, water 

scarcity is destined to become worse (Mancosu et al., 2015). 

According to Theodoropoulos and Skoulikidis (2014), 36% of the 

global population already lives in water scarce regions and is expected 

to increase to 52% by 2050. The lack of efficient water management 

not only threatens the Earth’s resources but may compromise the well-

being of millions of people globally.  

Because of all these factors, the debate on the allocation of 

water resources between the different economic sectors will be 

intensified, as well as the requirements of increasing the water use 

efficiency in all of them (Fader et al., 2016). In this sense, 

improvements in water management are essential to increase the 

sustainability of irrigated agriculture (Hsiao et al., 2007), especially in 

semi-arid areas, where water shortage is a limiting factor for crop 

production (Singh et al., 2017) 

In Europe, appropriate measures have been undertaken for 

addressing sustainable water uses. In this sense, the 6th Environment 

Action Programme (EAP; 1600/2002/EC) and the Water Framework 

Directive (WFD; 2000/60/EC) set out the main policy objectives for 

ensuring a more sustainable and integrated approach for managing 

water resources (Wriedt et al., 2009). Specifically, WFD is the major 

legislative initiative, intended to resolve the piecemeal approach to 

European water legislation that has been developed since 1975 

(Acreman and Ferguson, 2010). Although it has been adopted about 

20 years ago, a precise quantification of water amount used for 

irrigation has not been achieved yet (Zucaro and Pontrandolfi, 2006). 

In Italy, as a response to the strong pressures raised from the European 

Commission, the Ministry of Agricultural, Food and Forestry Policies 

(MiPAAF) approved the Ministry Decree on July 31, 2015 for forcing 

Italian regions to: i) monitor the irrigated areas, and ii) determine the 
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irrigation volumes. 

However, the availability of precise and updated data of 

irrigated areas (e.g. location and size) represents a critical issue, since 

this information is often fragmented and mostly derived from obsolete 

and/or time-consuming field measurements, that do not take into 

account the spatial component. For instance, the National Institute of 

Agricultural Economics (INEA) has contributed to design the 

irrigation water policy in Italy by supporting MiPAAF. Since the 

1960’s, INEA has conducted the census of irrigated areas, producing 

the Map of irrigation in Italy. Currently, the most complete and 

updated database that supports Governmental Institutions is the 

National Information System for Water Management in Agriculture 

(SIGRIAN; https://sigrian.crea.gov.it/), which collect the information 

coming from water management authorities (i.e. Reclamation 

Consortia and other Irrigation agencies). Nevertheless, the level of 

detail of the SIGRIAN database is often not enough accurate for a 

proper evaluation of irrigation water uses. 

At the farm scale, huge progresses have been made for reaching 

water saving measures in irrigated agriculture, including the adoption 

of irrigation scheduling based on automated drip irrigation systems 

(Chaudhry & Garg, 2019). However, farmers often rely only on 

intuition to determine irrigation amounts (McCown et al., 2012). 

Under this scenario, satellite Remote Sensing (RS) techniques 

offer great tools for retrieving spatially distributed information about 

the irrigated areas (Ozdogan et al., 2010), as well as for quantifying 

the Crop Water Requirements (CWR) at high temporal resolution and 

at different spatial scales thanks to the growing number of available 

satellites (Gong et al., 2019; Khanal et al., 2020). Therefore, RS 

represents a potential tool to assist EU member states to meet their 

obligations under the WFD (Chen et al., 2004) and the individual 

farmers to improve precision irrigation criteria. 

Generally, most available RS-based models for estimating the 

https://sigrian.crea.gov.it/
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crop evapotranspitation (ETc) require a complete set of agro-

meteorological data, including air temperature (Tair), wind speed (u), 

solar radiation (Rs), and relative humidity (RH) (e.g. Ramírez-Cuesta 

et al., 2019a; Vuolo et al., 2015). Furthermore, precipitation data is 

required to determine the Irrigation Water Requirements (IWR). 

Traditionally, agro-meteorological variables are measured by 

automatic weather stations, which are not evenly spatially distributed. 

Moreover, meteorological data are often affected by substantial time 

gaps. In order to overcome these limitations, the use of alternative data 

sources (e.g. forecast data, reanalysis data) may offer consistent series 

of multiple agro-meteorological parameters all around the globe.  

1.2 State of the art 

1.2.1 Remote Sensing of irrigated agriculture 

RS is the science of acquiring and analysing information about 

objects or phenomena without entering in contact with them (Lillesand 

and Kiefer, 1979). Specifically, it refers to the identification of Earth 

features by detecting the electromagnetic radiation that is reflected 

and/or emitted by its surface. Due to the synoptic nature of the data 

and readily available archives of imagery, RS offers great tools for 

monitoring irrigation. Additionally, remotely sensed data are also less 

expensive and time-consuming than traditional statistical surveys that 

may require aerial photography over large areas, making RS 

particularly valuable (Ozdogan et al., 2010). 

Fig. 1.1 shows a summary of the main RS approaches for 

supporting irrigated agriculture, i.e. the identification of the irrigated 

areas and the estimation of the CWR.
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Fig. 1.1. Main RS approaches for supporting the irrigated agriculture 
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Several studies in literature have shown that satellite RS offers 

useful and efficient methods for mapping irrigated areas and estimate 

CWR. Although there are many RS models and approaches, there is 

no consensus on which one is the more suitable. Each method has both 

advantages and disadvantages relative to the others. Future researches 

are oriented to integrate different methods by taking advantage of their 

respective advantages and compensating for their limitations. 

1.2.1.1 Estimation of Crop Water Requirements 

CWR can be defined as the amount of water required to manage 

the losses due to ETc. ETc, that is the evapotranspiration from disease-

free, well-fertilized crops, grown in large fields, under optimum soil 

water conditions, and achieving full production under the given 

climatic conditions, was recognised as significant proxy for 

scheduling irrigation (Allen et al., 1998; Gong et al., 2019). In the last 

years, several satellite-based models have been developed for 

determining spatially distributed ETc estimates at different spatial 

scales. The most common approaches are the FAO-56 method and the 

Surface Energy Balance (SEB) method. However, there is no 

consensus on which approach is the more suitable because each of 

them has its own advantages and limitations.  

FAO-56 method, based on Penman-Monteith (P-M) equation, 

is the standard procedure for estimating ETc (Allen et al., 1998). Two 

main approaches can be distinguished: the “direct calculation” and the 

“two-step” procedure. The direct calculation, or one-step approach, 

computes ETc estimates applying the P-M equation with appropriate 

values of canopy variables, such as crop height, surface albedo (ɑ) and 

Leaf Area Index (LAI), and meteorological data. The two-step 

procedure estimates ETc as a product of two factors: the evaporative 

power of the atmosphere, the ET0, and the crop coefficient (Kc), which 

includes: a transpiration component, i.e. the basal crop coefficient 

(Kcb), and a soil evaporative component, i.e. the evaporation 
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coefficient (Ke) (Allen et al., 2011; Calera et al., 2017; D’Urso et al., 

2010). 

In the direct calculation, the canopy parameters are related to 

the surface properties, and specifically the surface and canopy 

resistances, as well as the net radiation (D’Urso et al.,1999). Since for 

a crop in standard conditions, a minimum value of stomatal resistance 

can be considered for most herbaceous crops (≈100 sm−1), the surface 

resistance became a function of LAI only. During recent years, several 

authors used visible (VIS) and near-infrared (NIR) information to 

estimate ɑ and LAI, allowing to adapt the P-M equation to be used 

directly with RS (Vanino et al., 2018; Vuolo et al., 2015). 

In the two-step procedure, some pioneers (Bausch and Neale, 

1987; Heclman et al., 1982; Neale et al., 1990) provided empirical 

evidence about the direct relationship between the Kcb values with the 

VI derived from multispectral satellite images. It results from the 

ability of VIs to measure the radiation absorbed by the vegetation, as 

the main driver of the evapotranspiration process (Pôças et al., 2020). 

Among the VI, the Normalized Difference Vegetation Index (NDVI) 

or the Soil Adjusted Vegetation Index (SAVI), derived from spectral 

observations in the VIS and NIR region, are the most used (D’Urso 

and Calera, 2006). Recently, several RS-based models applied this 

kind of approach. For instance, Ramírez-Cuesta et al. (2019b) 

developed an ArcGIS toolbox (ArcDualKc model) which integrates 

the two-step procedure with satellite data, retrieving accurate ETc 

estimates in a lettuce plot and in a peach orchard located in Spain. 

On the other hand, SEB methods represent one of the oldest RS-

based approach. They asses ETc as a residual of the land surface 

energy balance equation (Bastiaanssen et al., 1998), by using ground-

based ancillary data and remotely sensed data in the VIS, NIR and 

thermal-infrared (TIR) bands. The surface temperature values, derived 

from the TIR imagery, and the aerodynamic temperature, depending 

on surface aerodynamic roughness, wind speed and the coupling of 
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soil and canopy elements to the atmosphere, play a key role. Two main 

models are based on SEB, the One-source SEB models and the Two-

sources SEB models. One-source SEB models consider the surface as 

a whole, and so without distinguishing the separate contributions from 

soil and vegetation components. The main contributions were the 

Surface Energy Balance Algorithm for Land (SEBAL; Bastiaanssen 

et al., 1998), and the Mapping Evapotranspiration with high 

Resolution and Internalized Calibration (METRIC; Allen et al., 2007). 

SEBAL requires infrared images and field information on shortwave 

atmospheric transmittance, surface temperature and vegetation height, 

for estimating the spatial variation of most essential 

hydrometeorological parameters empirically. METRIC is based on 

SEBAL and calibrates the SEB internally using two anchor pixels (hot 

and cold pixels) for reducing computational biases inherent to the RS-

based energy balance. Recently, Ramírez-Cuesta et al. (2020) 

implemented METRIC in an ArcGIS Toolbox (METRIC-GIS), 

testing the energy balance components in semi-arid conditions in 

Spain. 

On the contrary, two-sources SEB models divide the surface 

into two layers, usually soil surface and canopy, in which the energy 

and vapor fluxes interact between the components. The earliest two-

source SEB models include those of Kustas (1990) and Norman et al. 

(1995). Based on the first contributions, several studies were carried 

out to improve the models (Anderson et al., 1997; Su, 2002; Sun et al., 

2009). In the last years, some authors applied different SEB models 

comparing the performance. For instance, Wagle et al. (2017) applied 

five different SEB models for estimating daily ETc in high biomass 

sorghum, in Chickasha. Consoli and Vanella (2014) and Gonzalez-

Dugo et al. (2009) computed ETc using one-source and two-source 

models, in Italy and Iowa, respectively, showing the suitability of SEB 

under conditions of moisture stress, compared to FAO-56 two-step 

procedure. 
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However, the current limited spatial resolution in thermal 

domain restricts the use of these models at field scale, especially when 

the plot size is smaller than the pixel resolution (Ramírez-Cuesta et al., 

2019a). 

1.2.1.2 Identification of irrigated areas 

Irrigated areas are defined as those agricultural lands that 

receive water supplies by artificial means to offset periods of 

precipitation shortfalls during the crop growing period (Ozdogan et 

al., 2010). Irrigated agriculture is essential for increasing crop 

production and ensuring the global food yield (Cai & Rosegrant, 2002; 

Jin et al., 2016). For this reason, detailed spatial information on the 

irrigated areas is essential for supporting agriculture water 

management (Ambika et al., 2016). In particular, accurate mapping of 

irrigated areas could allow a better understanding of water use and 

food production patterns, supporting stakeholders to formulate more 

suitable water management strategies to achieve higher crop water 

productivity (Chance et al., 2017). 

Different approaches can be applied for identifying the irrigated 

areas, varying in scale (i.e. local, regional and global), data and 

process requirements (Ozdogan et al., 2010).  

Two types of mapping methods emerge as most common: visual 

interpretation and digital classification. Visual interpretation 

represents the traditional approach. It has been applied for identifying 

the irrigated areas in many researches (Draeger, 1977; Kolm and Case, 

1984; Rundquist et al., 1989; Thelin and Heimes, 1987; 

Thiruvengadachari, 1981). Despite its accuracy, due to human 

expertise, visual interpretation is a cost and time-intensive process.  

On the other hand, digital classification is used for overcoming 

these matters. Optical RS has been used for digital classification of 

irrigated areas by several authors (Akbari et al., 2006; Bolognesi et al., 

2020; Jin et al., 2016; Nhamo et al., 2018). Single-date imagery 
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acquired during the peak of the crop growing season can be used for 

the classification of irrigated areas, although multi-temporal imagery 

approach (time series) is preferred as it covers the different phenology 

stages of the crops. The most common approach is based on the multi-

temporal analysis of NDVI, due its ability to show a considerable 

difference between irrigated and non-irrigated pixels (Ozdogan et al., 

2006, 2010). In fact, NDVI has the capability to measure green 

biomass and the existing strong correlation between green biomass 

and the available moisture for vegetation (Pervez & Brown, 2010). For 

instance, Bolognesi et al. (2020) applied this approach for mapping 

the actual extent of irrigated areas in Italy in semi-arid conditions. In 

their study, rainfed areas and irrigated areas were classified on the 

basis of the analysis of NDVI time series and accumulated rainfall 

data. 

However, this approach shows some limitations, especially in 

areas where the same crop type is grown with and without irrigation 

during the same growing season. In these areas, as suggested by 

Ozdogan et al. (2010), the temporal NDVI profiles of both irrigated 

and non-irrigated crops may show an identical pattern, emphasizing 

the need for a more sensitive index to make this distinction. 

Additionally, optical RS applications depend on atmospheric 

conditions. For areas with frequent cloud cover, these methods may 

not be adaptable (Gao et al., 2018). 

The use of microwave RS offers a good alternative to optical 

RS for mapping irrigated areas also under cloudy conditions, due to 

the ability of microwaves to penetrate through vegetation canopy and 

underlying soil, especially at lower frequencies (Sadeghi et al., 2015, 

2017). Specifically, microwave domain measurements can be used to 

estimate soil moisture dynamics because the pronounced contrast 

between the dielectric constant values of the wet and dry soils 

(Baghdadi & Zribi, 2016; Lakhankar et al., 2009). Kumar et al. (2015) 

investigated the capability of several microwave remotely sensed soil 
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moisture products, including Advanced SCATterometer (ASCAT), 

Advanced Microwave Scanning Radiometer – Earth Observing 

System (AMSR-E), European Space Agency Climate Change 

Initiative Soil Moisture (ESA CCI SM), and Soil Moisture and Ocean 

Salinity (SMOS), while Lawston et al. (2017) showed the capability 

of the enhanced version of Soil Moisture Active Passive (SMAP) to 

detect the irrigation signal. Although these products have shown great 

potential for monitoring soil moisture dynamics they consider both 

rainfall and irrigation effects on soil moisture (Karthikeyan et al., 

2020) and may require calibrations to account for surface roughness 

which causes perturbation of the microwave signal (Shi et al., 2006). 

Additionally, the application of microwave-based retrieval of soil 

moisture is not well suited for small-scale applications because the 

very coarse resolution, especially when compared with the higher 

spatial resolution outputs of optical methods (Sadeghi et al., 2017; Yue 

et al., 2019). More recently, several authors exploited instead Sentinel-

1 Synthetic Aperture Radar (SAR) time series to map irrigated fields 

(Bazzi et al., 2019a,b; Gao et al., 2018). Specifically, based on the 

multi-temporal analysis of backscatter time series using vertical-

vertical (VV) and vertical-horizontal (VH) polarizations, their studies 

showed that VV resulted more sensitive for characterizing the soil 

moisture conditions, while VH was more sensitive for monitoring the 

vegetation status. However, more studies exploiting this approach are 

required (Dari et al., 2021). 

Both optical and microwave RS methods are used as inputs for 

mapping the irrigated areas and for distinguishing the different crops 

applying several classification algorithms. Usually, two main 

classification methods are distinguished - the pixel-based (P-B) 

classification and the object-based (O-B) classification. The 

traditional methods of classifying RS images are based upon P-B 

classification. In this method, each individual image pixel is analysed 

and classified according to its spectral features. P-B classification 
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methods have the limits of not considering the spatial relationships of 

landscape features (Schiewe et al., 2001). On the other hand, O-B 

classification has been identified as a method for incorporating spatial 

context into the classification process (Powell and Brooks, 2008). The 

assumption of O-B classification is that a pixel is very likely to belong 

to the same class as its neighbouring pixel. This method incorporates 

two steps - segmentation and classification. In the segmentation phase, 

homogeneous image objects are derived from both spectral and spatial 

information, while in the classification phase, image objects are 

classified in classes of the same semantic significance using 

established classification algorithms (Benz et al., 2004; Civco et al., 

2002; Powell and Brooks, 2008). 

In current classification methods, two basic categories exist - 

the unsupervised classification and the supervised classification. The 

unsupervised classification is a type of P-B classification that uses 

clustering to identify groups of pixels with similar pattern. Within the 

several clustering algorithms that are given in literature, the most 

common is k-means (Dari et al., 2021; Ragettli et al., 2018). 

Unsupervised classification is quite quick and easy to run, and it does 

not require an extensive prior knowledge of the area to classify. On 

the contrary, the identification and labelling of the classes after the 

classification is expected. The supervised classification instead, 

involves the use of training areas associated with specific classes, 

provided by the user, from which spectral signatures are determined. 

Then, the computer algorithm uses the spectral signatures from these 

training areas for classifying the whole image. The most common 

supervised classification algorithms include Artificial Neural 

Networks (ANN), Support Vector Machine (SVM) and Random 

Forest (RF) (Bolognesi et al., 2020; Magidi et al., 2021; Zurqani et al., 

2021). Despite supervised classification is more accurate than 

unsupervised classification, it requires ground reference data to build 

rule-based classifiers, and thus, the transferability in time and space of 
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these approaches is not always guaranteed, especially under different 

climate conditions (Ragettli et al., 2018; Pageot et al., 2020). 

1.2.2 Meteorological data sources 

Nowadays, an optimal irrigation management mainly depends on 

accurate estimates of the ET0, that is the evapotranspiration rate from 

a reference surface, not short of water (Allen et al., 1998). It is 

commonly calculated by using the P-M equation and popularized by 

the FAO-56 paper as a reference methodology for calculating CWR 

(Allen et al., 1998). The use of the P-M approach requires a reliable 

and complete set of site-specific agrometeorological data, including 

Tair, u, Rs, and RH.  

Usually, agrometeorological variables are measured by automatic 

weather stations. Their data integrity must be ensured by proper data 

quality assessment and control procedures (De Pauw et al., 2000; 

Doraiswamy et al., 2020). However, ground-based observations could 

be affected by several errors, mainly due to the sensor properties, such 

as their accuracy, settings, instrument drift or temporal data sampling 

frequency (Beven, 1979; Hupet and Vanclooster, 2001; Meyer et al., 

1989). Other shortcomings are related to the agrometeorological time-

series consistency. The time series can suffer from substantial time 

gaps (Capra et al., 2013) and often protocols for correcting and/or 

estimating poor quality or missing data need to be applied (see, e.g., 

Pereira et al., 2015). Moreover, the agrometeorological data 

representativeness of well-watered conditions needs to be checked 

before implementing them in the ET0 approach (Pereira et al., 2015). 

Despite the utmost importance of observed agrometeorological data 

for agriculture purposes, the agrometeorological networks are often 

sparse over the territory, especially in arid zones (De Pauw et al., 

2000). Sometimes, data access is another critical point for end-users 

because data is managed and distributed by different regional services 

at the National level (Pelosi et al., 2021).  
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To compensate for the lack of spatial and temporal distributed 

information, alternative weather data sources have steadily developed, 

such as the use of interpolation methods from gauge-based 

observations, the adoption of satellite-based datasets, or the creation 

of gridded datasets obtained by adjusting the spatial interpolation 

estimates with satellite observations (Pelosi et al., 2020). Moreover, 

during the last century, great advances have been reached in 

agrometeorological data forecasting using global and regional 

numerical weather prediction (NWP) models (Srivastava et al., 2013).  

NWP are based on numerical integration of the hydrodynamic 

equations governing atmospheric motions using deterministic or 

probabilistic approaches, requiring well-defined initial conditions 

(Benjamin et al., 2019). These NWP models can refer to different 

spatial and temporal scales (from mesoscale to local or microscale), 

varying their parametrizations and horizontal and vertical resolutions. 

Across Europe, different consortiums provide meteorological 

forecasting services, such as HIgh Resolution Limited Area Model 

(HIRLAM), Aire Limitée Adaptation dynamique Développement 

InterNational (ALADIN), European Centre for Medium-Range 

Weather Forecasts (ECMWF), and European Consortium for Small-

scale Modelling (COSMO). The opportunity of integrating weather 

forecasts into irrigation scheduling has become more usable in recent 

years. In fact, the adoption of NWP models for forecasting ET0 with 

days ahead is particularly relevant for providing irrigation advices to 

farmers in operative scenarios, because it permits the irrigation 

scheduling based on expected weather conditions rather than on 

intuition or past weather data. Several studies have already exploited 

their potential for supporting sustainable irrigation management (e.g. 

Chirico et al., 2018; Lorite et al., 2015; Medina et al., 2018; Negm et 

al., 2017; Pelosi et al., 2016; Vanella et al., 2020). As an example, 

Vanella et al. (2020) showed that the use of forecast 

agrometeorological estimates provided by COSMO, opens promising 
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perspectives for assessing the ET0 in different agriculture contexts, 

particularly under conditions of water scarcity, instead than using past 

agrometeorological data.  

However, caution need to be referred to forecast uncertainties 

because they could affect decision making in agricultural systems, 

causing, for instance, inaccuracies on irrigation requirement 

estimations (Cao et al., 2019) and on crop growth predictions 

(McDonnell et al., 2019). Sources of uncertainties on forecasted 

agrometeorological variables can be ascribed to specific micro-

climate conditions (e.g., Coleman and DeCoursey, 1976; Irmak et al., 

2006; Liang et al., 2008) and/or to their sensitivity during the season 

of the year (e.g., Bakhtiari and Liaghat, 2011; Ramirez-Cuesta et al., 

2017; Yang et al., 2016). In addition, the quality of the forecasted 

variables used as input for ET0 depends on terrain complexity (e.g. 

wind speed, Drechsel et al., 2012; Cai et al., 2007; Ramirez-Cuesta et 

al., 2017; Yang et al., 2016) or forecasting lead times (e.g. from 3-day 

to 9-day, Cao et al., 2019; Chirico et al., 2018; Lorite et al., 2015; Luo 

et al., 2014, 2015; Pelosi et al., 2016; Perera et al., 2014; Xiong et al., 

2016; Yang et al., 2016).  

Besides the forecast data, the use of atmospheric reanalysis is 

another alternative weather data source. Atmospheric reanalysis has 

generated increasing interest in the recent decade, due to its ability to 

provide complete and consistent time-series of multiple 

meteorological parameters at a global scale by covering several 

decades (Tarek et al., 2020). From a theoretical point of view, the 

reanalysis process is a retrospective analysis of past historical data. 

This process makes use of the ever-increasing computational 

resources, recent versions of NWP models and assimilation schemes. 

In general, the reanalysis approaches assimilate a wide array of 

atmospheric and ocean measured and remotely sensed information 

within a dynamical–physical coupled numerical model (Poli et al., 

2016). One of the recognized advantages of using reanalysis 



1. Introduction 

16 

approaches is that their outputs are not directly dependent on the 

density of ground-based observational networks. Thus they have the 

potential to provide variables in areas with little and/or no surface 

coverage (Tarek et al., 2020). Moreover, Pelosi et al. (2020) reported 

that reanalysis data can represent an efficient data source for planning 

and design studies applied to irrigation water management.  

Currently, several modelling centres provide reanalysis products at 

variable spatial and temporal scales (Lindsay et al., 2014; Chaudhuri 

et al., 2013). As an example, the ECMWF periodically applies its 

forecast models and data assimilation systems to reanalyse archived 

observations for generating global data sets describing the recent 

history of the atmosphere, land surface, and oceans. The latest released 

ECMWF reanalysis products are ERA5 single level (ERA5) and 

ERA5 Land (ERA5-L), which are being produced within the 

Copernicus Climate Change Service and freely distributed since 2019 

(https://climate.copernicus.eu/). The first dataset, ERA5, covers the 

entire globe from 1979 at a spatial resolution of about 30 km 

(depending on latitude). The second dataset, ERA5-L, has been 

produced by replaying the land component of the ERA5 climate 

reanalysis, with a horizontal spatial resolution of 9 km. Specifically, 

ERA5-L uses Tair, RH and air pressure, in a process of atmospheric 

forcing, as input to control the simulated land fields. These 

atmospheric variables are corrected to account for the altitude 

difference between the grid of the forcing and the higher resolution 

grid of ERA5-L (Muñoz-Sabater, 2019). A comprehensive review of 

the state-of-the-art associated with the use of ERA5-L for land and 

environmental applications is presented by Muñoz-Sabater et al. 

(2021). They demonstrated the added value of ERA5-L reanalysis 

products, in comparison to ERA-Interim and ERA5, for estimating a 

wide range of in situ observations, even if they have not evaluated the 

performance of the reanalysis products in predicting ET fluxes.  

https://climate.copernicus.eu/
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1.3 Aim of the Thesis 

Under this state-of-the-art, the general aim of the Thesis was to 

develop and test a methodological approach, based on the use of RS 

and alternative meteorological data sources for supporting the 

planning and the monitoring of irrigation water uses at different spatial 

scales. In detail, the Thesis would set the basis for assisting: (i) 

individual farmers at better planning the irrigation scheduling and, (ii) 

water management authorities at monitoring irrigated areas, and 

detecting eventual unauthorized water uses. This will allow the 

promotion of efficient water saving strategies and the accomplishment 

of the requirements of the water-related policies, improving the 

sustainability of the irrigated agriculture. 

The specific objectives of the Thesis are: 

(i) to assess the reliability of RS models combined with 

forecast meteorological data for obtaining a priori 

spatially distributed ETc estimates at the farm scale; 

(ii) to develop and test a stand-alone optical RS method 

able to detect the irrigated areas under different climate 

conditions. 

(iii) to explore the effectiveness of using the climate 

reanalysis data as a potential data source for predicting 

the main agrometeorological variables and estimating 

the ET0 at the district scale, in different climate contexts 

within the Italian territory; 

(iv) to assess the use of the climate reanalysis and the spatial 

interpolation methods for retrieving spatially 

continuous distributed precipitation estimates at the 

basin scale;  
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1.4 Thesis outline 

The present Thesis has been arranged as a scientific papers 

collection, providing single and self-standing Chapters which 

represent published or accepted scientific articles, that meet the 

objectives of the Thesis. The full citation of the articles is reported in 

the first page of each Chapter. In order to facilitate the reading, a short 

overview of the described studies is reported below: 

Chapter 2 - This study aims at assessing the reliability of the 

ArcDualKc model, based on the FAO-56 dual crop coefficient, for 

deriving spatially distributed estimates of Kc and ETc in a deficit 

irrigated (DI) orange orchard. These were obtained using Sentinel-2 

satellite imagery in combination with measured and forecast 

meteorological data provided by the nearest weather station and by 

COSMO model, respectively. 

Chapter 3 - This study aims at developing and testing a stand-

alone optical RS approach able to detect the irrigated areas under 

different climate conditions. Specifically, it combines the use of the 

unsupervised classification and the OPtical TRApezoid Model 

(OPTRAM) for distinguishing and mapping high-resolution irrigated 

and non-irrigated areas. 

Chapter 4 - This study explores the reliability and consistency 

of the global ERA5 single levels and ERA5-Land reanalysis datasets 

in predicting the main agrometeorological estimates commonly used 

for crop water requirements calculation. In particular, the reanalysis 

data was compared, variable-by-variable, with in situ 

agrometeorological observations obtained from automatic weather 

stations.  

Chapter 5 - This study provides a specific focus on precipitation 

variable, that has not treated on chapter 4. Specifically, the use of 

alternative data sources, i.e. interpolation methods and ERA5-Land 

reanalysis data, was combined for improving the spatially distributed 



1. Introduction 

19 

precipitation estimates at the spatial basin scale. 

Chapter 6 - This Chapter summarizes the main conclusions 

provided separately by each presented study, highlighting the main 

findings of the Thesis and the future perspectives. 

Chapter 7 - This Chapter reports the other research and 

academic activities carried out during the 3 years of the Ph.D. course. 
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2 Integrating forecast meteorological data into 

the ArcDualKc model for estimating spatially 

distributed evapotranspiration rates of a citrus 

orchard1 

Abstract 

In the last years, several satellite-based models, using measured 

or forecast meteorological data, have been developed for determining 

spatially distributed ETc estimates. The study herein presented aims at 

assessing the reliability of the ArcDualKc model, based on the FAO-

56 dual Kc, for deriving spatially distributed estimates of Kc and ETc 

in a DI orange orchard. Daily ETc and dual-Kc values were obtained 

using Sentinel-2 satellite imagery in combination with measured and 

forecast meteorological data provided by the nearest weather station 

and by COSMO model, respectively. Overestimations on Kc and ETc 

resulted from the study when using forecast instead of measured 

meteorological data (average PBIAS of 7.62% and 26.24%, 

respectively); this might be caused by some inaccuracies in 

meteorological predictions. The Ke derived by the ArcDualKc model 

resulted similar between the DI and the fully irrigated treatments. 

Differences up to 6% in terms of Kc and ETc were identified among 

the irrigation strategies, mainly due to variations of the Kcb. Despite 

the reliability of the ArcDualKc model, the obtained results might be 

                                                      
1 A modified version of this Chapter was published as Longo-Minnolo, G., 

Vanella, D., Consoli, S., Intrigliolo, D. S., & Ramírez-Cuesta, J. M. (2020). 

Integrating forecast meteorological data into the ArcDualKc model for 

estimating spatially distributed evapotranspiration rates of a citrus orchard. 

Agricultural Water Management, 231, 105967. 
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influenced by the heterogeneity of Sentinel-2 pixel, containing 

vegetated and bare soil surfaces, highlighting the need to integrate the 

model with ground-based data or by using higher-resolution images. 

 

Keywords: Remote sensing data; Modelling; Sentinel-2; Crop 

coefficients; Precision irrigation 

2.1 Introduction 

Irrigation contributes to the greatest amount of water 

consumption among several economic sectors (Dubois, 2011) 

especially in semi-arid areas, where water deficit is a limiting factor 

for crop production (Singh et al., 2017). A well scheduled and dosed 

irrigation regime is essential for matching crop water requirements 

(Gu et al., 2017), and vice-versa accurate estimations of crop 

evapotranspiration (ETc) represent a significant proxy for scheduling 

irrigation (Gong et al., 2019). 

Several satellite-based models have been developed in the last 

30 years for determining spatially distributed ETc estimates at 

different spatial scales (Zhang et al., 2016; Mokhtari et al., 2018; 

Olivera-Guerra et al., 2018; Ramírez-Cuesta et al., 2019a). In general, 

these models are divided in two categories: those based on the SEB 

and those based on VI. The first category computes the latent heat flux 

and thus ETc using ground-based ancillary data and remotely sensed 

data in the VIS, NIR and TIR portions of the electromagnetic spectrum 

(Zhang et al., 2016). However, the current limited spatial resolution in 

thermal domain restricts the use of these models at field scale, 

especially when the plot size is smaller than the pixel resolution 

(Ramírez-Cuesta et al., 2019a). The second category of models 

computes ETc from empirical site-specific relationships between the 

fraction of ground covered by vegetation and VI derived from the 

canopy reflectance in VIS and NIR. These models are usually based 
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on the FAO-56 approach (Allen et al., 1998), which estimates ETc by 

multiplying ET0 by a single or dual Kc. In the dual Kc approach, Kc 

accounts for both plant transpiration (T) and soil evaporation (E) 

terms, represented by Kcb and Ke, respectively (Allen et al., 2018).  

The dual Kc approach is often applied for its simplicity and 

operational basis (Consoli et al., 2016; Olivera-Guerra et al., 2018). In 

fact, it requires few inputs including phenological stages, irrigation 

amounts and standard meteorological data, even if a site-specific soil 

water balance is needed (Vanella et al., 2019). However, weather data, 

when available, are affected by large uncertainties, since they are 

estimated by spatial interpolation of sparse meteorological ground 

stations (Lorite et al., 2015). Nowadays, in order to overcome the 

limitation of available meteorological data, numerical weather 

prediction models are used to provide reliable forecast data (Pelosi et 

al., 2016; Chirico et al., 2018). Across Europe, different consortiums 

provide meteorological forecasting services, such as HIRLAM, 

ALADIN, ECMWF, COSMO. The use of forecast meteorological 

data for obtaining a priori ETc estimations can provide a great tool for 

managing irrigation scheduling and facing with extreme events 

(Chirico et al., 2018). 

In this study, spatially distributed estimates of Kc and ETc were 

retrieved at farm level by a geographic information system (GIS) 

procedure integrated into the ArcDualKc model (Ramírez-Cuesta et 

al., 2019b), which incorporated RS and separately measured and 

forecast meteorological data within the FAO-56 dual Kc approach. The 

main objectives of the study were (i) to assess the reliability of the 

ArcDualKc model combined with forecast meteorological data 

provided by COSMO model for obtaining a priori spatially distributed 

Kc and ETc, and (ii) to evaluate the ArcDualKc model performance to 

predict ET fluxes and Kc values of deficit irrigated plots in semi-arid 

Mediterranean conditions. 
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2.2 Materials and methods 

2.2.1 Site description 

The study was carried out in an orange orchard (Citrus sinensis 

(L.) Osbeck cv ‘Tarocco Sciara’) during the period May-October 2017 

(Day of the year, DOYs 128-288). The orchard, of around 1 ha, is 

located in Eastern Sicily (Southern Italy, Lentini, SR; 37°20' N, 14°53' 

E) and managed by Italian Council for Agricultural Research and 

Agricultural Economics Analyses (CREA-OFA, Acireale). The 

climate of the area is typical semi-arid Mediterranean, characterized, 

for the study period by average air temperature, relative humidity and 

cumulative precipitation of 24.8 °C, 63.6%, 182.2 mm, respectively. 

The soil texture is sandy loam, with θFC and θWP values of 0.28 and 

0.14 m3 m-3, respectively (Aiello et al., 2014). 

Different irrigation treatments were applied in the orange 

orchard (Fig. 2.1): (i) full irrigation (T1), supplying 100% of ETc using 

a surface drip irrigation system; (ii) sustained DI (T2), replacing 75% 

of ETc using a sub-surface drip irrigation system; (iii) regulated DI 

(T3), supplying 50% of ETc in those vegetative phases less sensitive 

to water stress conditions (normally the end of the physiological fruit 

drop) and 100 % of ETc during the remaining period; (iv) partial root-

zone drying (T4), supplying 50% of ETc alternatively on one side of 

the root-zone, while the other side was kept dry (Consoli et al., 2014; 

Consoli et al., 2017), and vice-versa every two weeks.  
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Fig.2.1. Irrigation treatments (T1 - full irrigation; T2 - sustained deficit 

irrigation; T3 - regulated deficit irrigation; T4 - partial root-zone drying) and 

satellite pixel grid superimposed at the study area. Location of pure pixels is 

reported as red points. 

2.2.2 ArcDualKc model description 

The original dual Kc approach proposed in the FAO Irrigation 

and Drainage Paper No. 56 (Allen et al., 1998), determines ETc on the 

basis of ET0, by separating Kc into Kcb, which describes crop 

transpiration, and Ke, which accounts for soil evaporation: 

 

ETc =  (Kcb + Ke) ET0      (1) 

 

In this study, an ArcGIS toolbox (ArcDualKc) developed by 

Ramírez-Cuesta et al., (2019b) was used in order to integrate the FAO-

56 dual Kc approach with satellite data in a GIS environment (ArcMap 

10, ESRI©). The ArcDualKc model has been already tested, retrieving 

accurate crop water demand estimates, in a lettuce plot and in a peach 
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orchard located in South-eastern Spain (Los Alcáceres, Murcia) 

(Ramírez-Cuesta et al., (2019b)).  

The ArcDualKc routine includes 2 sub-models: the first, was 

used to compute Kcb outputs (Kcb, ArcDualKc), while the second was run 

for obtaining Ke (Ke, ArcDualKc), dual Kc (dual Kc, ArcDualKc) and ETc 

estimations. 

In general, Kcb represents the baseline potential Kc in absence 

of the additional effects of soil wetting by irrigation or precipitation. 

According to Allen et al. (1998), this coefficient is usually considered 

as a tabulated value (Kcb, tab) (i.e. 0.65, 0.60 and 0.65, at initial, middle 

and final stages, respectively, for Citrus, with 70% canopy and no 

ground cover). 

In this study, Kcb, ArcDualKc was computed, within the first 

ArcDualKc sub-model, by using RS data, as function of SAVI 

(Gonzalez-Dugo et al., 2009; Consoli & Vanella, 2014 a, b): 

 

Kcb,ArcDualKc =  
Kcb,max

Fc,max
 (

SAVI − SAVImin

SAVImax − SAVImin
)    (2) 

 

where, SAVImax e SAVImin refer to a high LAI and bare soil, 

respectively; Fc,max is the maximum value of ground cover fraction (Fc) 

at which Kcb is maximal (Kcb,max). Kcb,max values (i.e. Kcb, adj) were 

obtained by adopting the approach proposed by Allen et al. (1998), 

that adjusts Kcb, tab at the middle and final stages considering the local 

RH and u2 conditions at the study area, as follows: 

 

Kcb,adj =  Kcb,tab + [0.04 (u2 − 2) − 0.004 (RHmin − 45)] (
h

3
)

0.3

 (3) 

SAVI was calculated, according to Huete (1988), as follows: 

 

SAVI =  (
ρNIR − ρRED

ρNIR + ρRED+L 
) (1 + L)     (4) 
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where, ρNIR and ρRED are the NIR and red reflectance of RS data; 

L is a soil normalization factor fixed at 0.5. 

Fc was defined as function of the NDVI (Gutman & Ignatov, 

1998), as follows: 

 

Fc =
NDVI − NDVImin

NDVImax − NDVImin
      (5) 

 

with NDVImax and NDVImin fixed to 1.00 and 0.01, respectively 

and NDVI values derived as in Rouse et al., (1974): 

 

NDVI =  
ρNIR − ρRED

ρNIR + ρRED 
       (6) 

 

Model calibration was necessary to refer Kcb,ArcDualKc values, 

exclusively, to the local conditions. Initially, the ArcDualKc first sub-

model was run using default parameters (eq. 2). For the Kcb,ArcDualKc 

calibration, SAVImax corresponded to the maximum value identified in 

the satellite image, whereas a constant value of 0.1 was assigned to 

SAVImin. Fc,max was then calculated by inverting eq. 2, considering 

SAVI parameter as the maximum SAVI value obtained among the 6 

pure pixels of T1 treatment, assuming that in these pixels there are no 

water stress conditions (i.e. Kcb,ArcDualKc = Kcb,max) (Fig. 2.1). 

In the second ArcDualKc sub-model, a daily soil water balance 

(SWB) was run for calculating the amount of soil water content 

available for evaporation in the soil surface layer (i.e. Ke), as follows:  

 

Ke,ArcDuakKc =  (Kc,max − Kcb) Kr     (7) 

 

where, Kc,max represents the maximum Kc value following 

precipitation or irrigation, adjusted for local RH and u2 conditions, 

calculated as indicated by Allen et al. (1998): 
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Kc,max = max ({1.2 + [0.04 (u2 − 2) − 0.004 (RHmin − 45)] (
h

3
)

0.3
} , {Kcb +

0.05})        (8) 

 

Kr is an evaporation reduction coefficient related to the topsoil 

water depletion (Allen et al., 1998), as follows: 

 

Kr =  
TEW − De,i

TEW− REW 
       (9) 

 

where, TEW (total evaporable water) is the maximum 

cumulative depth of evaporation from the soil surface layer when the 

topsoil has been completely wetted, with TEW = 1000 (θFC – 0.5 θWP) 

Ze; θFC and θWP are the soil field capacity and wilting point, 

respectively; Ze is equal to 0.1 m as reported by Allen et al. (1998); 

REW (readily evaporable water) is the maximum water depth that can 

evaporate from the soil surface layer in the energy limiting stage 

(Allen et al., 1998 suggest to fix a REW value of 10 mm for sandy 

loam soil); De,i represents the cumulative depletion of evaporation 

from soil surface estimated from a daily SWB, as follows:  

 

De,i = De,i−1 −  Pi − Ii + ET     (10) 

 

where, De,i and De,i – 1 refer to soil moisture depletion at the end 

of the day (i) and at the previous time steps (i-1); Pi and Ii refer to 

precipitation and irrigation on day i.; capillary rise, deep percolation 

and runoff were neglected (Consoli & Vanella, 2014 a, b). 

2.2.3 Remote sensing data 

In order to spatialize the dual Kc and ETc estimates, the 

ArcDualKc procedure was implemented using Sentinel-2 products 

(Level 1-C), provided by the European Space Agency (ESA, 
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https://sentinel.esa.int/). These RS products have a spatial resolution 

of 10 m in the VIS-NIR regions, with temporal resolution of 5 days 

(considering both Sentinel 2A and 2B satellites). Tab. 2.1 reports the 

available images within the study period, selected on the basis of clear 

sky condition (DOY, acquisition date and Satellite platform were 

reported for each image). 

Tab. 2.1. Available Sentinel 2A/B satellite images in May-October 2017 at the 

experimental site. 

DOY Acquisition date Satellite 

128 08/05/2017 Sentinel2A 
138 18/05/2017 Sentinel2A 
148 28/05/2017 Sentinel2A 
158 07/06/2017 Sentinel2A 
168 17/06/2017 Sentinel2A 
178 27/06/2017 Sentinel2A 
183 02/07/2017 Sentinel2B 
188 07/07/2017 Sentinel2A 
193 12/07/2017 Sentinel2B 
203 22/07/2017 Sentinel2B 
208 27/07/2017 Sentinel2A 
213 01/08/2017 Sentinel2B 
218 06/08/2017 Sentinel2A 
223 11/08/2017 Sentinel2B 
228 16/08/2017 Sentinel2A 
233 21/08/2017 Sentinel2B 
238 26/08/2017 Sentinel2A 
243 31/08/2017 Sentinel2B 
248 05/09/2017 Sentinel2A 
253 10/09/2017 Sentinel2B 
258 15/09/2017 Sentinel2A 
273 30/09/2017 Sentinel2B 
283 10/10/2017 Sentinel2B 
288 15/10/2017 Sentinel2A 

 

Only pure pixels (covering a sole irrigation treatment) were 

used for extracting Kc, ArcDualKc (and its components: Kcb, ArcDualKc and 

Ke, ArcDualKc) and ETc values from RS images, in order to avoid edge-

pixel contamination. Specifically, 6 pure pixels per treatment were 
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selected as samples for further analysis and comparisons, with a total 

of 24 pixels for the 1 ha orchard under study (Fig. 2.1). 

2.2.4 Measured and forecast meteorological data 

Measured and forecast daily ET0 estimates were used for 

feeding the ArcDualKc model (Fig. 2.2). These values were computed 

by Ref-ET software (Allen, 2009), using separately ground-based and 

forecast meteorological data, by following the P-M equation (Allen et 

al., 1998): 

 

ET0 =
0.408 Δ∙(Rn−G) +  γ ∙ 

37

T+273
 ∙ u2∙ (es−ea)

Δ + γ∙(1+0.34u2)
    (11) 

 

where, Rn is the net radiation at the reference crop surface (MJ 

m-2 h-1); G is the soil heat flux density (MJ m-2 h-1); T is the mean 

hourly air temperature Tair (°C);  is the slope of saturation vapour 

pressure curve at Tair (kPa °C-1); γ is the psychrometric constant (kPa 

°C-1); es is the saturation vapour pressure at Tair (kPa); ea is the average 

hourly actual vapour pressure (kPa); and u2 is the average hourly wind 

speed at 2 m height (m s-1). 

In particular, measured weather data were provided by a 

ground-based automatic meteorological station located about 2 km far 

from the experimental site (37.35°N, 14.91°E, 50 m a.s.l.) and 

managed by the Sicilian Agro-meteorological Information Service 

(SIAS, www.sias.regione.sicilia.it). Forecast meteorological data 

were provided by the atmospheric prediction COSMO model 

(https://www.cosmo-model.org/). Specifically, COSMO is a 

deterministic limited-area non-hydrostatic fully compressible 

atmospheric prediction model for forecasting operations on meso–β 

(20–200 Km) and meso–γ (2–20 Km) scales (Schättler et al., 2008; 

Steppeler et al., 2003). In this study, the COSMO model was run at 7 

https://www.cosmo-model.org/
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km horizontal resolution and the forecast was made for each hour until 

78 hours anticipation, which corresponds with lead times from 1 to 3 

days (1-day, 2-days, 3-days). Moreover, forecast cumulated 

precipitation, until the forecast time (P, mm) was incorporated into the 

ArcDualKc second sub-model. 

 
Fig. 2.2. Temporal evolution of daily ET0 (mm d-1) computed using measured 

and forecast meteorological data at different leading times (1-day, 2-days, 3-

days). 

2.2.5 Statistical performance 

The performance of the ArcDualKc model was evaluated by 

comparing separately its outputs (Kcb, ArcDualKc, Ke, ArcDualKc, Kc, ArcDualKc 

and ETc estimates) obtained, both by running the model with forecast 

meteorological data and with measured meteorological data.  

The adopted statistical indicators were: regression slope (b), 

coefficient of determination (R2; eq. 12), root-mean-square error 

(RMSE; eq.13), percent bias (PBIAS; eq.14); coefficient of variation 

(CV; eq.15).  
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R2 =  
(∑(Si−Ŝ)(Oi−Ô))

2

∑ Si−Ŝ)
2

∑(Oi−Ô)
2      (12) 

 RMSE =  √
∑ (Si−Oi)2n

i=1

n
      (13) 

PBIAS =  
∑(Si−Oi)

∑ Oi
 ∙ 100      (14) 

where 𝑆𝑖 is the simulated value, 𝑂𝑖 is the observed value, �̂� and 

�̂� are the averages of the data arrays of 𝑆𝑖 and 𝑂𝑖, and n is the numbers 

of observations. Specifically, the goodness of ArcDualKc model was 

evaluated respect to the FAO-56 tabulated values in terms of Kcb 

(Section 2.3.1), considering the Kcb, ArcDualKc and Kcb, adj as 𝑆𝑖 and 𝑂𝑖 

values, respectively. On the other hand, when analysing the 

performance of ArcDualKc using measured and forecast 

meteorological data (Section 2.3.2.1), the first were considered as 𝑂𝑖 

whereas the forecast corresponded to 𝑆𝑖. 

CV =  
SD

AM
 ∙ 100       (15) 

where, SD and AM are the standard deviation and the average 

of each data set.  
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2.3 Results 

2.3.1 Comparison of Kcb obtained from ArcDualKc and FAO-56 

models 

Fig. 2.3 shows the temporal evolution of the Kcb,ArcDualKc values 

obtained using ground-based meteorological measures (a) and 

forecast-based meteorological estimations at different lead times (b, 

1-day; c, 2-days; d, 3-days). In the same figure, Kcb,tab and Kcb,adj values 

are reported, together with Kcb,ArcDualKc values at the different irrigation 

treatments (T1-T4). During the growing season 2017, using ground-

based weather observations (a; Fig. 2.3), Kcb,ArcDualKc varies from 0.50 

to 0.56 in the development stage (dev in Fig. 2.3: DOYs 128 - 149), 

from 0.52 to 0.67 in the middle stage (mid in Fig. 2.3: DOYs 150 - 

269) and from 0.45 to 0.57 in the final stage (end in Fig 2.3: DOYs 

270 - 288). Instead, using forecast meteorological estimations (b, c, d; 

Fig. 2.3), Kcb,ArcDualKc, varies from 0.50 to 0.57 in the development stage 

(dev in Fig. 2.3: DOYs 128 - 149), from 0.52 to 0.80 in the middle 

stage (mid in Fig. 2.3: DOYs 150 - 269) and from 0.48 to 0.60 in the 

final stage (end in Fig. 2.3: DOYs 270 - 288).  
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Fig. 2.3. Temporal evolution of Kcb obtained by the ArcDualKc model (Kcb,ArcDualKc) at the different irrigation treatments (T1 - 

full irrigation; T2 - sustained deficit irrigation; T3 - regulated deficit irrigation; T4 - partial root-zone drying) from DOY 128 to 

288 (2017), using (a) meteorological measurements and (b-d) forecast meteorological estimations at 1-day, 2-days and 3-days lead 

times. 
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Tab. 2.2 reports the statistical performances (RMSE, PBIAS, 

CV) of the comparison between Kcb, ArcDualKc and the Kcb,adj obtained 

using as input measured and forecast meteorological data, 

respectively, at different lead times (1-day, 2-days, 3-days; “All days” 

refers to all leading times together). Statistical indicators refer to the 

different irrigation treatments supplied at the study site (T1-T4; ALL 

denotes all treatments together).  

 

Tab. 2.2. Statistical performance of the Kcb derived by ArcDualKc model 

(Kcb,ArcDualKc) compared with locally adjusted FAO-56 Kcb (Kcb, adj) obtained 

using as input measured and forecast meteorological data, respectively, at 

different lead times (1-day, 2-days, 3-days; “All days” refers to all leading times 

together).  

  Measured 1-day 2-days 3-days All days 

T1* 

RMSE 0.11 0.08 0.08 0.08 0.08 

PBIAS (%) -14.15 -6.69 -6.98 -7.78 -6.96 

CV (%) 7.64 10.70 10.96 11.59 11.07 

T2* 

RMSE 0.14 0.11 0.11 0.11 0.11 

PBIAS (%) -19.10 -12.01 -12.28 -14.36 -12.29 

CV (%) 7.66 11.20 11.45 11.64 11.41 

T3* 

RMSE 0.12 0.09 0.09 0.09 0.09 

PBIAS (%) -15.93 -8.60 -8.90 -10.06 -8.88 

CV (%) 7.95 11.18 11.32 11.87 11.44 

T4* 

RMSE 0.13 0.09 0.09 0.10 0.09 

PBIAS (%) -17.19 -10.01 -10.30 -11.75 -10.28 

CV (%) 8.31 11.05 11.21 11.95 11.39 

ALL* 

RMSE 0.13 0.09 0.09 0.09 0.09 

PBIAS (%) -16.59 -9.33 -9.62 -10.94 -9.60 

CV (%) 8.17 11.21 11.41 11.93 11.52 
* T1-T4 refer to full irrigation, sustained deficit irrigation, regulated deficit 

irrigation and partial root-zone drying treatments, respectively; ALL 

denotes all treatments together. 

 

Generally, good performances were obtained when comparing 

Kcb, ArcDualKc and Kcb,adj for all the irrigation treatments (ALL, Tab. 2.2), 
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with RMSE values of 0.09 and 0.13 by using forecast and measured 

meteorological data, respectively. However, underestimations were 

observed by using both forecast and measured meteorological data 

(PBIAS of -9.60% and -16.59%, respectively). The Kcb, ArcDualKc 

variability within the study area, assessed through the CV, was 

11.52% and 8.17% from forecast and measured meteorological data, 

respectively. 

Using measured meteorological data, the underestimations of 

Kcb,ArcDualKc were higher at the DI treatments (T2-T4; PBIAS ranging 

from -15.93 to -19.10% and RMSE from 0.09 to 0.11) respect to T1 

(PBIAS -6.96% and RMSE 0.08). Similarly, using forecast 

meteorological data, the underestimations of Kcb,ArcDualKc were higher 

at the DI treatments (T2-T4; PBIAS ranging from -8.88 to -12.29% 

and RMSE from 0.09 to 0.11) than at T1 (PBIAS -6.96% and RMSE 

0.08). No relevant differences were observed in terms of lead time, 

using both the approaches (Tab. 2.2). 

2.3.2 ETc and crop coefficients comparison 

Tab. 2.3 shows the average values (CV values in brackets) of 

Kcb,ArcDualKc, Ke,ArcDualKc, Kc,ArcDualKc and daily ETc (mm d-1) estimates, 

obtained by running the ArcDualKc model, separately with measured 

and forecast meteorological data at different lead times (1-day to 3-

days and all days).  

Specifically, Kcb,ArcDualKc oscillated from 0.56 (using measured 

data) to 0.64 (using 1-day time lead forecast meteorological data), and 

it resulted always lower when using measured meteorological data as 

input for the ArcDualKc model (Fig 2.3 and Tab. 2.3). Ke,ArcDualKc, 

independently of the meteorological data source, had values of 0.06-

0.07, and showed no significant differences among the irrigation 

treatments (Tab. 2.3). These results led to values of Kc,ArcDualKc and 

daily ETc ranging from 0.62 to 0.70 and from 3.61 to 4.85 mm day-1, 
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respectively (Figs. 2.4 and 2.5 and Tab. 2.3). Due to the lower values 

of Kcb, ArcDualKc and daily ET0 (Fig. 2.2) obtained using measured 

meteorological data, the daily ETc values resulted always lower than 

when using forecast meteorological data (Figs. 2.4 and 2.5 and Tab. 

2.3). 
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Tab 2.3. Average values (and coefficient of variation, CV) of Kcb, Ke, Kc and daily ETc (mm d-1) obtained from the ArcDualKc model using measured and forecast meteorological data at 

different lead times (1-day, 2-days, 3-days; “All days” refers to all leading times together) as inputs. 

 

    T1* T2* T3* T4* ALL* 

Kcb 

Measured 0.59 (0.08) 0.56 (0.08) 0.58 (0.11) 0.57 (0.08) 0.57 (0.08) 

1-day 0.64 (0.11) 0.60 (0.11) 0.64 (0.11) 0.62 (0.11) 0.62 (0.11) 

2-days 0.64 (0.11) 0.60 (0.11) 0.63 (0.11) 0.62 (0.11) 0.62 (0.11) 

3-days 0.64 (0.11) 0.60 (0.12) 0.62 (0.12) 0.61 (0.12) 0.62 (0.12) 

All days 0.64 (0.11) 0.60 (0.11) 0.63 (0.11) 0.62 (0.11) 0.62 (0.12) 

Ke 

Measured 0.06 (0.88) 0.06 (0.87) 0.06 (0.93) 0.06 (0.88) 0.06 (0.88) 

1-day 0.06 (1.01) 0.06 (1.01) 0.06 (1.01) 0.06 (1.01) 0.06 (1.01) 

2-days 0.06 (0.97) 0.06 (0.97) 0.06 (0.97) 0.06 (0.97) 0.06 (0.97) 

3-days 0.07 (0.91) 0.07 (0.91) 0.07 (0.91) 0.07 (0.91) 0.07 (0.91) 

All days 0.06 (0.96) 0.06 (0.96) 0.06 (0.96) 0.07 (0.96) 0.06 (0.96) 

Kc 

Measured 0.65 (0.11) 0.62 (0.12) 0.64 (0.14) 0.63 (0.11) 0.64 (0.11) 

1-day 0.70 (0.14) 0.66 (0.14) 0.69 (0.14) 0.68 (0.14) 0.68 (0.14) 

2-days 0.70 (0.14) 0.67 (0.15) 0.69 (0.14) 0.68 (0.14) 0.68 (0.14) 

3-days 0.70 (0.14) 0.67 (0.15) 0.69 (0.14) 0.68 (0.14) 0.69 (0.14) 

All days 0.70 (0.14) 0.67 (0.15) 0.69 (0.14) 0.68 (0.14) 0.68 (0.14) 

ETc  

(mm d-1) 

Measured 3.82 (0.32) 3.61 (0.31) 3.75 (0.36) 3.71 (0.32) 3.72 (0.32) 

1-day 4.80 (0.34) 4.53 (0.34) 4.71 (0.34) 4.65 (0.34) 4.67 (0.34) 

2-days 4.84 (0.35) 4.57 (0.35) 4.75 (0.35) 4.69 (0.35) 4.71 (0.35) 

3-days 4.85 (0.35) 4.58 (0.34) 4.76 (0.35) 4.70 (0.35) 4.72 (0.35) 

All days 4.83 (0.34) 4.56 (0.34) 4.74 (0.35) 4.68 (0.35) 4.70 (0.35) 
* T1-T4 refer to full irrigation, sustained deficit irrigation, regulated deficit irrigation and partial root-zone drying treatments, respectively; ALL denotes all treatments together. 



2. Integrating forecast meteorological data into the ArcDualKc model for estimating spatially distributed evapotranspiration 

rates of a citrus orchard 

48 

 

Fig. 2.4. Temporal evolution of the Kc obtained by the ArcDualKc model (Kc,ArcDualKc) at the different irrigation treatments (T1 - 

full irrigation; T2 - sustained deficit irrigation; T3 - regulated deficit irrigation; T4 - partial root-zone drying) from DOY 128 to 

288 (2017), using (a) measured and (b-d) forecast meteorological data at 1-day, 2-days and 3-days lead times. I and P refer to 

irrigation and precipitation, respectively. 
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Fig. 2.5. Temporal evolution of ETc computed by the ArcDualKc model (mm d-1) at the different irrigation treatments (T1 - full 

irrigation; T2 - sustained deficit irrigation; T3 - regulated deficit irrigation; T4 - partial root-zone drying) from DOY 128 to 288 

(2017), using (a) measured and (b-d) forecast meteorological data at 1-day, 2-days and 3-days lead times. I and P refer to 

irrigation and precipitation, respectively. 
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Figs. 2.6 and 2.7 show examples of the spatially distributed of 

Kc,ArcDualKc and daily ETc (mm d-1) estimates obtained by the 

ArcDualKc model at the experimental site, using separately as input 

measured (a, c, e) and forecast meteorological data (b, d, f). Figs. 2.6 

and 2.7 refers to DOYs 138, 218 and 283. Average values of 

Kc,ArcDualKc, using measured meteorological data, were, respectively, of 

0.55, 0.59 and 0.52 in DOY 138, 218 and 283 (Fig. 2.6), corresponding 

to daily ETc of 3.3, 4.4 and 1.8 mm·day-1 (Fig. 2.7). Higher values of 

Kc, ArcDualKc and ETc were obtained when using forecast meteorological 

data, with means of, respectively, 0.68, 0.69 and 0.60 (Fig. 2.6) and 

3.98, 6.08, 2.83 mm day-1 (Fig. 2.7) in DOY 138, 218 and 283, 

respectively. In general, the irrigation treatments were quite 

homogeneous in all DOYs, with the exception of the edges of the field, 

where the effects of the surrounding plots increase the heterogeneity 

(Figs. 2.6 and 2.7). 
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Fig. 2.6. Maps of Kc estimates from the ArcDualKc model (Kc,ArcDualKc) obtained 

using measured meteorological data (a, c, e) and averaged (1-day to 3-day lead 

times) forecast meteorological data (b, d, f) in DOYs 138, 218 and 283. T1-T4 

refer to full irrigation, sustained deficit irrigation, regulated deficit irrigation 

and partial root-zone drying treatments, respectively. 
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Fig. 2.7. Maps of daily ETc estimates from the ArcDualKc model (mm d-1) 

obtained with measured meteorological data (a, c, e) and averaged (1-day to 3-

day lead times) forecast meteorological data (b, d, f) in DOYs 138, 218 and 283. 

T1-T4 refer to full irrigation, sustained deficit irrigation, regulated deficit 

irrigation and partial root-zone drying treatments, respectively.  
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2.3.2.1 Measured versus forecast meteorological data 

The daily ET0 values obtained using measured and forecast 

meteorological data were 5.83 mm d-1 (CV 0.28) and 6.81 mm d-1 (CV 

0.27), respectively. Referring to the specific lead times of the forecast 

meteorological data, ET0 varied from 6.78 to 6.82 mm d-1 (CV 0.27-

0.28) from 1 day to 3 days. As shown in Tab. 2.3, slight differences 

were observed by comparing measured and forecast meteorological 

data (all days), with Kcb,ArcDualKc values of 0.57 (±0.08) and 0.62 (± 

0.12), respectively. No substantial differences for Ke,ArcDualKc were 

detected, with values of 0.06 using measured and forecast 

meteorological data. Similar differences were observed for Kc,ArcDualKc, 

which varies from 0.64 (±0.11) to 0.68 (±0.14) and in ETc, which 

oscillates from 3.73 (± 0.32) to 4.70 (±0.35) mm d-1, using measured 

and forecast meteorological data respectively.  

In terms of lead time (1-day, 2-days, 3-days), no relevant 

differences were observed for Kcb,ArcDualKc, (0.62; CV 0.11-0.12), 

Ke,ArcDualKc (0.06-0.07; CV 0.91-1.01) and Kc,ArcDualKc (0.68-0.69; CV 

of 0.14). These coefficients together with the daily ET0 estimations led 

to small ETc discrepancies, with values ranging from 4.67 to 4.72 mm 

d-1 (CV 0.34-0.35), from 1 to 3 days ahead, respectively. 

Tab. 2.4 reports the statistical indices (b, R2, RMSE, PBIAS) 

calculated by the ArcDualKc model (Kcb, ArcDualKc, dual Kc, ArcDualKc, 

ETc) at different lead times (1-day, 2-days, 3-days, all days) versus 

those values obtained with the measured meteorological data as input.  

Generally, overestimations were observed in terms of Kcb, 

ArcDualKc and ETc by using forecast meteorological data, with PBIAS 

ranging within 8.80-8.07% and 25.40-26.86% from 1 to 3 days ahead, 

respectively. Ke, ArcDualKc values were, instead, underestimated at 1-day 

forecast, with a PBIAS of -3.10% and overestimated at 2 and 3 days 

forecast, with PBIAS ranging within of 1.12-8.27% from 2 to 3 days 

ahead. RMSE values were steady for Kcb,ArcDualKc, Ke,ArcDualKc and 
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Kc,ArcDualKc values in terms of lead time (0.06, 0.04 and 0.07-0.08 

respectively), while they ranged from 1.23 mm d-1 to 1.29 mm d-1 for 

ETc, considering the different lead times. 
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Tab. 2.4. Statistical performance (b, R2, RMSE and PBIAS) of Kc and ETc estimates obtained by the ArcDualKc model using as input measured and forecast meteorological data, respectively, at 

different lead times (1-day, 2-days, 3-days; “All days” refers to all leading times together).  

 

    
Kcb Ke Kc ETc (mm d-1) 

    1day 2 days 3 days All days 1 day 2 days 3 days All days 1 day 2 days 3 days All days 1 day 2 days 3 days All days 

T1* 

b 1.09 1.09 1.08 1.09 0.91 0.94 0.98 0.94 1.07 1.08 1.08 1.08 1.25 1.26 1.27 1.26 

R2 0.73 0.74 0.74 0.74 0.55 0.55 0.53 0.54 0.71 0.70 0.66 0.69 0.76 0.77 0.80 0.74 

RMSE 0.06 0.06 0.06 0.06 0.04 0.04 0.04 0.04 0.07 0.07 0.08 0.07 1.27 1.32 1.30 1.30 

PBIAS (%) 8.78 8.58 8.08 8.48 -2.87 1.50 8.66 2.43 7.44 7.66 7.87 7.66 25.45 26.51 26.90 26.29 

T2* 

b 1.09 1.09 1.08 1.09 0.90 0.93 0.97 0.93 1.07 1.08 1.08 1.08 1.25 1.26 1.26 1.26 

R2 0.75 0.76 0.74 0.75 0.53 0.53 0.52 0.53 0.73 0.71 0.67 0.70 0.75 0.76 0.79 0.77 

RMSE 0.06 0.06 0.06 0.06 0.04 0.04 0.04 0.04 0.07 0.07 0.07 0.07 1.20 1.26 1.23 1.23 

PBIAS (%) 8.85 8.65 8.08 8.53 -3.50 0.60 7.75 1.61 7.36 7.59 7.79 7.58 25.42 26.50 26.86 26.26 

T3* 

b 1.09 1.09 1.08 1.09 0.91 0.93 0.98 0.94 1.08 1.08 1.08 1.08 1.25 1.26 1.26 1.26 

R2 0.75 0.76 0.75 0.75 0.55 0.55 0.53 0.54 0.70 0.68 0.64 0.68 0.77 0.77 0.80 0.78 

RMSE 0.06 0.06 0.06 0.06 0.04 0.04 0.04 0.04 0.07 0.07 0.08 0.07 1.25 1.30 1.28 1.28 

PBIAS (%) 8.81 8.60 8.08 8.50 -2.95 1.22 8.39 2.22 7.48 7.69 7.90 7.69 25.44 26.49 26.88 26.27 

T4* 

b 1.09 1.09 1.08 1.09 0.91 0.93 0.97 0.94 1.07 1.08 1.08 1.08 1.25 1.26 1.26 1.26 

R2 0.74 0.75 0.76 0.75 0.54 0.54 0.52 0.54 0.70 0.69 0.65 0.68 0.77 0.77 0.80 0.78 

RMSE 0.06 0.06 0.06 0.06 0.04 0.04 0.04 0.04 0.07 0.07 0.08 0.07 1.23 1.29 1.27 1.26 

PBIAS (%) 8.75 8.54 8.05 8.45 -3.06 1.17 8.27 2.13 7.34 7.56 7.81 7.57 25.30 26.37 26.81 26.16 

ALL* 

b 1.09 1.09 1.08 1.09 0.91 0.93 0.97 0.94 1.07 1.08 1.08 1.08 1.25 1.26 1.26 1.26 

R2 0.75 0.76 0.76 0.76 0.54 0.54 0.52 0.54 0.72 0.66 0.66 0.69 0.76 0.77 0.80 0.78 

RMSE 0.06 0.06 0.06 0.06 0.04 0.04 0.04 0.04 0.07 0.07 0.08 0.07 1.23 1.29 1.27 1.27 

PBIAS (%) 8.80 8.59 8.07 8.49 -3.10 1.12 8.27 2.10 7.41 7.62 7.84 7.62 25.40 26.47 26.86 26.24 
* T1-T4 refer to full irrigation, sustained deficit irrigation, regulated deficit irrigation and partial root-zone drying treatments, respectively; ALL denotes all treatments together. 
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2.3.2.2 Deficit irrigation versus full irrigation 

By comparing Kcb, ArcDualKc of the different irrigation treatments, 

slight differences were observed using both measured and forecast 

meteorological data (Tab 2.3); at full irrigation (T1) Kcb, ArcDualKc was 

of 0.61 whereas it varied between 0.60 to 0.63 (± 0.11) in all the DI 

treatment (T2-T4). Ke, ArcDualKc values were quite constant for all the 

irrigation treatments, with values of 0.06-0.07 (± 0.96). The 

underestimations observed in Kcb at the DI treatments resulted in lower 

Kc,ArcDualKc and ETc rates compared to the full irrigation (up to 5% and 

6%, respectively), with average Kc,ArcDualKc of 0.67-0.69 (± 0.14-0.15) 

versus 0.70 (± 0.14), respectively; ETc values were in the range 4.56-

4.74 (± 0.34-0.35) mm d-1 in the DI treatment versus 4.83(± 0.34) mm 

d-1 in T1. The obtained results were quite similar using measured 

meteorological data as input for computing the Kcb, ArcDualKc, with 

values of 0.59 (± 0.08) in T1 and varying from 0.56 to 0.58 (± 0.08-

0.11) in the DI treatments (T2-T4). No differences between T1 and 

T2-T4 were observed in terms of Ke,ArcDualKc, with a mean of 0.06 (± 

0.87-0.93). Kc,ArcDualKc and ETc values (T2-T4) decreased up to 6% in 

the DI treatments if compared to T1, with average Kc,ArcDualKc of 0.62-

0.64 (± 0.11-0.14) in T2-T4 versus 0.65 (± 0.11) in T1 and average 

ETc of 3.6-3.7 mm d-1 (± 0.33) in T2-T4 versus 3.8 mm d-1 (± 0.32) in 

T1. 

2.4 Discussion 

The Kcb,ArcDualKc values obtained in the study were lower than 

those tabulated by the FAO-56 paper and adjusted during the 

development and final phenological stages for local meteorological 

conditions. The observed discrepancies were mainly caused by the 

model calibration procedure, which selects, within the full irrigation 

treatment T1, pixels that better represent potential irrigation 

conditions (i.e. maximum SAVI and Fc). On the contrary, Kcb, ArcDualKc 
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values on mid plant stage resulted higher than Kcb,tab mainly due to the 

specificity of the local climate condition (Consoli et al., 2006a) 

characterised by semi-arid Mediterranean climate conditions, that 

most probably does not match the sub-humid climate conditions (with 

RHmin of about 45% and with calm to moderate u2 of 2 m s-1) at the 

base of Kcb,adj calculation. In fact, more arid climate conditions with 

greater wind speed would result in higher values of Kcb,adj (Allen et al., 

1998). Several authors have reported higher values for Kcb,adj respect 

to Kcb,tab, highlighting the crucial role of the specific climatic 

adjustment of Kcb,tab values (Benli et al., 2006; Paço et al., 2009). 

However, Kcb,ArcDualKc values resulted lower than Kcb,adj during the 

middle season, as consequence of the model calibration procedure 

effect identified also in the other phenological stages. Thus, Kcb is 

influenced by the vegetation reflectance condition occurred at the field 

site; within the first ArcDualKc sub-model, it was computed as a 

function of Fc and SAVI, resulting in smaller values respect to the 

Kcb,adj values.  

In the present study, the ArcDualKc model was able to 

distinguish the different irrigation treatments supplied at the study site 

in terms of Kcb,ArcDualKc as indicator of transpiration due to the imposed 

water deficit conditions (Comstock, 2002). Thus, results showed Kcb, 

ArcDualKc values up to 6% higher in T1 respect to DI treatments (T2-T4). 

On the contrary, no differences were observed in Ke, ArcDualKc terms, 

since the evaporation process occurs on a limited extension referred to 

the surface wetted by the drippers that, in the ArcDualKc model, is 

assumed to be constant, independently of the irrigation treatment. The 

above-mentioned discrepancies among treatments, mainly in terms of 

Kcb, ArcDualKc, led to differences of 5% in Kc,ArcDualKc and 6% in ETc 

estimates between the T1 and the DI treatments (T2-T4). These results 

confirm that, as suggested by other authors (Rallo et al., 2014, 2017), 

agro-hydrological models can be considered as an easy-to-use tool for 
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indirect evaluations of soil and crop water status. 

The use of forecast meteorological data for a priori ETc 

estimations could be useful for providing irrigation advices to farmers 

in operative scenarios, since it allows to plan irrigation water supply 

based on expected realistic meteorological conditions rather than on 

past and/or current meteorological data (Chirico et al., 2018). In this 

study, Kcb,ArcDualKc values, computed using forecast meteorological 

data (RH and u2) as input, resulted 8% higher than those obtained 

using measured weather data; this can be due to the uncertainties in 

the agro-meteorological forecasted parameters, which are used in the 

ArcDualKc model (Tair, RH, Rs, u2, P). The application of COSMO 

model has produced overestimation of Tair (8%), u2 (31%) and P (up 

to 100%), whereas it has underestimated RH and Rs (26% and 11%, 

respectively). Several authors reported the same behaviour in their 

studies (Luo et al., 2014; Xiong et al., 2016; Yang et al., 2016). 

However, even if large inaccuracies were observed in some 

agrometeorological variables, the estimates of Kcb,ArcDualKc using 

forecast data did not differ too much (8%) from those values obtained 

by using the measured data, as a consequence of the compensation of 

the expected error (i.e. the underestimation of RH of 26% was offset 

by an overestimation of u2, up 31%).  

Furthermore, the inaccuracies in the predicted 

agrometeorological variables also influenced the ET0 estimates 

calculated with the P-M equation, resulting in an overestimation of up 

to 17%. 

In terms of lead-time, a different behaviour was observed for 

the values of Ke,ArcDualKc, which showed an increase in the trend from 

1-day to 3-days (Tab. 2.3), mainly due to an increase in the occurrence 

of the precipitations predicted by COSMO model (from 1 to 3 days 

the onset of precipitation increased by about 50%; Figs. 2.4 and 2.5).  

Consequently, the lead time had a slight effect on Kc, ArcDualKc 
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and ETc, with discrepancies less than 2% between lead times of 1-day 

and 3-days (Tab. 2.3). This decreasing trend in the accuracy of the 

single agrometeorological prediction variable has also been observed 

in other studies (Lorite et al., 2015; Pelosi et al., 2016; Xiong et al., 

2016; Cao et al., 2019), who found differences up to 25% in u2 (Lorite 

et al., 2015) when the forecast horizon increased from 1 to 3 days. 

Despite the reliability of ArcDualKc in modelling ETc at field 

level, the results could be influenced by the pixel size of Sentinel-2, 

which contains both vegetated and bare soil surfaces. In this sense, the 

ArcDualKc model could be improved by integrating the data obtained 

from ground measurements (e.g. electrical resistivity tomography, 

ERT; lisimetry; sap flow and eddy covariance, (Motisi et al., 2012; 

Consoli & Papa, 2013), to obtain more accurate soil parameters 

(Campos et al., 2016; Zhang et al., 2017; Vanella et al., 2019) or more 

reliable crop coefficient values instead of using those tabulated on 

FAO-56 paper (Consoli et al., 2006b; Peddinti & Kambhammettu, 

2019).  

This information would help to better understand the specificity 

of the site, increasing the accuracy of the ETc estimates. Other 

improvements could be based on the use of images with higher spatial 

resolution that would allow the distinction between vegetation and 

bare soil (Gago et al., 2015) or on the integration of different satellite 

platforms in order to increase temporal resolution (Shelestov et al., 

2017; Ramírez-Cuesta et al., 2019b), which would allow a better 

characterization of the crop coefficient curve. This fact is particularly 

relevant in areas frequently covered by clouds where only a few clear 

sky images are available during the entire growing season (Karlsen et 

al., 2018). 
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2.5 Conclusion 

The ArcDualKc model has provided reliable spatial distributed 

ETc and Kc (and its components) estimates by combining RS images 

and measured or predicted meteorological data. Despite significant 

errors were obtained in daily ET0 estimates due to forecast 

inaccuracies of meteorological variables provided by COSMO model, 

the use of forecast meteorological data resulted only in slight 

overestimates of Kcb,ArcDualKc, Kc,ArcDualKc and ETc, when compared with 

the use of measured meteorological data. In addition, the ArcDualKc 

model was able to identify the different irrigation treatments respect 

to Kcb,ArcDualKc; whereas no differences were found in Ke,ArcDualKc 

estimates. Finally, slight differences (between 5 and 6%) were 

obtained in terms of Kc,ArcDualKc and ETc in the irrigation control 

treatment and in the deficit irrigated ones. The ArcDualKc model can 

be then considered reliable for improving precision irrigation and 

water resource management in the context of deficit irrigation 

strategies, including also the possibility of employing forecasted 

meteorological data as alternative of ground-based observation of 

meteorological variables.  

It is finally expected that the accuracies of the ArcDualKc model 

in estimating ETc will improve in the near future as its inputs are better 

characterized both reducing the uncertainties of the prediction models 

and increasing the spatial and temporal resolutions of remote sensing 

data. 
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3 A stand-alone remote sensing approach based 

on the use of the optical trapezoid model for 

detecting the irrigated areas2 

Abstract 

Under the current water scarcity scenario, the promotion of 

water saving strategies is essential for improving the sustainability of 

the irrigated agriculture. In particular, high resolution irrigated area 

maps are required for better understanding water uses and supporting 

water management authorities. The main purpose of this study was to 

provide a stand-alone remote sensing (RS) methodology for mapping 

irrigated areas. Specifically, an unsupervised classification approach 

on Normalized Difference Vegetation Index (NDVI) data was coupled 

with the OPtical TRApezoid Model (OPTRAM) for detecting actual 

irrigated areas without the use of any reference data. The proposed 

methodology was firstly applied and validated at the Marchfeld 

Cropland region (Austria) during the irrigation season 2021, showing 

a good agreement with an overall accuracy of 70%. Secondly, it was 

applied at the irrigation district Quota 102,50 (Italy) for the irrigation 

seasons 2019-2020. The results of the latter were instead compared 

with the data declared by the Reclamation Consortium, finding an 

overestimation of irrigated areas of 21%. In conclusion, this study 

suggests an easy-to-use approach, eventually independent of reference 

data such as agricultural statistical surveys or records and replicable 

                                                      
2A modified version of this Chapter was published as Longo-Minnolo, 

G., Consoli, S., Vanella, D., Ramírez-Cuesta, J. M., Greimeister-Pfeil, I., 

Neuwirth, M., & Vuolo, F. (2022). A stand-alone remote sensing approach 

based on the use of the Optical Trapezoid Model for detecting the irrigated 

areas. Agricultural Water Management, 274, 107975. 

https://doi.org/10.1016/j.agwat.2022.107975 
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under different agricultural settings in continental or Mediterranean 

climates to support stakeholders for regular estimation of irrigated 

areas in different growing years or detecting eventual unauthorized 

water uses. However, some uncertainties should be considered, 

needing further analyses for improving the accuracy of the proposed 

approach. 

 

Keywords: Satellite images; Rainfall; Unsupervised classification; 

NDVI; Water Content 

3.1 Introduction 

Water scarcity represents a global risk in terms of potential 

impact on the sustainable development of human society (Mekonnen 

& Hoekstra, 2016). Moreover, under climate change conditions, 

prolonged droughts are expected to occur in the future, with an 

increasing of crop dependency on water supply (Scanlon et al., 2012). 

Irrigated agriculture is the principal consumer of freshwater 

resources. Its role is essential for increasing crop production and 

ensuring the global food yield (Cai & Rosegrant, 2002; Jin et al., 

2016). Due to the global population growth and the discrepancy 

between crop water requirements and the actual irrigation applied, a 

better agricultural water management is required in order to fulfil the 

increasing demand for food production (Gao et al., 2018).  

In this context, detailed spatial information on the irrigated 

areas is essential for supporting agriculture water management 

(Ambika et al., 2016). In particular, accurate mapping of irrigated 

areas could allow a better understanding of water use and food 

production patterns, supporting stakeholders to formulate more 

suitable water management strategies to achieve higher crop water 

productivity (Chance et al., 2017). However, the accurate extent and 

distribution of many irrigated areas remains often unknown despite the 
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significant impact of irrigation on food security and water resources 

(Bazzi et al., 2019b; Cai et al., 2017). In fact, even though huge efforts 

have been made in the last years in this regard, there is a general lack 

of accurate and current maps about irrigated areas, avoiding the full 

implementation and compliance of the Water Framework Directive 

(WFD) (Bolognesi et al., 2020; Magidi et al., 2021). 

In Italy, the National Institute of Agricultural Economics 

(INEA) has contributed to design the irrigation water policy by 

supporting the Italian Ministry of Agricultural, Food and Forestry 

Policies (MiPAAF). Since the 1960’s, INEA has conducted the census 

of irrigated areas, producing the Map of irrigation in Italy. Currently, 

the most complete and updated database that supports Governmental 

Institutions is the National Information System for Water 

Management in Agriculture (SIGRIAN; https://sigrian.crea.gov.it/), 

which collect the information coming from water management 

authorities (i.e. Reclamation Consortia and other Irrigation agencies). 

Nevertheless, the level of detail of the SIGRIAN database is often not 

enough accurate for a proper evaluation of irrigation water uses. 

In Austria, Farm Structure Surveys are conducted as (i) full 

survey (census) on the basis of EU legislation every 10 years and (ii) 

sample survey at regular intervals (3 to 4 years) by Austria’s Federal 

Statistical Office (Statistics Austria). Farm Structure Surveys 

conducted by questionnaires also comprise features with respect to 

irrigation, particularly the “total irrigable area” of an agricultural 

operation or the “actual irrigated area” of areas with field vegetables. 

However, overall, the data situation with respect to actual irrigated 

areas requires improvement especially with respect to the time gaps 

within the surveys that might miss particularly dry years with high 

irrigation needs. 

Since the 1980s, remote sensing (RS) has been used to map land 

cover and agricultural areas at different spatial and temporal scales 

https://sigrian.crea.gov.it/
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(Pareeth et al., 2019). One of the main methods implemented to derive 

this information is based on the use of satellite-based optical data. 

Single-date imagery acquired during the peak of the crop growing 

season can be used for classifying the irrigated areas, although the use 

of multi-temporal imagery approach is preferred as it covers the 

different phenology stages of the crops (Ghassemi et al., 2022; Vuolo 

et al., 2018). A common approach is based on the analysis of the NDVI 

time series, due to its ability to show a considerable difference 

between irrigated and non-irrigated pixels (Ozdogan et al. 2006, 

2010). The use of NDVI as an indicator of vegetation phenology 

provides a simple proxy for classifying complex landscapes (Chance 

et al., 2017). In particular, NDVI is considered a sufficiently good 

indicator of irrigation presence (Ozdogan et al., 2006) thanks to its 

capability to measure green biomass and the existing strong 

correlation between green biomass and the available moisture for 

vegetation (Pervez & Brown, 2010). For instance, Bolognesi et al. 

(2020) applied this approach for mapping the actual extent of irrigated 

areas in Italy in semi-arid conditions. In their study, rainfed areas and 

irrigated areas were classified on the basis of the analysis of NDVI 

time series and accumulated rainfall data. However, this approach 

highlights some limitations, especially in areas where the same crop 

type is grown with and without irrigation during the same growing 

season. In these areas in fact, as suggested by Ozdogan et al. (2010), 

the temporal NDVI profiles of both irrigated and non-irrigated crops 

may show an identical pattern, emphasizing the need for a more 

sensitive index to make this distinction. Additionally, optical RS 

applications depend on atmospheric conditions. For areas with 

frequent cloud cover, these methods may not be adaptable (Gao et al., 

2018). 

The use of microwave RS offers a good alternative to optical 

RS for mapping irrigated areas also under cloudy conditions, due to 
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the ability of microwaves to penetrate through vegetation canopy and 

underlying soil, especially at lower frequencies, where measurements 

are not impeded by clouds or darkness (Sadeghi et al., 2015, 2017). 

Specifically, microwave domain measurements can be used to 

estimate soil moisture dynamics because the pronounced contrast 

between the dielectric constant values of the wet and dry soils 

(Baghdadi & Zribi, 2016; Lakhankar et al., 2009). Kumar et al. (2015) 

investigated the capability of several microwave remotely sensed soil 

moisture products, including ASCAT (Advanced SCATterometer), 

AMSR-E (Advanced Microwave Scanning Radiometer – Earth 

Observing System), ESA CCI SM (European Space Agency Climate 

Change Initiative Soil Moisture), SMOS (Soil Moisture and Ocean 

Salinity), while Lawston et al. (2017) showed the capability of the 

enhanced version of SMAP (Soil Moisture Active Passive) to detect 

the irrigation signal. Although these products have shown greater 

potential for monitoring soil moisture dynamics, they consider both 

rainfall and irrigation effects on soil moisture (Karthikeyan et al., 

2020) and may require calibrations to account for surface roughness 

which causes perturbation of the microwave signal (Shi et al., 2006). 

Additionally, the application of microwave-based retrieval of soil 

moisture is not well suited for small-scale applications because the 

very coarse resolution, especially when compared with the higher 

spatial resolution outputs of optical methods (Sadeghi et al., 2017; Yue 

et al., 2019). More recently, several authors (Bazzi et al., 2019a,b; Gao 

et al., 2018) exploited instead Sentinel-1 SAR (Synthetic Aperture 

Radar) time series to map irrigated fields. Specifically, based on the 

multi-temporal analysis of backscatter time series using vertical-

vertical (VV) and vertical-horizontal (VH) polarizations, their studies 

showed that VV resulted more sensitive for characterizing the soil 

moisture conditions, while VH was more sensitive for monitoring the 

vegetation status. However, more studies exploiting this approach are 
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required (Dari et al., 2021).  

Commonly, both optical and microwave RS data are used as 

inputs for mapping the irrigated areas and for distinguishing the 

different classes by applying supervised classification approaches. 

Because these approaches require ground reference data to build rule-

based classifiers, their transferability in time and space is not always 

guaranteed, especially under different climate conditions (Ragettli et 

al., 2018; Pageot et al., 2020). 

Recently, Sadeghi et al. (2017) proposed the physically-based 

OPTRAM. Specifically, this methodology is based on the pixel 

distribution within the NDVI and shortwave infrared transformed 

reflectance (STR) space, for estimating the soil moisture, by using 

only optical data. In the last years, OPTRAM has been successfully 

applied for mapping the soil moisture at high resolution in rainfed and 

irrigated fields (Ambrosone et al., 2020; Babaeian et al., 2019). The 

promising results obtained in these studies highlight the possibility of 

using OPTRAM also for discriminating between irrigated and non-

irrigated areas. In fact, besides the visible (VIS) and near-infrared 

(NIR) bands of NDVI, it introduces additional information on the 

short-wave infrared (SWIR) with the STR index, which provides high 

sensitivity to soil moisture variation (Sadeghi et al., 2015). 

In this context, the aims of this study were:  

• to develop a stand-alone optical RS method able to detect the 

irrigated areas, based on the combined use of the unsupervised 

classification and OPTRAM; 

• to validate and test the proposed method at different spatial 

level (i.e. field and district level, respectively), under different climate 

conditions. 

Hence, the study would provide an easy-to-use method, not 

dependent on ground reference data and replicable under different 

contexts aiming at supporting the stakeholders for monitoring and 
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reporting the irrigated areas. This will allow the promotion of efficient 

water-saving strategies and the accomplishment of the requirements 

of water-related policies. 

3.2 Materials and methods 

3.2.1 Study area 

The study was carried out at 2 different test sites (Fig. 3.1): the 

irrigation district “Quota 102,50” in Italy (2019-2020); and the 

“Marchfeld Cropland” region in Austria (2021). 

 
Fig. 3.1. Location of the two test sites: (a) irrigation district “Quota 102,50” in 

Italy; and (b) “Marchfeld Cropland” region in Austria.  

 

The irrigation district “Quota 102,50” (managed by the 

Reclamation Consortium Sicilia Orientale) is located in Eastern Sicily 

(Lat. 37.44 °N – 37.54 °N, Long. 14.85 °E – 15.05 °E; WGS84, Fig 

3.1a). The district is characterized by a total area of 5,050 ha and an 

irrigated area of about 2,300 ha, that is mainly cultivated with citrus, 
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olive and fruit groves. The irrigation season is generally from mid-

May to mid-October, depending on the weather conditions. The 

climate is hot-summer Mediterranean (Csa) under the Köppen-Geiger 

classification, according to Beck et al. (2018). During the study period, 

the average annual precipitation values were of 597 and 656 mm for 

2019 and 2020, respectively, with values of 201 and 202 mm recorded 

during the 2019-20 irrigation seasons.  

The cropland area of Marchfeld is located in Lower Austria 

(Lat. 48.10 °N – 48.50 °N, Long. 16.40 °E – 17.00 °E; WGS84, Fig 

3.1b). It covers an agricultural surface of about 60,000 ha, with an 

irrigated surface of about 21,000 ha. The main cultivated crops are 

vegetables, sugar beet, potatoes and winter cereals (Immitzer et al., 

2016). The irrigation season is from mid-April to mid-July 

(Deissenberger, 2021). Conventionally, the area is characterised by a 

warm-summer humid continental climate (Dfb) (Beck et al., 2018). 

However, it is the driest region of Austria, with an average annual 

precipitation of 500 mm for the study period 2021, with 109 mm 

during the irrigation season. 

3.2.2 Detection of the irrigated areas 

Fig. 3.2 shows a flow chart of the proposed methodological 

approach. Specifically, the detection of the irrigated areas was 

performed by combining a preliminary unsupervised classification on 

a seasonal NDVI time series for identifying the potentially irrigated 

clusters, and the subsequent application of the OPTRAM model, on 

these clusters, for more specifically distinguishing the irrigated pixels 

from the non-irrigated pixels during the dry period of the irrigation 

season. The entire process required two types of data sources at the 

initial stage, i.e. Sentinel-2 satellite images and rainfall values, and 

then the soil parameters, i.e. wilting point (WP) and field capacity 

(FC), for applying OPTRAM approach.  
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Only clear sky satellite images covering the test areas within the 

reference study periods were used. For the Austrian test site, a pre-

processing of the images for removing cloudy pixels was necessary 

due the unavailability of images with perfect clear sky conditions.  

A preliminary analysis of rainfall values was conducted in order 

to identify the dry periods during the irrigation seasons. Specifically, 

these dry periods were characterised by a cumulated rainfall value 

during the 10 previous days of 0 mm at the irrigation district Quota 

102,50 and lower than 4 mm at Marchfeld Cropland. A sub-dataset of 

satellite images was created within the dry periods, for dates with a 

daily rainfall value of 0 mm (Tab. S3.1). Finally, NDVI and STR 

values were calculated for each pixel of the potentially irrigated 

clusters, representing the input for the OPTRAM approach 

application. 

 
Fig. 3.2. Workflow of the proposed methodological approach for detecting the 

irrigated areas. Light grey boxes identify the inputs (the satellite images and 

the rainfall values, and the soil parameters WP and FC), whereas the dark grey 

boxes refer to the main processes (the unsupervised classification and the 

OPTRAM approach). The white boxes, instead, represent the intermediate 

outputs. The final output is the map of irrigated areas. 
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3.2.2.1 Dataset input 

In this study, the multispectral images from Sentinel-2 

European Space Agency’s (ESA) satellite 

(https://sentinel.esa.int/web/sentinel/missions/sentinel-2) were used. 

The satellite is equipped with an opto-electronic multispectral sensor 

(MSI) for imaging the Earth surface with a spatial resolution of 10 - 

60 m in the VIS, NIR and SWIR spectral zones. The temporal 

resolution of each single Sentinel-2 satellite (Sentinel-2 A and B) is 

10 days, leading to a revisit time of 5 days with two satellites in 

operation. A total of 158 Sentinel-2 images were collected at the study 

areas: 65 and 62 images for the irrigation district Quota 102,50 during 

the years 2019-2020, respectively (T33SVB tile; Fig 3.1), and 31 

images for Marchfeld Cropland region during the year 2021 (T33UXP 

tile; Fig 3.1). For each dataset, a time-series NDVI stack-layer was 

created using all the available images. 

Rainfall data were collected from the closest ground-based 

automatic meteorological stations to the two test sites, i.e. 4 weather 

stations distant between 10-31 km from the irrigation district Quota 

102,50 (Fig. S3.1a) and 4 weather stations distant between 18-36 km 

from the Marchfeld Cropland region (Fig. S3.1b), managed 

respectively by the Sicilian Agro-meteorological Information Service 

(SIAS, www.sias.regione.sicilia.it) and the Central Institute for 

Meteorology and Geodynamics (ZAMG, www.zamg.ac.a). 

In Fig. 3.3, the observed daily rainfall values and the identified 

dry periods during the irrigation season were reported. In the 

Supplementary material section (at the end of the Thesis), Table S3.1 

reports the Sentinel-2 images used in the study for the two test sites. 

For each image, the type of Sentinel satellite (A or B), the daily rainfall 

value (mm) and the cumulated rainfall value (mm) in the previous 10 

days are reported. The dry dates selected during the irrigation season 

for applying OPTRAM are also indicated. 

https://sentinel.esa.int/web/sentinel/missions/sentinel-2
http://www.zamg.ac.a/
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Fig. 3.3. Daily rainfall values observed at the irrigation district Quota 102,50 

during the years 2019 (a) and 2020 (b) and at Marchfeld Cropland region 

during the year 2021 (c). The light blue rectangles indicate the irrigation 

seasons at the test sites, whereas the grey rectangles indicate the dry periods. 

3.2.2.2 Unsupervised classification 

As reported in Fig. 3.2, the application of the unsupervised 

classification on the NDVI time series represented the first main step 

of the proposed methodological approach with the aim to grouping 

similar NDVI patterns in unlabelled clusters. As reported by 

Bolognesi et al. (2020) and Chance et al. (2017), the presence of green 

and healthy vegetation during the dry season, when no precipitation 

events are observed, can be attributed to irrigation water applications. 
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In this context, the following first hypothesis can be applied: “during 

the irrigation season, low and decreasing temporal NDVI profiles 

could refer to non-irrigated areas, whereas high and increasing 

temporal NDVI profiles could refer to irrigated areas”. According to 

this hypothesis, clusters can be labelled as non-irrigated or potentially 

irrigated depending on the NDVI trends observed during the irrigation 

season. A value of 0.3 was set as NDVI threshold for distinguishing 

the high and low NDVI temporal profiles. In fact, according to 

Campoy et al. (2020), González-Gómez et al. (2018) and Lobell et al. 

(2013), this value represents the green-up of vegetation. The algorithm 

used in this study was the ISODATA (Ball & Hall, 1965), requiring 

only the raster and the number of clusters as input. The number of 

clusters was decided to minimize the standard deviation (in terms of 

NDVI) of each one, in order to have clusters as clear as possible. 

Specifically, a number of 20 clusters was used, from which temporal 

average patterns of NDVI were extracted. During the irrigation 

seasons at the two test sites, clusters were labelled as: i) non-irrigated, 

when NDVI trends were lower than 0.3 or decreasing; and ii) 

potentially irrigated, when NDVI trends were higher than 0.3 or 

increasing. Pixels representing non-agricultural lands, such as water 

(negative NDVI values) and built-up (NDVI values ranging from 0.0 

to 0.1), were removed by using the NDVI temporal profile analysis. 

3.2.2.3 Optical Trapezoid Model 

In a second step, the clusters labelled as “potentially irrigated” 

were further analysed to better discriminate between irrigated and 

non-irrigated pixels through the use of the OPTRAM, with additional 

information based on the VIS-NIR and SWIR bands. 

OPTRAM is based on the pixel distribution within the NDVI-

STR space. Assuming a linear relationship between soil and 

vegetation water content, the STR-NDVI feature space forms a 
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trapezoid shape (Sadeghi et al., 2017). The upper and the lower sides 

of the STR-NDVI feature space, indicating the wet and the dry edges, 

respectively, were used to solve the water content (W) for each pixel 

as a function of NDVI and STR: 

 

𝑊 =  
𝑖𝑑 + 𝑠𝑑𝑁𝐷𝑉𝐼−𝑆𝑇𝑅

𝑖𝑑 − 𝑖𝑤 + (𝑠𝑑 − 𝑠𝑤)𝑁𝐷𝑉𝐼
      (1) 

 

where id, sd, and iw, sw parameters, are respectively the intercept and 

the slope of the dry and wet edges of the STR-NDVI feature space. 

By using cluster-specific linear parametrizations of OPTRAM 

and introducing a threshold value based on the soil water content 

(SWC) status, well-watered vegetation and stressed vegetation can be 

discriminated on the STR-NDVI feature space during the irrigation 

season, under dry conditions (e.g. 10 days with no precipitation events 

recorded).  

In fact, thresholds of SWC indicate the water availability for 

crop consumption and their identification ensure the maintenance of 

soil moisture conditions that avoid physiological stress (Datta et al., 

2017; Thompson et al., 2007). According to several authors (Jabro et 

al., 2020; Lozoya et al., 2014), WP is that threshold at which plants 

cannot longer adsorb water from the soil and start to wilt. Specifically, 

at WP threshold, transpiration and all the other processes vital to plant 

survival come to stop, causing a significant reduction in crop growth. 

If SWC remains below the WP for an extended period, crops will 

eventually die (Datta et al., 2017). 

Thus, the second hypothesis of the proposed approach was the 

following: “during the irrigation season, in absence of precipitation 

events for an extended period, if W is greater than WP there is 

available water in the soil due to the irrigation practice and vegetation 

may be well-watered, whereas if W is lower than WP there is no 

available water and vegetation may be under stress conditions”. On 
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the basis of this second hypothesis, pixels were classified as irrigated 

or non-irrigated, when W, calculated as a function of NDVI-STR by 

applying OPTRAM, exceeded or not the WP, respectively (Fig. 3.4). 

 
Fig 3.4. The updated OPtical TRApezoid Model (OPTRAM) approach 

proposed in the study. The blue and red lines are the wet and the dry edge, 

respectively, representing the maximum (W = 1) and the minimum (W = 0) 

water content (W) at which pixels refer to well-watered or stressed vegetation, 

respectively. The black dotted line indicates W at the wilting point (W = WP), 

considered as threshold value for discriminating the irrigated and the non-

irrigated pixels. 

 

In this study, OPTRAM was applied for each date of the dry period 

during the irrigation season, in order to determine W for the pixels of 

each cluster (considering only potentially irrigated clusters). The W 

values were converted into SWC values through a linear regression 

analysis performed using the WP and the FC data retrieved by the 
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European Soil Database (https://esdac.jrc.ec.europa.eu/resource-

type/european-soil-database-soil-properties). The WP threshold 

values were of 23.27% and 11.85% for the Marchfeld Cropland region 

and the irrigation District Quota 102,50, respectively.  

For each test site and irrigation season, the differences between 

SWC and WP values were calculated for the pixels of the selected 

Sentinel-2 satellite images (i.e., 4 images for the Marchfeld Cropland 

region during 2021 and 7 images for the irrigation district Quota 

102,50 during both 2019-2020). The final label was assigned by 

considering an average value of the difference SWC – WP on the 

several dates, as follows:  

i) irrigated, when the average of the differences (SWC – 

WP) ≥ 0; 

ii) non-irrigated, when the average of the differences (SWC 

– WP) < 0. 

At the Marchfeld Cropland region, in order to validate the proposed 

methodological approach at field level, a crop mask 

(https://geometadatensuche.inspire.gv.at/) was used for separating the 

single fields. Each field was finally labelled by considering the most 

frequent pixel values (irrigated or non-irrigated). On the other hand, at 

the irrigation district Quota 102,50 no crop mask was employed and 

each pixel was finally labelled as irrigated or non-irrigated. However, 

a sub-districts mask provided by the Reclamation Consortium was 

used (Fig. S3.4), and only pixels within this mask were considered in 

order to validate at district level. 

3.2.3 Statistical assessment 

The validation of the results obtained in the study was 

performed at two different levels: i) accuracy assessment of the 

detection of the irrigated areas at field level for the Marchfeld 

Cropland region; ii) evaluation of the estimated irrigated areas surface 

https://esdac.jrc.ec.europa.eu/resource-type/european-soil-database-soil-properties
https://esdac.jrc.ec.europa.eu/resource-type/european-soil-database-soil-properties
https://geometadatensuche.inspire.gv.at/metadatensuche/srv/eng/catalog.search#/home
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at district level for the irrigation district Quota 102,50. 

Specifically, the accuracy assessment at the Marchfeld 

Cropland region was performed using a binary confusion matrix 

between the estimated irrigated/non-irrigated areas with the 

methodological approach and the reference data collected during a 

campaign in the framework of another study (BML 2022). A total of 

2560 reference fields were used, of which 160 irrigated and 2400 non-

irrigated. The campaign aimed at putting together a comprehensive 

database of georeferenced observation of the irrigation status of 

several fields. In order to take account growing seasons and harvest 

dates of different crop types, the campaign was running during three 

months in summer 2021. For each observation, the following 

information was documented: i) observation data and time, ii) crop 

type, iii) type of irrigation system, iv) irrigation ongoing or turned off. 

A quality check was also performed on the reference database, e.g. 

with respect to the correct georeferencing of the collected points. This 

was done using field photos taken alongside the data collection. All 

points with unclear georeference were excluded from further analyses. 

While the irrigated fields were observed during the measurements 

campaign, and thus considered very reliable, an uncertainty degree 

should be contemplated for the non-irrigated fields, since they were 

derived from a database where farms register their fields and 

attributes.  

In order to quantitatively evaluate the goodness of the results, 

several metrics, including accuracy (ACC, %; eq.2), precision (PPV, 

%; eq.3), recall (TPR, %; eq.4) and F1 score (F1, %; eq.5) were 

calculated by the confusion matrix, as follow: 

 

ACC =  
TP+TN

TP+TN+FP+FN
      (2) 

PPV =  
TP

TP+FP
       (3) 
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TPR =  
TP

TP+FN
       (4) 

F1 =  
2TP

2TP+FP+FN
       (5) 

where TP, TN, FP and FN indicate respectively the true 

positive, true negative, false positive and false negative. However, 

when the dataset is unbalanced, the previous metrics can be 

misleading. In order to overcome this issue, relative values were 

calculated normalizing by the number of elements in each class, e.g. 

TP and FN were divided by the sum of the reference irrigated areas 

(TP+FN), whereas FP and TN were divided by the sum of the 

reference non-irrigated areas (FP+TN). In fact, the normalization, 

taking into account the unbalanced availability of the classes of the 

binary confusion matrix, allows a better interpretation of the results. 

Since the final results could be sensitive to the value of WP, a 

sensitivity analysis was also performed varying the WP threshold in 

the range of 10%, 15%, 20%, 25%, 30%, 35%, and the same metrics 

were determined. 

On the other hand, for the irrigation district Quota 102,50, the 

total surface of the irrigated areas (ha) obtained by applying the 

proposed approach was compared to the data declared by the 

Consortium.  
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3.3 Results 

3.3.1 Marchfeld Cropland 

Fig. 3.5 shows the temporal NDVI profiles of the 20 clusters 

obtained by applying the ISODATA classification on the study area 

for the year 2021. Cluster 1 was forthwith excluded because it 

represents water bodies (negative NDVI values). During the irrigation 

season, NDVI trends were decreasing or constant and lower than 0.3 

for the clusters 2, 3, 5, 6, 7, 10, 11, 17, and 18. Considering the first 

hypothesis, they were labelled as “non-irrigated”. On the other hand, 

NDVI trends were constant and higher than 0.3 or increasing for the 

clusters 4, 8, 9, 12, 13, 14, 15, 16, 19, and 20, and they were labelled 

as “potentially irrigated”. In order to facilitate the interpretation of Fig. 

3.5, the labels assigned for each cluster are reported in Tab. 3.1. Fig. 

S3.2 shows instead the preliminary map of the potentially irrigated 

areas at the Marchfeld Cropland region. 

 

Tab. 3.1. Labelling and number of pixels of the clusters at the Marchfeld 

Cropland region during the year 2021. In white and grey, the non-irrigated 

clusters and the potentially irrigated clusters, respectively. In black, the 

excluded cluster.  

Cluster 
Label 

Cluster 
Label 

(n° of pixels) (n° of pixels) 

1 52861 11 229838 

2 6705 12 444469 

3 858812 13 43171 

4 875378 14 3569 

5 791086 15 3015 

6 998990 16 119043 

7 303157 17 42954 

8 1042842 18 2175 

9 422500 19 534 

10 425310 20 52861 



3. A stand-alone remote sensing approach based on the use of the optical 

trapezoid model for detecting the irrigated areas  

85 

A cluster-specific linear parametrization of OPTRAM on 

“potentially irrigated” clusters was performed in order to derive the 

wet and dry edges. Specifically, pixels of potentially irrigated clusters 

were distributed within the STR-NDVI feature space of OPTRAM 

(Fig. 3.6), where the wet and dry edges were determined by a visual 

inspection, as suggested by Sadeghi et al. (2017). In fact, the authors 

showed as this approach is better than least-square regression since 

oversatured or shadowed pixels scattered around the main point cloud 

of each trapezoid can be omitted. The obtained OPTRAM parameters 

(i.e., id, sd, iw, sw) are reported in Tab. S3.2. 

By using OPTRAM parameters of Tab. S3.2, W values were 

calculated for each pixel of the selected clusters and then converted 

into SWC values. 

By calculating the difference between the average SWC value 

and the WP and applying the second hypothesis, agricultural lands 

were labelled as “irrigated” or “non-irrigated”. The final map of the 

irrigated areas obtained for the test site is reported in Fig. 3.7. As 

shown in this figure, there is a prevalence of non-irrigated areas at 

Marchfeld region during the irrigation season of 2021. In fact, the 

surfaces of the non-irrigated areas and the irrigated areas were of 64% 

and 36%, respectively, of the total surface of the agricultural lands.
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Fig. 3.5. Temporal NDVI profiles (red dots) of the 20 clusters at the Marchfeld region for the year 2021. The blue bars represent 

the daily rainfall that occurred in the study area.  
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Fig. 3.6. Pixel distribution within the STR-NDVI feature space of the selected 

clusters at Marchfeld Cropland region during the selected dry period of the 

irrigation season of 2021. Data are visualized as density scatterplots, associated 

with the wet (in blue) and dry (in red) edges. 
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Fig. 3.7. Map of the irrigated (in green) and non-irrigated (red) areas identified 

at Marchfeld Cropland region during the irrigation season of 2021.  

 

Fig. 3.8 shows the binary confusion matrix between the 

estimated and the reference irrigated/non-irrigated areas. An overall 

ACC of 71% was obtained, with PPV, TPR, F1 values of 72%, 68% 

and 70%, respectively (Fig. 3.9). Finally, Fig. 3.9 shows the sensitivity 

of metrics by varying the original WP threshold (23%) in the range of 

10%, 15%, 20%, 25%, 30%, 35%. ACC, TPR and F1 values decreased 

from 74% to 58%, from 80% to 26% and from 76% to 39%, 

respectively, in the WP range of 10%, 15%, 20%, 25%, 30%, 35%. 

PPV values instead, increased from 71% to 75%, respectively, in the 

range of 10%, 15%, 20%, 25%, 30%, 35%. 
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Fig. 3.8. Confusion matrix between the estimated and the reference irrigated 

(Irr.) /non-irrigated (Non-irr.) areas. In brackets the relative values.  

 

 
Fig. 3.9. Sensitivity of metrics (ACC, PPV, TPR, F1) obtained at the Marchfeld 

Cropland region by varying the original WP threshold (23%) in the range of 

10%, 15%, 20%, 25%, 30%, 35%. 
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3.3.2 Irrigation district Quota 102,50 

Figs. 3.10-3.11 show the temporal NDVI profiles of the 20 

clusters obtained by applying the ISODATA classification to the study 

area, for the year 2019 and 2020, respectively. Cluster 1 was excluded 

for both the years because it represents built-up (NDVI values ranging 

from 0.0 to 0.1). Decreasing or constant and lower than 0.3 NDVI 

trends were observed for clusters 1, 2, 3, 4, 5, 7, 8, 9, 11 and 12 during 

the irrigation season 2019, and for clusters 1, 2, 3, 4, 5, 6, 7, 10, 11 

and 13 during the irrigation season 2020, labelling them as “non-

irrigated”. Otherwise, constant and higher than 0.3 or increasing 

NDVI trends were observed for clusters 10, 13, 14, 15, 16, 17, 18, 19 

and 20 during the irrigation season 2019, and for clusters 8, 9, 12, 14, 

15, 16, 17, 18, 19 and 20 during the irrigation season 2020. These 

clusters were labelled as “potentially irrigated”. Tab. 3.2 reports the 

labels assigned for each cluster. Fig. S3.3 shows instead the 

preliminary maps of the potentially irrigated areas at the irrigation 

district Quota 102,50.  
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Tab. 3.2. Labelling and number of pixels of the clusters at the irrigation district 

Quota 10250 during the years 2019-2020. In white and grey, the non-irrigated 

clusters and the potentially irrigated clusters, respectively. In black, the 

excluded clusters. 

Cluster 
Label 

Cluster 
Label 

(n° of pixels) (n° of pixels) 

 2019 2020  2019 2020 

1 6815 8891 11 10827 15874 

2 12410 2413 12 31365 24029 

3 15384 12605 13 9374 38340 

4 2336 14032 14 53691 45553 

5 4656 6913 15 44642 18179 

6 23271 7199 16 6027 43309 

7 4587 15083 17 73894 73614 

8 12425 19785 18 22164 10587 

9 15216 26808 19 80729 52329 

10 39932 14072 20 35062 55192 

 

Pixels of potentially irrigated clusters were distributed within 

the STR-NDVI feature space of OPTRAM (Figs. 3.12-3.13), and the 

wet and dry edges were determined by a visual inspection, obtaining 

the parameters id, sd, iw, sw reported in Tab. S3.3. Note that the W 

values were calculated, and then converted into SWC values, for the 

pixels of the selected clusters, for all the selected dates of the dry 

period during the irrigation seasons 2019-2020, using the parameters 

reported in Tab. S3.3. The final maps of the irrigated areas obtained 

by applying the second hypothesis and labelling the agricultural lands 

as irrigated or non-irrigated are showed in Fig.3.4 for the irrigation 

seasons 2019-2020..



3. A stand-alone remote sensing approach based on the use of the optical trapezoid model for detecting the irrigated areas  

92 

 
Fig. 3.10. Temporal NDVI profiles (red dots) of the 20 clusters at the irrigation district Quota 102,50 for the year 2019. The blue 

bars represent the daily rainfall that occurred in the study area. 
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Fig. 3.11. Temporal NDVI profiles (red dots) of the 20 clusters at the irrigation district Quota 102,50 for the year 2020. The blue 

bars represent the daily rainfall that occurred in the study area. 
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Fig. 3.12. Pixel distribution within the STR-NDVI feature space of the selected 

clusters at the irrigation district Quota 102,50 during the selected dry period of 

the irrigation season of 2019. Data are visualized as density scatterplots, 

associated with the wet (in blue) and dry (in red) edges. 
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Fig. 3.13. Pixel distribution within the STR-NDVI feature space of the selected 

clusters at the irrigation district Quota 102,50 during the selected dry period of 

the irrigation season of 2020. Data are visualized as density scatterplots, 

associated with the wet (in blue) and dry (in red) edges. 
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Fig. 3.14. Map of the irrigated (green) and non-irrigated (red) areas obtained at the irrigation district Quota 102,50 during the 

irrigation seasons 2019-2020. 
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The surfaces of the irrigated areas were of 61% and 60% on the 

total surface for the years 2019 and 2020, respectively. Additionally, 

Fig. S3.1 shows for each sub-district of the Quota 102,50, the irrigated 

surface variation (%) between 2019 and 2020. This variation was 

calculated as ratio between the difference of irrigated surface on the 

two irrigation seasons and the total surface of the sub-district. 

Tab. 3.3 shows the comparison between the estimated irrigated 

areas and the declared irrigated areas by the Reclamation Consortium. 

An overestimation was observed for both the years, showing that the 

irrigated areas estimated with the proposed approach were grater than 

20.98% and 21.16% compared to the declared irrigated areas for the 

seasons 2019 and 2020, respectively. 

 

Tab. 3.3. Surfaces (ha) of the estimated and declared irrigated areas at the 

irrigation district Quota 102,50 for the irrigation seasons 2019-2020. 

 
Estimated 

irrigated areas (ha) 

Declared 

irrigated areas (ha) 

Absolute 

error (ha) 

2019 2851.72 2253.32 598.40 

2020 2804.60 2211.20 593.40 
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3.4 Discussion 

In the current water scarcity scenario, the need of up-to-date and 

accurate maps of the irrigated areas is essential for supporting 

stakeholders to formulate suitable water management strategies. In the 

last years, many studies have demonstrated the potential of vegetation 

indices derived from optical RS to detect irrigated areas (Bolognesi et 

al., 2020; Htitiou et al., 2019; Magidi et al., 2021; Zurqani et al., 2021). 

Htitiou et al. (2019) applied an approach based on phenological 

metrics derived separately from Landsat-8 and Sentinel-2 NDVI time 

series, using with random forest (RF) classification for identifying and 

mapping irrigated crops in semi-arid conditions. The best 

performances were obtained for Sentinel-2 data, with an overall 

accuracy of 93%. In the same climate conditions, Bolognesi et al. 

(2020) proposed a machine learning classification-based approach 

based on NDVI time series derived from harmonized Landsat-8 and 

Sentinel-2 images. By comparing six different types of classifiers, the 

authors obtained the best performance with RF, reaching an overall 

accuracy of about 90% in detecting irrigated areas. Recently, Magidi 

et al. (2021) proposed an approach for classifying irrigated areas under 

temperate and subtropical climate conditions. They applied RF in 

conjunction with Google Earth Engine (GEE) platform, using 

Landsat-8 and Sentinel-2 NDVI time series and other static input data, 

obtaining an overall accuracy of 88%. Similarly, Zurqani et al. (2021) 

developed a framework for mapping and quantifying irrigated areas in 

humid and subtropical climate conditions, based on the use of several 

Sentinel-2 spectral indices and other RS datasets on GEE platform. 

Specifically, they produced irrigated and non-irrigated land cover 

maps by applying RF supervised classification for three years with an 

overall accuracy of 83.73%, 86.18% and 84.55%, for the years 2016, 

2017 and 2018, respectively. Despite the high accuracies obtained, the 
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approaches proposed by these studies require training process and 

rules on decision tree structures. Additionally, they did not analyse the 

case when the same crop type is grown with and without irrigation in 

the same growing season, which could mean similar temporal NDVI 

profiles as suggested by Ozdogan et al. (2010). For instance, Ozdogan 

& Gutman (2008), mapping irrigated areas in Central Nebraska, 

showed temporal NDVI profiles of irrigated and non-irrigated corn 

fields with a very similar pattern. Therefore, the authors suggested the 

use of a more sensitive index to make this distinction. 

In this study, a new stand-alone optical RS approach to map 

irrigated areas was proposed. Compared to previous studies, it does 

not require any training and is easily replicable in different contexts, 

using only satellite images, rainfall data, and WP and FC data. 

Moreover, when no ground measurements are available for deriving 

rainfall values, alternative data sources such as the climate reanalysis 

could be used. For example, as suggested by Longo-Minnolo et al. 

(2022), ERA5-Land reanalysis offers valid rainfall estimates with high 

probability of detection of the precipitation events. In order to map the 

irrigated areas without using reference data, a preliminary clustering 

classification was used. Thus, crop type is not directly considered. The 

unsupervised classification has been widely adopted for irrigated area 

mapping, although never in fully automated schemes. For instance, 

Ragettli et al. (2018) proposed a method implemented on GEE, based 

on unsupervised classification and multi-temporal satellite image 

analysis, which made it possible to obtain irrigation maps at 30m of 

resolution with an accuracy of 77-96% from 2000 to 2017. 

Specifically, they applied the unsupervised classification for creating 

samples to use as input for RF. In the study herein proposed, for 

recognizing the non-irrigated and the potentially irrigated areas we 

used the unsupervised classification and the analysis of the temporal 

NDVI profiles and the rainfall events. Thus, for each cluster of the 
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unsupervised classification labelled as potentially irrigated, which 

basically represents one or more crop types with the same phenology 

and green biomass conditions, OPTRAM was applied for deriving the 

moisture variation and detecting the actual irrigated areas. The 

resulting map for the Austrian site during the irrigation season 2021 

was reasonable accurate, with an overall accuracy of 70% and a 

precision for detecting the actual irrigated areas of 71%, showing quite 

lower performances compared to the previous studies that use 

supervised classification algorithms. It should be noticed that the 

effects of imbalance on performance metrics was faced by 

normalizing the classes of the confusion matrix (Luque et al., 2019). 

A similar accuracy (about 78%) was obtained by Dari et al. (2021) by 

applying an approach based only on the use of K-means algorithm, RS 

soil moisture products and a land surface model, but obtaining maps 

with lower resolution. The maps for the Italian site, instead, showed 

an overestimation of irrigated areas of about 21% during both the 

irrigation seasons 2019-2020, with respect to the data declared by the 

Reclamation Consortium. The overestimation may be in part due to 

the presence of non-declared irrigated areas since several farmers 

could use own water sources. In Sicily in fact, autonomous irrigation 

managed by private consortia or owner of single farms is quite 

widespread and prevails in many areas compared with collective 

irrigation, with abstraction of water from small reservoirs and/or wells 

(Zucaro et al., 2014). 

Some uncertainties in the methodology should be also 

considered. A first source of errors could come from inaccuracies of 

the unsupervised classification which does not allow a clear crop type 

distinction, affecting OPTRAM parameters (id, sd, iw, sw). In this sense, 

the use of a detailed crop type map derived by supervised approaches 

could guarantee higher accuracy since OPTRAM method would be 

specifically applied for each crop allowing a better discrimination 
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between irrigated and non-irrigated classes (this approach was 

however not tested in this study). Despite this, the use of a ground-

truth dataset should be taken into account. Secondly, the visual 

inspection for determining the wet and dry edges of OPTRAM 

suggested by Sadeghi et al. (2017) could introduce user-related bias, 

leading to some degree of uncertainty of model outputs. However, as 

demonstrated by Babaeian et al. (2018) performing a sensitivity 

analysis by varying the visually-fitted parameters, the visual 

inspection results in acceptable soil moisture estimates, despite the its 

perceived user bias. In fact, OPTRAM outputs are not highly sensitive 

to the dry and wet edge model parameters. Additionally, the reliability 

of WP and FC of the European Soil Database used for calibrating W 

calculated by OPTRAM, is undefined. In fact, due the coarse 

resolution (1 km), these products could be not representative of the 

study areas, affecting the SWC values. As a consequence, the use of a 

not accurate WP as threshold value in the second hypothesis we 

presented, could lead to a not proper estimation of irrigated area 

affecting the final irrigation maps, as showed by the sensibility 

analysis. Lastly, since soil moisture is highly influenced by rainfall 

(Acharya et al., 2022), the accuracy and resolution of the rainfall 

dataset used in the selection of the dry periods could affect SWC 

values calculated by OPTRAM. 

These limitations clearly need further investigations in order to 

enhance the methodological approach proposed. Additionally, since 

the mapping of irrigated areas at large spatial scales is still a great 

challenge, the enhanced method could be tested at bigger scale. 

Recently, Zhang et al. (2022) proposed an approach based on the 

integrate use of remote sensing, irrigation suitability, and irrigated 

area statistics for developing an irrigated cropland map in mainland 

China. Despite the good results, the authors highlight the heavy 

dependence of their method on irrigated area statistics and the 
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subjectivity of irrigation suitability analysis, as well as the lack of 

sufficient ground truth data. Thus, the stand-alone RS approach 

presented in this study, could provide a valuable contribute to the 

scientific community regarding irrigation mapping even in the large 

spatial domain.  
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3.5 Conclusion 

This paper introduces a new approach for mapping irrigated 

areas at high resolution under different climate conditions. Based on 

the use of the unsupervised classification on NDVI time series and 

OPTRAM, the main advantage of this methodology is the requirement 

of only few input data, i.e. cloud-free optical satellite images, rainfall 

values and soil water parameters, without needing any reference crop 

type data and thus allowing its transferability in time and space.  

The approach was applied and tested in Marchfeld Cropland 

region in Austria, under a Dfb climate, obtaining a map of the irrigated 

areas for the irrigation season 2021 with an overall accuracy of 70% 

and a capability in detecting the actual irrigated areas of 71%. The 

proposed approach was also applied in the irrigation district Quota 

102,50 in Italy, under Csa climate, where the results were compared 

with the irrigation data of the Reclamation Consortium, finding an 

overestimation (by RS) of irrigated areas of 21% during the irrigation 

seasons 2019-2020.  

Despite the lower accuracy compared to studies that use 

supervised classification approaches, these results demonstrate the 

potential of using OPTRAM for irrigation purposes. Future research 

could enhance the methodology by studying in detail how crop types 

affect OPTRAM performances and how to solve the main 

uncertainties related to the soil water parameters. Additionally, all the 

enhanced framework could be implemented on GEE platform or 

similar cloud computing for larger scale applications. 

In conclusion, this approach could allow the promotion of data-

driven decision for water use and allocation leading to efficient water 

saving strategies and improving the sustainability of the irrigated 

agriculture. It could be used as an operational monitoring system by 

water management authorities for regular reporting of irrigated areas, 
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representing a potential tool to assist EU member states for meeting 

their obligations under the WFD. 
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4 Comparing the use of ERA5 reanalysis 

dataset and ground-based agrometeorological data 

under different climates and topography in Italy3 

Abstract 

Study Region: The study region is represented by seven irrigation 

districts distributed under different climate and topography conditions 

in Italy. 

Study Focus: This study explores the reliability and consistency of the 

global ERA5 single levels and ERA5-Land reanalysis datasets in 

predicting the main agrometeorological estimates commonly used for 

crop water requirements calculation. In particular, the reanalysis data 

was compared, variable-by-variable (e.g., Rs; Tair; RH; u10; ET0), with 

in situ agrometeorological observations obtained from 66 automatic 

weather stations (2008-2020). In addition, the presence of a climate-

dependency on their accuracy was assessed at the different irrigation 

districts. 

New Hydrological Insights for the Region: A general good agreement 

was obtained between observed and reanalysis agrometeorological 

variables at both daily and seasonal scales. The best performance was 

obtained for Tair, followed by RH, Rs, and u10 for both reanalysis 

datasets, especially under temperate climate conditions. These 
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Quarta, R., Provenzano, G., Ippolito, M., Castagna, A., & Gandolfi, C. 

(2022). Comparing the use of ERA5 reanalysis dataset and ground-based 

agrometeorological data under different climates and topography in Italy. 

Journal of Hydrology: Regional Studies, 42, 101182. 

https://doi.org/10.1016/j.ejrh.2022.101182 

 

https://doi.org/10.1016/j.ejrh.2022.101182


4 Comparing the use of ERA5 reanalysis dataset and ground-based 

agrometeorological data under different climates and topography in Italy 

112 

performances were translated into slightly higher accuracy of ET0 

estimates by ERA5-Land product, confirming the potential of using 

reanalysis datasets as an alternative data source for retrieving the ET0 

and overcoming the unavailability of observed agrometeorological 

data. 

 

Keywords: Weather ground-based observation; reanalysis dataset; 

data-processing; modelling and simulation; water management; 

irrigation 

4.1 Introduction 

The quantitative estimation of the evapotranspiration (ET) 

fluxes exchanged within the soil-plant-atmosphere continuum is a 

precondition for rational irrigation scheduling, crop yield forecasting, 

and hydrological modelling applications (Hupet and Vanclooster 

2001). Nowadays, the ET0 formulation, proposed by P-M and 

popularized by the FAO-56 paper as a reference methodology for 

calculating crop water requirements (Allen et al. 1998), is still largely 

used for practical purposes (Pereira et al. 2015). The use of the P-M 

approach calls for the necessity of having a reliable and complete set 

of site-specific agrometeorological data. In fact, the P-M approach 

calculates the ET0 for a standard surface, requiring a complete set of 

ground-based agrometeorological data, such as Tair, u, t Rs, and RH, to 

parameterize the surface and aerodynamic resistances. Commonly, 

agrometeorological variables are measured by automatic weather 

stations. Their data integrity is ensured by proper data quality 

assessment and control procedures (De Pauw et al. 2000). However, 

ground-based observations could be affected by several errors, mainly 

due to the sensor properties, such as their accuracy, settings, 

instrument drift or temporal data sampling frequency (Beven, 1979; 

Hupet and Vanclooster, 2001; Meyer et al., 1989). Other shortcomings 
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are related to the agrometeorological time-series consistency. The 

time series can suffer from substantial time gaps (Capra et al. 2013) 

and often protocols for correcting and/or estimating poor quality or 

missing data need to be applied (see, e.g., Pereira et al. 2015). 

Moreover, the agrometeorological data representativeness of well-

watered conditions needs to be checked before implementing them in 

the ET0 approach (Pereira et al. 2015). Despite the utmost importance 

of observed agrometeorological data for agriculture purposes, the 

agrometeorological networks are often sparse over the territory, 

especially in arid zones (De Pauw et al. 2000). Sometimes, data access 

is another critical point for end-users because data is managed and 

distributed by different regional services at the National level (Pelosi 

et al. 2021). To compensate for the lack of spatial and temporal 

distributed information, other weather data sources have steadily 

developed, such as the use of interpolation methods from gauge-based 

observations, the adoption of satellite-based datasets, or the creation 

of gridded datasets obtained by adjusting the spatial interpolation 

estimates with satellite observations (Pelosi et al. 2020). Moreover, 

during the last century, great advances have been reached in 

agrometeorological data forecasting using global and regional NWP 

models. Several studies have already exploited their potential for 

supporting sustainable irrigation management (e.g. Negm et al. 2017; 

Chirico et al., 2018; Longo- Minnolo et al., 2020; Medina et al., 2018; 

Pelosi et al., 2016; Vanella et al., 2020). As an example, Vanella et al., 

(2020) showed that the use of forecast agrometeorological estimates 

provided by COSMO, opens promising perspectives for assessing the 

ET0 in different agriculture contexts, particularly under conditions of 

water scarcity, instead than using past agrometeorological data. 

Besides the NWP models, the use of atmospheric reanalysis is another 

alternative weather data source. Atmospheric reanalysis has generated 

increasing interest in the recent decade, due to its ability to provide 
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complete and consistent time-series of multiple meteorological 

parameters at a global scale by covering several decades (Tarek et al. 

2020). From a theoretical point of view, the reanalysis process is a 

retrospective analysis of past historical data. This process makes use 

of the ever-increasing computational resources, recent versions of 

NWP models and assimilation schemes. In general, the reanalysis 

approaches assimilate a wide array of atmospheric and ocean 

measured and remotely sensed information within a dynamical–

physical coupled numerical model (Poli et al. 2016). One of the 

recognized advantages of using reanalysis approaches is that their 

outputs are not directly dependent on the density of ground-based 

observational networks. Thus they have the potential to provide 

variables in areas with little and/or no surface coverage (Tarek et al. 

2020). Moreover, Pelosi et al. (2020) reported that reanalysis data can 

represent an efficient data source for planning and design studies 

applied to irrigation water management.  

Currently, several modelling centres provide reanalysis 

products at variable spatial and temporal scales (Lindsay et al., 2014; 

Chaudhuri et al., 2013). As an example, the ECMWF periodically 

applies its forecast models and data assimilation systems to reanalyse 

archived observations for generating global data sets describing the 

recent history of the atmosphere, land surface, and oceans. The latest 

released ECMWF reanalysis products are ERA5 single levels (ERA5) 

and ERA5 Land (ERA5-L), which are being produced within the 

Copernicus Climate Change Service and freely distributed since 2019. 

The first dataset, ERA5, covers the entire globe from 1979 at a spatial 

resolution of about 30 km (depending on latitude). The second dataset, 

ERA5-L, has been produced by replaying the land component of the 

ERA5 climate reanalysis, with a horizontal spatial resolution of 9 km. 

Specifically, ERA5-L uses Tair, RH and air pressure, in a process of 

atmospheric forcing, as input to control the simulated land fields. 
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These atmospheric variables are corrected to account for the altitude 

difference between the grid of the forcing and the higher resolution 

grid of ERA5-L (Muñoz-Sabater, 2019). A comprehensive review of 

the state-of-the-art associated with the use of ERA5-L for land and 

environmental applications is presented by Muñoz-Sabater et al. 

(2021). They demonstrated the added value of ERA5-L reanalysis 

products, in comparison to ERA-Interim and ERA5, for estimating a 

wide range of in situ observations, even if they have not evaluated the 

performance of the reanalysis products in predicting ET fluxes.  

The specific objective of this study was to explore the 

effectiveness of using the most advanced global ECMWF reanalysis 

data (ERA5 single levels and ERA5-L) as a potential data source for 

predicting the main agrometeorological variables and estimating the 

ET0 in different climate contexts within the Italian territory, at daily 

and seasonal scales. In addition, visual GIS based user-friendly tools 

have been developed in this study for guiding the users in the 

reanalyses data pre-processing steps.  
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4.2 Materials and methods 

The methodological approach proposed in this study was 

carried out in the framework of the research project INtegrated 

Computer modeling and monitoring for Irrigation Planning in Italy 

(INCIPIT). The general aim of the INCIPIT project is to identify a 

shared set of modelling tools and monitoring techniques for the 

assessment of irrigation water uses in seven irrigation districts 

distributed over the Italian territory. In this context, time series of daily 

values of the agrometeorological variables registered in 66 weather 

stations, referred to as the INCIPIT irrigation districts (Tab. 4.1 and 

Fig. 4.1), were collected. The use of the new generation ECMWF 

reanalysis datasets was then evaluated in comparison to the retrieved 

ground-based agrometeorological data for the ET0 estimation. 

4.2.1 Ground-based agrometeorological variables at the study sites 

The observed agrometeorological data was acquired on a daily 

scale from 66 weather stations located in six different Italian 

administrative regions (Campania, Emilia-Romagna, Lombardy, 

Apulia, Sardinia, and Sicily), within the reference period 2008-2020 

(from January 1st 2008 to December 31st 2020). Due to the trans-

regional component of this study, the observed agrometeorological 

data were provided from multiple ground-based sources managed by 

different Regional meteorological agencies located in each of the 

irrigation districts of interest (Fig. 4.1 and Tab. 4.1). 
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Fig. 4.1. Location of the weather stations selected over the investigated 

irrigation districts within the Italian peninsula: (1) Lombardy; (2) Emilia-

Romagna; (3) Campania; (4) Apulia; (5) Sardinia; and (6) Sicily (Eastern and 

Western sides). 

 

The set of agrometeorological variables under investigation was 

composed of Rs (W m-2), maximum and minimum Tair measured at 2 

m (°C), maximum and minimum RH (%), u measured at 2 m (u2, m s-

1) and 10 m (u10, m s-1), respectively, and ET0 estimates calculated with 

the P-M approach (mm d-1).  

The selection of the weather stations was based on a twofold 

criterion. Firstly, they were identified by setting a maximum distance 
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(50 km) between the centroid of each of the 7 irrigation districts under 

study (whose coordinates are reported in Tab. 4.1) and the candidate 

weather stations. Secondly, the selection was refined based on the 

temporal consistency (i.e. continuous time series) and completeness 

(i.e. the complete set of data) of the available agrometeorological 

series. Under these criteria, more than 50 million records were 

acquired from 66 weather stations, covering a great range of climatic 

conditions, mainly in terms of the different irrigation district 

geographic locations (i.e., northern, central and insular Italy) and 

elevation features (Tab. 4.1). Note that the available dataset for 

Sardinia sites was only composed of the ET0 estimates. 

In particular, under the improved Köppen-Geiger classification, 

recently provided at 1-km resolution by Beck et al. (2018), a number 

of 7 weather stations located in Apulia are characterized by arid, 

steppe, cold climate (BSk); 24 sites, placed in Campania, Sicily 

(Eastern and Western part) and Sardinia, are featured by Csa; and 32 

sites, located in Emilia-Romagna and Lombardy, are referred to no dry 

season, hot summer temperate climate conditions (Cfa).  

The quality of the ground-based data was checked according to 

the procedure proposed in Allen (1996). Daily ground-based data was 

aggregated in 4 periods for seasonality analyses on the astronomical 

basis, as follows: winter (1st January–19th March and 21st-31st 

December), spring (20th March–20th June), summer (21st June– 22nd 

September), and autumn (23rd September–20th December). 
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Tab. 4.1. Denominations and locations of the investigated irrigation districts, climate characterization and number of referred weather stations, including the name of the regional meteorological 

agencies 

Italian Region Irrigation districts 
Latitude 

(°) 

Longitude 

(°) 

Average altitude 

(± standard 

error) (m, a.s.l.) 

Climate 

condition 

Number 

of 

weather 

station 

Regional meteorological 

agencies 

Lombardy n. 4 districts – Adda river basin 45.37 9.54 150.0 ± 28.5 
Temperate, no 

dry season, hot 

summer (Cfa) 

21 
Arpa Lombardia 

(https://www.arpalombardia.it/) 

Emilia-Romagna 
n. 7 districts – Consorzio di 

Bonifica Renana 
44.52 11.24 274.2 ± 113.9 14 

Arpae Emilia-Romagna 

(https://simc.arpae.it/dext3r/) 

Campania 
Consorzio di Bonifica del Bacino 

Inferiore del Volturno 
41.20 14.15 64.5 ± 26.8 

Temperate, dry 

and hot summer 

(Csa) 

6 Protezione Civile Campania 

Sicily 

Western 
n. 1 district “1A” – Consorzio di 

Bonifica Sicilia Occidentale 
37.78 12.95 247.0 ± 94.3 5 

Servizio Informativo 

Agrometeorologico Siciliano 

(www.sias.regione.sicilia.it) 
Eastern 

n. 1district “Quota 102.50” – 

Consorzio di Bonifica Sicilia 

Orientale 

37.39 14.74 435.3 ± 135.2 7 

Sardinia 

n. 2 districts “Cedrino” and 

“Posada” - Consorzio di Bonifica 

della Sardegna Centrale 

40.39 15.48 553.9 ± 139.6 6 
Sardegna Arpa 

(http://www.sar.sardegna.it/) 

Apulia 
n. 1 district 10 -Consorzio di 

Bonifica della Capitanata 
41.3 15.75 120.0 ± 37.5 

Arid, steppe, 

cold (BSk) 
7 

Consorzio di Bonifica della 

Capitanata 
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4.2.2 Reanalysis datasets description 

The technical characteristics of the used reanalysis datasets 

(ERA5 single levels and ERA5-L) and the related data-processing 

steps are described in Sections 4.2.2.1 and 4.2.2.2, respectively. 

4.2.2.1 Reanalysis data collection and characteristics 

In this study, the most advanced global reanalysis data produced 

in Europe by ECMWF has been used: ERA5 single levels (Hersbach 

et al., 2020) and ERA5-L (Muñoz-Sabater, 2019). The main technical 

details of these reanalysis datasets are reported in Tab. 4.2. 

 

Tab. 4.2. Main technical details of the reanalysis datasets used in this study 

Reanalysis dataset 

characteristics 
ERA5 ERA5-L 

Data type Gridded 

Projection Regular latitude-longitude grid 

Horizontal coverage Global 

Horizontal resolution 

(atmosphere) 
0.25° x 0.25° 0.1° x 0.1° 

Temporal coverage 1979 to present 1950 to present 

Temporal resolution Hourly 

 

The ERA5 dataset is the 5th generation of ECMWF global 

reanalysis succeeding ERA-Interim and covering the entire globe from 

1979, at a spatial resolution of about 30 km. The ERA5-L dataset is 

generated for the entire globe with a native horizontal resolution of 

about 9 km (released on a regular 0.1◦ x 0.1◦ grid) by replaying the 

land component of ERA5 climate reanalysis, from 1981 to 2–3 months 

before the present. Specifically, the atmospheric forcing in ERA5-L is 

provided by land fields of ERA5 atmospheric variables. In ERA5, Tair, 
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air humidity and air pressure are corrected to account for the elevation 

difference between the grid of the forcing and the higher-resolution 

grid of ERA5-L, according to the so-called lapse rate correction 

(Muñoz-Sabater, 2019). Although ERA5-L runs at the enhanced 

spatial resolution, there is a limit that data are not provided for 

numerical grid points falling on the sea surface or in the proximity of 

the coastline (Pelosi et al. 2020).  

The ERA5 and ERA5-L reanalysis datasets were freely 

downloaded from the Climate Change Service Copernicus platform 

(https://cds.climate.copernicus.eu/cdsapp#!/search?type=dataset) 

through the Climate Data Store web interface v.1.0 in Network 

common data form (NetCDF) format for the entire Italian domain 

(1221.79 x 916.46 km), as for the ground-based observations, within 

the reference period 2008-2020. The hourly agrometeorological 

variables of interest were: the Tair ('2m_temperature', t2m, °C) and the 

dew point temperatures (Tdew, named as '2m_dewpoint_temperature 

d2m, m s-1'); the Rs ('surface_solar_radiation_downwards', ssrd, J m-2) 

and; the vertical and horizontal component of the wind speed 

('10m_u_component_of_wind', U10, m s-1, and 

'10m_v_component_of_wind', V10, m s-1). 

4.2.2.2 Data pre-processing steps 

Both hourly ERA5 single levels and ERA5-L data were 

aggregated at a daily time step to be compared variable-by-variable 

with the ground-based observations. 

The daily minimum and maximum Tair and Tdew values were 

obtained from the hourly data. The daily Tair comparisons were carried 

out considering the average of the daily maximum (Tmax) and 

minimum temperatures (Tmin). The daily Rs values were aggregated on 

24 hours basis. The daily RH was calculated as the ratio between the 

actual (ea) and the saturation (eo(T)) vapour pressure using the average 

https://cds.climate.copernicus.eu/cdsapp#!/search?type=dataset
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Tair and Tdew derived on 24 hours basis as inputs, according to the 

formula proposed in Allen et al. (1998): 

 

RH =  100 ∙
 ea

eo(T)
       (1) 

ea =  eo(Tdew) =   0.6108 ∙ exp (
 17.27 Tdew

Tdew+ 237.3
)   (2) 

eo(T) =  0.6108 ∙ exp (
 17.27 Tair

Tair+ 237.3
)    (3) 

The daily wind speed at 10 m (u10, m s-1) was calculated using 

the horizontal and vertical components (V10 and U10) retrieved by 

ERA5 and ERA5-L datasets, as reported in Allen et al. (1998). Note 

that the wind speed comparison between the ground-based and 

reanalysis observations was performed on the u10 basis. The wind 

speed at 2 m (u2) was rescaled, from the logarithmic wind profile, for 

being used as input in the ET0 calculation using the P-M approach (see 

Section 4.2.3). 

The above-mentioned reanalysis datasets data pre-processing 

steps were performed using five ad hoc GIS-based toolboxes 

developed in ArcPy (ESRI©) (see Supplementary materials at the end 

of the Thesis). The reanalysis post-processed data were extracted from 

the overall domain at the weather stations' location variable-by-

variable (Fig. 4.1). Finally, as for the daily ground-based data, the 

reanalysis data were aggregated in four periods for seasonality 

analyses using the same time step as used for the ground-based data. 

4.2.3 Calculating daily ET0 estimates 

Although ERA5 single levels and ERA5-L provide potential 

evapotranspiration data (ETp), this variable is conceptually different 

from ET0 estimates as defined in the FAO-56 paper (Allen et al., 

1998). In particular, ETp is computed in ERA5 based on surface 
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energy balance calculations with the vegetation parameters set to 

"crops/mixed farming" and assuming "no stress from soil moisture" 

(Hersbach et al. 2018), whereas, ETp in ERA5-L is computed as open 

water evaporation assuming that the atmosphere is not affected by the 

artificial surface condition (Muñoz 2019). Thus, in this study daily 

ET0 estimates were obtained by implementing the reanalysis of 

agrometeorological data through the Penman-Monteith (PM) method 

(Penman, 1956; Monteith, 1965), as follows: 

 

ET0 =
0.408 Δ∙(Rn−G) +  γ ∙ 

C𝑛
T+273

 ∙ u2∙ (es−ea)

Δ + γ∙(1+C𝑑u2)
    (4) 

 

where, Rn is the net radiation at the grass surface and G is the 

soil heat flux density (in MJ m-2 d-1 for a 24-h daily time step); Cn and 

Cd are constants, equal to 900 and 0.34, respectively, which vary 

according to the time step, the reference crop type and daytime/night-

time ratio; T is the mean daily Tair (°C);  is the slope of the saturation 

vapour pressure curve at Tair (kPa °C-1); γ is the psychrometric constant 

(kPa °C-1); es is the saturation vapour pressure at Tair (kPa); ea is the 

average daily actual vapour pressure (kPa); and u2 is the average daily 

wind speed at 2 m height (m s-1). 

Note that the daily ET0 ground-based estimates (mm d-1) were 

provided at all site locations by the Regional meteorological agencies 

(Tab. 4.1), except for Campania and Emilia-Romagna regions for 

which daily ET0 values were estimated by Eq. 4 using the 

agrometeorological information measured in situ. 

4.2.4 Statistical indicators 

The comparisons between the reanalysis-based 

agrometeorological estimations, from ERA5 and ERA5-L, 

respectively, and the ground-based observations were assessed using 
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different statistical metrics, such as the b forced by the origin; R2; 

RMSE (Eq. 5); the mean absolute error (MAE; Eq. 6); PBIAS (Eq. 7); 

and the normalized root-mean-square error (NRMSE; Eq. 8), 

calculated as follows: 

 

RMSE =  √
∑ (Si−Oi)2n

i=1

n
      (5) 

MAE =  
1

n
∑|Si − Oi|      (6) 

PBIAS =
∑(Si−Oi)

∑ Oi
∙ 100      (7) 

NRMSE =
RMSE

Ô
       (8) 

where 𝑆𝑖 is the simulated value by ERA5 and ERA5-L dataset, 

respectively,  𝑂𝑖 is the observed value from the ground-based 

agrometeorological stations, where �̂� and �̂� are the averages of the 

data arrays of 𝑆𝑖 and 𝑂𝑖, and n is the number of observations. 

The difference in reproducing the agrometeorological variables 

by ERA5 and ERA5-L products, respectively, was assessed by 

applying the least-squares linear regression method and by comparing 

the outputs of the regression lines in terms of b (for p-values < 0.05). 

This statistical analysis was conducted using the R software (R Core 

team, 2020). 

The evaluation of the topographic effect on the 

agrometeorological variables obtained by the reanalysis datasets was 

assessed by comparing the elevation of the selected weather stations 

(Tab. 4.1) with the average elevation observed at the cell-size of the 

ERA5 single levels and ERA5-L datasets (30 and 9 km), respectively 

(see “Supplementary materials”). In particular, the main zonal 

statistics (count, mean, minimum, maximum, standard deviation, and 
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median values) of the elevation values were extracted at the level of 

the cell containing the weather stations (Tab. 4.1) from a digital 

elevation model (DEM), with a spatial resolution of 75 m, released by 

the Italian Ministry of the Environment and the Protection of the 

Territory and the Sea. 

4.3 Results 

4.3.1 Agrometeorological variable-by-variable comparisons 

The description of the main results obtained by comparing the 

ERA5 and ERA5-L reanalysis agrometeorological estimates (Tair, Rs, 

u2, RH and ET0), respectively, and the relative ground-based variables 

are reported hereafter variable-by-variable for the irrigation districts 

under study (Tab. 4.1), referring to the period 2008-2020. 

The overall performance (in terms of RMSE, MAE, PBIAS and 

NRMSE values) of the comparisons are given in Tab. 4.3 and 3.4 at 

the different explored time scales (daily and seasonal). Note that 

Sardinia sites are not included in Tab. 4.3 and 3.4 because no data was 

available. Figs 4.2-4.6 report the scatterplots outputted by comparing 

the daily ERA5 and ERA5-L estimates, respectively, versus the 

observed variables for the irrigation districts under study, as well as 

the parameters of the regression analyses (b and R2).  

In general, the results of the least-squares linear regression 

analysis carried out to compare the daily reanalysis datasets (i.e., 

ERA5 and ERA5-L) versus the observed agrometeorological data 

showed significant differences in terms of slopes values for all the 

variables of interest also at the seasonal level.
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Tab. 4.3. Daily and seasonal performance obtained by comparing the predicted agrometeorological estimates from the ERA5 reanalysis dataset and the ground-based observations; RMSE, 

MAE, PBIAS and NRMSE refer to the root mean square error, the mean absolute error, the percent bias and the normalized root-mean-square error, respectively. 

Italian region 
Time-

scale 

Air temperature (Tair) Solar radiation (Rs) Wind speed (u10) Relative humidity (RH) 

RMSE MAE PBIAS 
NRMSE 

RMSE MAE PBIAS 
NRMSE 

RMSE MAE PBIAS 
NRMSE 

RMSE MAE PBIAS 
NRMSE 

°C °C % W m-2 W m-2 % m s-1 m s-1 % % % % 

Lombardy 

daily 1.62 1.20 -0.38 0.11 35.03 26.41 1.76 0.23 0.69 0.52 -15.69 0.45 8.62 6.70 -2.95 0.12 

winter 1.63 1.24 6.97 0.32 25.59 19.30 11.86 0.32 0.71 0.52 -14.35 0.46 8.96 6.93 -4.42 0.11 

spring 1.62 1.16 -2.58 0.10 42.82 33.49 1.25 0.20 0.78 0.60 -21.24 0.44 8.26 6.40 -2.25 0.12 

summer 1.74 1.27 -1.33 0.07 41.86 33.34 -3.22 0.17 0.64 0.50 -18.39 0.43 9.35 7.40 -1.96 0.14 

autumn 1.47 1.11 1.96 0.14 24.86 18.89 9.39 0.33 0.63 0.47 -6.37 0.47 7.80 6.04 -3.00 0.10 

Emilia-

Romagna 

daily 1.78 1.38 6.62 0.13 29.83 21.99 -0.09 0.18 1.39 0.93 -34.72 0.57 8.93 7.06 4.58 0.13 

winter 1.85 1.44 17.74 0.37 22.42 16.52 5.39 0.26 1.50 0.95 -33.60 0.61 9.76 7.41 5.18 0.13 

spring 1.77 1.33 5.35 0.11 38.07 28.92 0.70 0.17 1.42 1.00 -35.60 0.54 8.32 6.78 3.61 0.13 

summer 1.78 1.40 4.19 0.08 32.84 25.38 -3.58 0.13 1.25 0.93 -37.16 0.53 8.77 7.13 3.73 0.15 

autumn 1.73 1.35 8.95 0.16 21.68 16.30 3.42 0.25 1.40 0.84 -31.95 0.63 8.88 6.94 5.60 0.12 

Campania 

daily 2.26 1.83 -9.22 0.14 33.54 24.75 4.61 0.20 0.82 0.56 -18.13 0.43 7.87 6.16 -0.39 0.10 

winter 2.09 1.65 -12.54 0.23 26.88 20.90 13.89 0.29 1.02 0.65 -16.70 0.47 8.53 6.64 -1.56 0.11 

spring 2.55 2.14 -11.66 0.15 41.16 31.50 3.59 0.18 0.81 0.57 -23.63 0.41 7.54 5.86 2.77 0.10 

summer 2.43 1.99 -7.51 0.10 32.09 23.57 -0.46 0.12 0.63 0.48 -23.32 0.35 7.09 5.59 1.20 0.10 

autumn 1.92 1.50 -7.20 0.13 32.23 22.87 12.89 0.34 0.80 0.53 -8.12 0.45 8.30 6.60 -3.57 0.10 

Sicily 

Western 

daily 1.56 1.24 2.47 0.09 30.16 21.89 2.28 0.15 1.46 1.05 -7.75 0.45 11.13 8.50 8.78 0.17 

winter 1.64 1.31 9.37 0.15 28.20 21.97 4.73 0.23 1.71 1.24 -1.13 0.48 7.97 6.34 3.82 0.11 

spring 1.48 1.18 0.37 0.08 39.38 28.32 5.22 0.15 1.38 0.99 -12.95 0.40 12.46 9.71 11.86 0.20 

summer 1.57 1.26 -0.65 0.06 25.18 17.68 0.78 0.09 1.11 0.84 -17.11 0.37 14.08 10.87 15.30 0.24 

autumn 1.54 1.23 5.40 0.09 25.35 19.51 -2.71 0.19 1.61 1.14 0.01 0.51 8.52 6.85 5.46 0.12 

Eastern 

daily 1.47 1.19 0.38 0.09 33.11 24.43 1.89 0.17 1.35 1.12 -35.75 0.48 9.63 7.75 7.55 0.15 

winter 1.56 1.29 2.16 0.16 29.12 22.33 1.60 0.23 1.40 1.12 -29.53 0.46 9.49 7.53 7.09 0.13 

spring 1.42 1.13 0.42 0.08 42.74 31.45 5.12 0.17 1.35 1.15 -36.10 0.46 9.10 7.28 5.54 0.15 

summer 1.39 1.10 -0.95 0.06 30.69 22.33 1.33 0.11 1.37 1.19 -45.24 0.54 10.42 8.53 10.21 0.19 

autumn 1.52 1.24 1.52 0.10 27.35 21.44 -3.12 0.21 1.26 1.02 -32.31 0.48 9.45 7.66 7.70 0.13 

Apulia 

daily 1.46 1.15 4.14 0.09 45.03 30.72 -5.21 0.24 1.57 1.17 -19.43 0.58 19.02 15.30 -18.46 0.24 

winter 1.41 1.13 7.13 0.17 37.27 26.24 -4.77 0.33 1.81 1.31 -20.48 0.59 16.31 13.70 -15.42 0.19 

spring 1.55 1.21 4.60 0.09 54.82 38.86 -2.64 0.22 1.37 1.07 -17.74 0.49 21.73 17.74 -22.18 0.28 

summer 1.35 1.08 2.31 0.05 51.29 34.70 -6.32 0.18 1.54 1.18 -24.97 0.57 20.59 15.65 -21.36 0.30 

autumn 1.50 1.20 5.23 0.11 32.71 23.01 -8.31 0.28 1.53 1.11 -13.39 0.65 16.81 14.11 -15.74 0.19 
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Tab. 4.4. Daily and seasonal performance obtained by comparing the predicted agrometeorological estimates from the ERA5-L reanalysis dataset and the ground-based observations; RMSE, 

MAE, PBIAS and NRMSE refer to the root mean square error, the mean absolute error, the percent bias and the normalized root-mean-square error, respectively. 

Italian region 
 Air temperature (Tair) Solar radiation (Rs) Wind speed (u10) Relative humidity(RH) 

Time-

scale 

RMSE MAE PBIAS 
NRMSE 

RMSE MAE PBIAS 
NRMSE 

RMSE MAE PBIAS 
NRMSE 

RMSE MAE PBIAS 
NRMSE 

°C °C % W m-2 W m-2 % m s-1 m s-1 % % % % 

Lombardy 

daily 1.80 1.42 -6.10 0.13 34.68 26.13 1.83 0.22 0.90 0.71 -29.11 0.58 8.43 6.59 2.03 0.11 

winter 1.76 1.35 -8.77 0.34 25.46 19.21 11.58 0.32 0.86 0.67 -25.24 0.56 8.70 6.74 1.03 0.11 

spring 2.07 1.68 -9.02 0.12 42.39 33.10 1.40 0.19 1.04 0.85 -36.42 0.58 8.38 6.54 4.58 0.12 

summer 1.86 1.48 -4.70 0.08 41.30 32.81 -3.06 0.17 0.90 0.73 -33.99 0.60 8.97 7.08 2.64 0.13 

autumn 1.47 1.14 -3.37 0.14 24.69 18.78 9.33 0.33 0.76 0.58 -17.58 0.57 7.58 5.97 0.30 0.09 

Emilia-

Romagna 

daily 1.84 1.36 1.35 0.13 33.99 23.99 0.08 0.20 1.61 1.21 -45.22 0.66 10.83 8.56 9.07 0.16 

winter 2.08 1.50 6.36 0.41 26.10 18.35 5.85 0.30 1.69 1.19 -42.70 0.68 12.55 9.76 10.08 0.17 

spring 1.72 1.32 -1.37 0.11 44.33 31.97 0.89 0.19 1.66 1.30 -46.15 0.62 10.52 8.51 9.92 0.17 

summer 1.72 1.28 0.70 0.07 36.22 27.07 -3.51 0.14 1.53 1.24 -49.27 0.64 9.64 7.75 7.84 0.16 

autumn 1.83 1.35 4.68 0.17 24.26 17.74 3.63 0.28 1.57 1.08 -42.05 0.71 10.57 8.30 8.41 0.14 

Campania 

daily 2.60 2.18 -11.75 0.16 33.81 24.97 4.64 0.20 1.03 0.8 -30.59 0.54 8.23 6.28 3.22 0.11 

winter 2.58 2.11 -19.73 0.28 27.02 21.03 13.70 0.29 1.14 0.82 -24.34 0.53 9.55 7.12 4.10 0.12 

spring 2.95 2.59 -14.33 0.17 41.39 31.65 3.63 0.18 1.08 0.88 -39.80 0.54 8.52 6.59 6.46 0.12 

summer 2.53 2.16 -7.96 0.10 32.40 23.78 -0.37 0.12 0.95 0.79 -41.16 0.53 6.74 5.34 1.88 0.10 

autumn 2.28 1.85 -10.42 0.16 32.60 23.26 12.92 0.35 0.95 0.69 -16.33 0.53 7.96 6.13 0.64 0.10 

Sicily 

Western 

daily 1.37 1.09 -1.36 0.08 30.31 21.89 2.63 0.15 1.54 1.19 -7.19 0.47 9.72 7.99 9.32 0.15 

winter 1.44 1.13 -0.15 0.13 28.46 22.14 5.19 0.23 1.71 1.33 1.71 0.47 9.11 7.43 6.84 0.12 

spring 1.36 1.08 -2.47 0.08 39.75 28.45 5.61 0.15 1.44 1.11 -13.21 0.42 10.27 8.49 11.58 0.16 

summer 1.33 1.06 -1.61 0.05 25.12 17.50 1.02 0.09 1.30 1.04 -18.87 0.44 9.82 8.02 11.43 0.17 

autumn 1.36 1.09 -0.52 0.08 25.28 19.41 -2.28 0.19 1.67 1.29 1.39 0.53 9.61 7.96 7.91 0.13 

Eastern 

daily 1.31 1.05 -1.51 0.08 33.47 24.76 2.00 0.17 1.54 1.3 -41.43 0.55 11.52 9.29 10.45 0.18 

winter 1.32 1.06 -4.68 0.14 29.11 22.38 1.56 0.23 1.50 1.22 -31.06 0.49 12.41 10.16 12.44 0.17 

spring 1.28 1.03 -0.47 0.08 42.78 31.49 5.20 0.17 1.56 1.34 -42.29 0.53 9.67 7.79 7.93 0.16 

summer 1.36 1.08 -0.70 0.05 31.40 22.82 1.50 0.12 1.68 1.49 -56.64 0.66 11.57 9.28 10.08 0.21 

autumn 1.28 1.02 -2.16 0.08 28.19 22.16 -2.98 0.22 1.39 1.14 -35.86 0.53 12.30 10.03 11.09 0.17 

Apulia 

daily 1.97 1.44 -2.46 0.12 44.98 30.67 -5.29 0.24 1.75 1.34 -23.50 0.64 15.98 12.03 -11.92 0.20 

winter 1.86 1.38 -6.46 0.22 37.22 26.20 -4.99 0.33 1.95 1.45 -21.52 0.63 12.00 9.54 -7.37 0.14 

spring 2.20 1.58 -3.48 0.13 54.72 38.74 -2.66 0.22 1.59 1.27 -22.22 0.57 17.27 13.36 -13.46 0.22 

summer 1.90 1.40 -1.07 0.08 51.25 34.64 -6.34 0.18 1.76 1.39 -34.50 0.65 19.75 14.45 -17.89 0.29 

autumn 1.88 1.40 -1.49 0.13 32.71 23.03 -8.51 0.28 1.68 1.26 -14.31 0.71 13.41 10.63 -9.95 0.15 
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4.3.1.1 Air temperature (Tair) 

4.3.1.1.1 Tair: ERA5 versus ground-observations 

Daily average Tair values were estimated with good accuracy by 

the ERA5 reanalysis dataset at all the irrigation districts under study 

(Tab. 4.3), showing average RMSE values of 1.46 °C, 1.70 °C and 

1.76 °C; and MAE values of 1.15 °C, 1.29 °C and 1.42 °C under Bsk, 

Cfa and Csa climate conditions, respectively. The average values of 

NRMSE varied between 0.09 and 0.14; reaching minimum and 

maximum values under Bsk and Csa-Cfa climate conditions, 

respectively. The PBIAS values varied from 0.38% (in Eastern Sicily 

study sites) to 6.62% (in Emilia-Romagna study sites) and -9.22% (in 

Campania study sites); showing average values of -2.12%, 3.12% and 

4.14% under Csa, Cfa and Bsk climate conditions, respectively, with 

average R2 values varying between 0.94 (Csa) and 0.97 (Bsk). b values 

ranged from 0.91 to 1.04, indicating a site-specific underestimation of 

9% and overestimation of 4% in Campania and Emilia-Romagna 

study sites, respectively (Fig. 4.2a-f). 

On a seasonal basis, the best Tair performance was observed in 

autumn, showing average RMSE, MAE, PBIAS, b and R2 values of 

1.61 °C, 1.27 °C, 2.64%, 1.01 and 0.89, respectively. Similar 

performances were obtained in spring-summer seasons (with average 

RMSE, MAE, PBIAS, b and R2 values of 1.72 °C, 1.35 °C, -0.62%, 

0.99 and 0.79, respectively), while a slightly lower accuracy was 

observed in winter (with average RMSE, MAE, PBIAS, b and R2 

values of 1.70 °C, 1.34 °C, 5.14%, 1.00 and 0.72, respectively). The 

same trend was observed in terms of NRMSE values. Specifically, the 

Tair predictions reached the best performance in Apulia study sites 

during winter and summer (with RMSE and MAE values of 1.35 and 

1.08 °C, respectively), followed by spring and autumn in Eastern 

Sicily and Lombardy study sites; whereas the lowest Tair performance 
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was obtained in Campania study sites during all seasons (Tab. 4.3). 

4.3.1.1.2 Tair: ERA5-L versus ground-observations 

Daily average Tair values were predicted with acceptable 

accuracy by the ERA-L reanalysis dataset at all the irrigation districts 

under study (Tab. 4.4), resulting in average RMSE values of 1.76 °C, 

1.82 °C and 1.97 °C; and MAE values of 1.44 °C, 1.39 °C and 1.44 

°C under Csa, Cfa and Bsk climate conditions, respectively. The 

average NRMSE values varied between 0.08 and 0.16; with similar 

values under Csa, Cfa and Bsk climate conditions The PBIAS values 

ranged between 1.35% (in Emilia-Romagna study sites) to -11.75% 

(in Campania study sites); showing average values of -4.87%, -2.38% 

and 2.46% in Csa, Cfa and Bsk climate conditions, respectively. The 

average R2 values ranged from 0.93 (Csa) to 0.95 (Cfa and Bsk); and 

b values ranged from 0.89 to 0.99, indicating a maximum and 

minimum underestimation of 11% and 1% in Campania and Emilia-

Romagna study sites, respectively (Fig. 4.2g-l). 

Seasonally greater Tair predictions were retrieved in summer 

and autumn seasons, resulting in average RMSE, MAE, PBIAS, b and 

R2 values of 1.73 °C, 1.36 °C, -2.39%, 0.97 and 0.81, respectively; 

whereas, slightly lower Tair performance were observed in spring and 

winter seasons, showing average RMSE, MAE, PBIAS, b and R2 

values of 1.89°C, 1.48 °C, -5.38%, 0.93 and 0.80, respectively. A 

similar trend was observed in terms of NRMSE values. Specifically, 

the Tair predictions reached the best performance at Eastern Sicily 

study sites during spring and autumn-winter periods (with average 

RMSE, MAE, PBIAS, b and R2 values of 1.28 °C, 1.02 °C, -1.31%, 

0.98 and 0.92, respectively) and in summer in Western Sicily study 

sites (Tab. 4.4); whereas the lowest Tair performance was obtained in 

Campania study sites during all seasons (Tab. 4.4). 
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Fig. 4.2. Daily average predicted air temperature (Tair_ERA5 and Tair_ERA5-L, °C) 

versus observed (Tair_Obs, °C) values at the irrigation districts located in 

Lombardy (a, g), Emilia-Romagna (b, h); Campania (c, i), Western Sicily (d, j), 

Eastern Sicily (e, k) and Apulia (f, l) within the period 2008-2020. The black 

line and red line represent the 1:1 line and linear regression line, respectively. 

The terms b, R2 and n refer to the slope of the regression equation through the 

origin, the coefficient of determination and the number of observations, 

respectively.  
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4.3.1.2 Solar radiation (Rs) 

4.3.1.2.1 Rs: ERA5 versus ground-observations 

ERA5 dataset showed good performance in estimating daily Rs 

under all the examined climate conditions (Tab. 4.3), showing average 

RMSE values of 32.27 W m-2, 32.43 W m-2, and 45.03 W m-2; MAE 

of 23.67 W m-2, 24.20 W m-2 and 30.72 W m-2, and NRMSE of 0.17, 

0.21 and 0.24 in Csa, Cfa and Bsk, respectively. Average PBIAS 

values ranged between 0.83% (Cfa) to 2.93% (Csa) and -5.21% (Bsk), 

corresponding to R2 values of 0.88, 0.86 and 0.80, respectively. b 

terms presented the same trend with values from 1.00 to 0.96 and 0.91 

under Csa, Cfa and Bsk climate conditions, respectively. 

Seasonally, the best Rs performance was retrieved in autumn 

(with average RMSE, MAE and PBIAS values of 27.36 W m-2, 20.34 

W m-2, and 1.93%, respectively; and b and R2 terms of 0.88 and 0.67, 

respectively) at all site locations (except for Campania locations), 

followed by winter and summer. Slightly lower Rs performance was 

obtained in spring, resulting in average RMSE, MAE, PBIAS, b and 

R2 values of 43.17 W m-2, 32.09 W m-2, 2.20%, 0.96 and 0.48, 

respectively. In absolute terms, the best Rs predictions were reached 

in Western Sicily study sites during summer (also in terms of NRMSE 

values) and in Emilia-Romagna study sites for the other seasons (Tab. 

4.3); whereas the lowest Rs performance was obtained in Bsk climate 

condition (Apulia study sites) during all seasons and in Campania sites 

for the autumn season in terms of NRMSE (Tab. 4.3). 

4.3.1.2.2 Rs: ERA5-L versus ground-observations 

Daily Rs values were predicted with good accuracy by the 

ERA5-L reanalysis dataset at all study sites (Tab. 4.4), resulting in 

average RMSE values of 32.53 W m-2, 34.33 W m-2 and 44.98 W m-2, 

and NRMSE values of 0.17, 0.21 and 0.24 under Csa, Cfa and Bsk 

climate conditions, respectively. Average MAE values ranged from 



4 Comparing the use of ERA5 reanalysis dataset and ground-based 

agrometeorological data under different climates and topography in Italy 

132 

23.87 W m-2 (Csa) to 25.06 W m-2 (Cfa) and 30.67 W m-2 (Bsk); and 

PBIAS values varied between 0.96% (Cfa) to 3.09% (Csa) and -5.29% 

(Bsk). The R2 values and b terms varied from 0.80 to 0.86 and 0.87, 

and from 0.91 to 0.96 and 1.00, under Bsk, Csa and Cfa climate 

conditions, respectively (Fig. 4.3g-l). 

At the seasonal level, the Rs predictions reached the best 

performance in autumn at all climate conditions (except for Campania 

locations also in terms of NRMSE), with average RMSE, MAE and 

PBIAS values of 27.96 W m-2, 20.73 W m-2, and 2.02%, respectively; 

and b and R2 terms of 0.92 and 0.65. The lower performance was 

observed in spring under all climate conditions, with average RMSE, 

MAE and PBIAS values of 44.23 W m-2, 32.57 W m-2, and 2.35%, 

respectively; and b and R2 terms of 0.98 and 0.46, respectively. (Tab. 

4.4). Intermediate Rs performances were observed in winter and 

summer (Tab. 4.4). Partially different results were observed in terms 

of NRMSE showing greater performances in summer followed by 

spring and winter-autumn seasons. The Rs predictions reached the best 

performance in Western Sicily during spring and summer periods 

(Tab. 4.4) and in autumn and winter seasons under Cfa climate 

conditions (Lombardy and Emilia-Romagna study sites); whereas the 

lowest Rs performance was obtained under Bsk climate condition 

(Apulia study sites) during all seasons also in terms of NRMSE values 

(Tab. 4.4). 
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Fig. 4.3. Daily predicted solar radiation (Rs _ERA5 and Rs _ERA5-L, W m-2) versus 

observed (Rs_Obs, W m-2) values at the irrigation districts located in Lombardy 

(a, g), Emilia-Romagna (b, h); Campania (c, i), Western Sicily (d, j), Eastern 

Sicily (e, k) and Apulia (f, l) for the period 2008-2020. The black line and red 

line represent the 1:1 line and linear regression line, respectively. The terms b, 

R2 and n refer to the slope of the regression equation through the origin, the 

coefficient of determination and the number of observations, respectively. 



4 Comparing the use of ERA5 reanalysis dataset and ground-based 

agrometeorological data under different climates and topography in Italy 

134 

4.3.1.3 Wind speed (u10) 

4.3.1.3.1 u10: ERA5 versus ground-observations 

The performances of the ERA5 dataset in predicting daily u10 

values are shown in Tab. 4.3 and Fig. 4.4a-f. The ERA5 accuracy 

shows a specific pattern as a function of the climate conditions, 

resulting in average RMSE values of 1.04 m s-1, 1.21 m s-1 and 1.57 m 

s-1 under Cfa, Csa, and Bsk climate conditions, respectively. Similar 

behaviour is observed in terms of average MAE values, ranging from 

0.73 m s-1 (Cfa) to 0.91 m s-1 (Csa) and 1.17 m s-1 (Bsk). Inversely, 

PBIAS values were equal to -19.43%, -20.54%, and -25.21% from 

Bsk to Csa and Cfa climate conditions, respectively. Lower R2 values 

were obtained at all study sites, with b terms ranging from 0.66 and 

0.74 in Cfa-Bsk and Csa climate conditions, respectively. A similar 

trend was observed in terms of NRMSE values. 

ERA5 performance increased in summer-autumn/spring 

periods (with average RMSE, MAE, PBIAS, NRMSE, b and R2 values 

of 1.16 m s-1, 0.87 m s-1, -22.53%, 0.46, 0.70 and 0.18, respectively). 

Lower performance was observed in winter, resulting in average 

RMSE, MAE, PBIAS, NRMSE, b and R2 values of 1.36 m s-1, 0.97 m 

s-1, -19.30%, 0.51, 0.71 and 0.22, respectively. In particular, relatively 

better performance was observed in Campania (summer) and 

Lombardy study sites (for the rest of the seasons) (Tab. 4.3), whereas, 

lower performance was registered during winter and summer in 

Apulia study sites, during spring for Emilia-Romagna and autumn for 

Western Sicily study sites, respectively (Tab. 4.3). 

4.3.1.3.2 u10: ERA5-L versus ground-observations 

The accuracy and performance indicators of the ERA5-L 

dataset in predicting daily u10 values are shown in Tab. 4.4 and Fig. 

4.4g-l. Similarly to ERA5, the ERA5-L accuracy shows a specific 

pattern as a function of the climate conditions, resulting in average 



4 Comparing the use of ERA5 reanalysis dataset and ground-based 

agrometeorological data under different climates and topography in Italy 

135 

RMSE values of 1.26 m s-1, 1.37 m s-1 and 1.75 m s-1 in Cfa, Csa, and 

Bsk climate conditions, respectively; showing similar trends in terms 

of average MAE values, that ranged from 0.96 m s-1 (Cfa) to 1.10 m s-

1 (Csa) and 1.34 m s-1 (Bsk). Conversely, PBIAS values varying 

between -23.50% (Bsk) to -26.40% (Csa) and -37.17% (Cfa); with R2 

and NRMSE values varying from 0.06 (Bsk) to 0.25 (Cfa) and 0.45 

(Csa) and from 0.64 to 0.62 and 0.52, under Bsk, Cfa and Csa climate 

conditions, respectively. b terms ranged from 0.58 (Cfa) to 0.64 (Bsk) 

and 0.72 (Csa), indicating an underestimation varying from 28% to 36 

and 42%, under Csa, Bsk and Cfa climate conditions, respectively. 

At the seasonal level, the u10 predictions reached the best 

performance in autumn, with average RMSE, MAE and PBIAS values 

of 1.34 m s-1, 1.01 m s-1, and -20.79%, respectively; and b and R2 terms 

of 0.68 and 0.26, respectively. Lower performance was observed in 

winter, resulting in average RMSE, MAE, PBIAS, b and R2 values of 

1.47 m s-1, 1.11 m s-1, -23.86%, 0.70 and 0.32, respectively. Moderate 

u10 performances were observed in the other seasons (Tab. 4.4). Slight 

differences were observed in terms of NRMSE values. Specifically, 

the u10 predictions reached the best and worst performance at 

Lombardy and Apulia study sites, respectively, during all seasons 

(Tab. 4.4). 
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Fig. 4.4. Daily predicted wind speed (u10 _ERA5 and u10 _ERA5-L, m s-1) versus 

observed (u10_Obs, m s-1) values at the irrigation districts located in Lombardy 

(a, g), Emilia-Romagna (b, h); Campania (c, i), Western Sicily (d, j), Eastern 

Sicily (e, k) and Apulia (f, l) within the period 2008-2020. The black line and 

red line represent the 1:1 line and linear regression line through the origin, 

respectively. The terms b, R2 and n refer to the slope of the regression equation, 

the coefficient of determination and the number of observations, respectively. 
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4.3.1.4 Relative humidity (RH) 

4.3.1.4.1 RH: ERA5 versus ground-observations 

Good accuracy was observed in the estimation of daily RH 

values by ERA5 at all study sites (Tab. 4.3), resulting in a similar trend 

of RMSE and MAE, with values of these indicators ranging from 

8.78% to 9.55% and 19.02%, and from 6.88% to 7.47% and 15.30% 

under Cfa, Csa and Bsk climate conditions, respectively. Similar 

behaviour was observed in terms of NRMSE, PBIAS and b values, 

showing better performances from Cfa to Csa and Bsk climates (Fig. 

4.5a-f). b terms and R2 values ranged from 0.81 to 1.04, and from 0.34 

to 0.66, respectively. 

On a seasonal basis, the ERA5 accuracy was better in autumn 

and winter (average RMSE, MAE and NMRSE values of 10.07%, 

8.06% and 0.13), followed by spring and summer seasons (average 

RMSE, MAE and NMRSE values of 11.23%, 8.96% and 0.16, 

respectively). In particular, the best ERA5 performance was retrieved 

at Campania (spring-summer), Lombardy (autumn) and Western 

Sicily (winter) study sites. Lower accuracy was obtained at Apulia 

study sites for all seasons. 

4.3.1.4.2 RH: ERA5-L versus ground-observations 

The daily RH estimates predicted by ERA5-L in comparison to 

the ground-based measurements resulted in RMSE values ranging 

between 9.63% and 9.82% under Cfa and Csa climate conditions, 

respectively, reaching 15.98% in Bsk conditions (Fig. 4.5g-l). Similar 

trend was observed in terms of NRMSE values. This behaviour 

resulted in MAE and PBIAS values of 7.57%, 7.85%, 12.03% and 

5.55%, 7.66%, -11.92% under Cfa, Csa and Bsk conditions, 

respectively. Similar trends were observed for the b and R2 terms, 

showing values of 1.04-1.06 and 0.86 and 0.41-0.52 and 0.27 under 

Cfa-Csa and Bsk conditions, with overestimation of 4-6% in Cfa and 
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Csa and underestimation of 14% at Apulia study site (Bsk). 

At the seasonal level, the overall best RH performance was 

observed in autumn (Tab. 4.4), with average RMSE, MAE, PBIAS 

and NRMSE values of 10.24%, 8.17%, 3.07% and 0.13, respectively. 

Similar performances were retrieved in winter and spring, with 

slightly lower ERA5-L accuracy during summer (Tab. 4.4). 

Specifically, the best performance was observed at Campania (in 

summer) and Lombardy study sites (in the other seasons); whereas 

lower performance at Emilia-Romagna (in winter) and Apulia study 

sites (in the other seasons) (Tab. 4.4). 
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Fig. 4.5. Daily predicted relative air humidity (RH__ERA5 and RH__ERA5-L, %) 

versus observed (RH_Obs, %) values at the irrigation districts located in 

Lombardy (a, g), Emilia-Romagna (b, h); Campania (c, i), Western Sicily (d, j), 

Eastern Sicily (e, k) and Apulia (f, l) for the period 2008-2020. The black and 

red lines represent the 1:1 and the linear regression line through the origin, 

respectively. The terms b, R2 and n refer to the slope of the regression equation, 

the coefficient of determination and the number of observations, respectively. 
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4.3.1.5 Reference evapotranspiration (ET0) 

4.3.1.5.1 ET0: ERA5 versus ground-observations 

Daily ET0 estimates obtained using as inputs the 

agrometeorological information provided by the ERA5 dataset 

showed good accuracy in comparison to the ground-based ET0 

estimates (Tab. 4.5 and Fig. 4.6a-m). In particular, the daily ET0 

estimates reached the best performance under Csa-Cfa climate 

conditions (with average RMSE, MAE and NRMSE values of 0.66 

mm d-1, 0.48 mm d-1, and 0.23, respectively). Lower performance was 

observed at Bsk, resulting in average RMSE, MAE and NRMSE 

values of 0.90 mm d-1, 0.67 mm d-1, and 0.31, respectively. Positive 

average PBIAS values were obtained at Bsk (7.90%), whereas 

negative average PBIAS values of -4.25% and -9.64% resulted under 

Csa and Cfa climate conditions. 

At the seasonal level, the ET0 performance was greater during 

winter and autumn periods (with average RMSE, MAE, BIAS, b and 

R2 values of 0.47 mm d-1, 0.34 mm d-1, 1.98%, 0.93 and 0.58, 

respectively), and lower, but still satisfactory, in spring and summer 

(with average RMSE, MAE, BIAS, b and R2 values of 0.85 mm d-1, 

0.67 mm d-1, -5.58%, 0.93 and 0.59, respectively). Similar values were 

observed in terms of NRMSE values among the seasons (Tab. 4.5). 

Better accuracy was obtained at Lombardy (winter-autumn seasons), 

Campania (summer) and Eastern Sicily (spring) study sites; whereas, 

lower accuracy was reached at Apulia study sites for all seasons (Tab. 

4.5). 

4.3.1.5.2 ET0: ERA5-L versus ground-observations 

Overall, ERA5-L provided daily ET0 estimates with good 

accuracy (Tab. 4.5 and Fig. 4.6h-n). Specifically, the daily ET0 

estimates reached the best performance under Csa and Cfa conditions 

(with average RMSE, MAE and NRMSE values of 0.63 mm d-1, 0.46 
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mm d-1 and 0.22, respectively) (Tab. 4.5 and Fig. 6h-n). The lower 

performance was observed at Bsk, with average RMSE, MAE and 

NRMSE values of 0.88 mm d-1, 0.64 mm d-1 and 0.30, respectively. 

Positive average PBIAS values were obtained under Bsk (5.86%); 

whereas under Csa and Cfa climate conditions resulted in values 

ranging from -2.53% to -10.81%, respectively. 

At the seasonal level, the ET0 performance resulted better in 

winter and autumn (with average RMSE, MAE, BIAS, b and R2 values 

of 0.50 mm d-1, 0.36 mm d-1, -3.84%, 0.90 and 0.64, respectively), and 

lower, but still quite satisfactory, in spring and summer (with average 

RMSE, MAE, BIAS, b and R2 values of 0.77 mm d-1, 0.60 mm d-1, -

3.53%, 0.94 and 0.63, respectively). As for the ERA5, similar values 

were observed in terms of NRMSE values among the seasons (Tab. 

4.5). Greater accuracy was obtained at Lombardy (winter-autumn 

seasons) and Western Sicily (spring-summer seasons) study sites, 

while lower accuracy was obtained at Apulia study sites for all seasons 

(Tab. 4.5). 

 



4 Comparing the use of ERA5 reanalysis dataset and ground-based agrometeorological data under different climates and 

topography in Italy 

142 

Tab. 4.5. Daily and seasonal (winter, spring, summer and autumn) performance obtained by the comparison between predicted 

crop reference evapotranspiration (ET0) by ERA5 and ERA-L reanalysis dataset, respectively, and the ground-based 

observations; RMSE, MAE, PBIAS and NRMSE refer to the root mean square error, the mean absolute error, the percent bias 

and the normalized root-mean-square error, respectively. 

Italian region 
Time-

scale 

ERA5 ERA5-L 

RMSE MAE PBIAS 
NRMSE 

RMSE MAE PBIAS 
NRMSE 

mm d-1 % mm d-1 % 

Lombardy 

daily 0.62 0.42 -6.28 0.25 0.61 0.42 -7.92 0.25 

winter 0.29 0.19 -0.36 0.34 0.30 0.21 -9.45 0.35 

spring 0.75 0.58 -7.38 0.21 0.75 0.59 -8.68 0.21 

summer 0.88 0.69 -7.94 0.20 0.85 0.67 -7.55 0.19 

autumn 0.32 0.21 0.42 0.33 0.31 0.21 -5.45 0.32 

Emilia-

Romagna 

daily 0.70 0.51 -13.00 0.24 0.70 0.52 -13.70 0.24 

winter 0.40 0.28 -15.04 0.37 0.44 0.31 -20.70 0.41 

spring 0.77 0.62 -11.67 0.20 0.79 0.64 -12.37 0.20 

summer 0.97 0.79 -13.33 0.19 0.94 0.76 -12.68 0.18 

autumn 0.44 0.31 -14.24 0.33 0.45 0.31 -16.92 0.34 

Campania 

daily 0.65 0.48 -11.25 0.23 0.62 0.45 -10.44 0.22 

winter 0.43 0.30 -9.95 0.35 0.47 0.32 -15.58 0.38 

spring 0.77 0.63 -12.57 0.21 0.73 0.59 -11.16 0.20 

summer 0.82 0.69 -12.39 0.17 0.73 0.58 -9.33 0.15 

autumn 0.43 0.29 -4.79 0.30 0.47 0.31 -8.08 0.33 
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Sicily 

Western 

daily 0.69 0.51 -3.32 0.20 0.57 0.43 -1.06 0.17 

winter 0.44 0.34 7.91 0.28 0.40 0.31 2.91 0.25 

spring 0.74 0.57 -5.57 0.17 0.59 0.45 -1.81 0.14 

summer 0.91 0.71 -7.55 0.16 0.71 0.54 -2.46 0.13 

autumn 0.56 0.42 4.90 0.28 0.53 0.39 1.49 0.26 

Eastern 

daily 0.62 0.46 -6.62 0.19 0.57 0.42 -4.21 0.18 

winter 0.38 0.29 -5.20 0.25 0.37 0.28 -8.36 0.24 

spring 0.63 0.49 -3.49 0.16 0.60 0.46 0.55 0.15 

summer 0.87 0.68 -9.03 0.16 0.75 0.58 -4.98 0.14 

autumn 0.46 0.35 -7.47 0.25 0.46 0.34 -9.18 0.25 

Sardinia 

daily 0.71 0.52 4.20 0.26 0.68 0.50 5.60 0.24 

winter 0.56 0.41 16.80 0.47 0.45 0.33 5.91 0.37 

spring 0.74 0.57 0.83 0.21 0.74 0.58 4.94 0.21 

summer 0.90 0.67 1.54 0.19 0.92 0.71 6.74 0.20 

autumn 0.59 0.43 10.94 0.38 0.48 0.36 3.24 0.31 

Apulia 

daily 0.90 0.67 7.90 0.31 0.88 0.64 5.86 0.30 

winter 0.60 0.48 23.67 0.51 0.55 0.42 10.91 0.47 

spring 1.03 0.81 10.83 0.28 0.99 0.77 9.18 0.27 

summer 1.18 0.89 -0.37 0.22 1.18 0.90 1.04 0.22 

autumn 0.66 0.50 20.15 0.47 0.61 0.45 12.30 0.44 
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Fig. 4.6. Daily predicted crop reference evapotranspiration (ET0_ERA5 and ET0_ERA5-L, mm d-1) versus observed (ET0_Obs, mm d-1) 

values at the irrigation districts located in Lombardy (a, h), Emilia-Romagna (b, i); Campania (c, j), Western Sicily (d, k), 

Eastern Sicily (e, l), Sardinia (f, m) and Apulia (g, n) for the period 2008-2020. The black and red lines represent the 1:1 and the 

linear regression line through the origin, respectively. The terms b, R2 and n refer to the slope of the regression equation, the 

coefficient of determination and the number of observations, respectively. 
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4.4 Discussion 

Climate reanalysis data have been widely used for hydrological 

and meteorological applications. However, it is still difficult to 

quantitatively estimate their accuracy due to their variability both at 

spatial and temporal scales, especially under complex topography and 

pronounced climatic heterogeneity (i.e., the rainfall) (Jiao et al. 2021). 

Often, ground variables are taken into account in the reanalysis 

process (such as air pressure, Tair, RH and u10) to improve the 

reanalysis data quality. However, if the data assimilation approach can 

improve data accuracy, by adding physically meaningful information 

from the predictive model, this is still subject to uncertainty. The main 

sources of uncertainty are due to numerical simulations, assimilation 

schemes and errors associated with the observation systems (Dee et al. 

2011). In this sense, some studies showed that it is difficult to 

completely replace observational data with reanalysis information for 

describing the true state of the atmosphere (Bengtsson et al. 2004), 

e.g., for long-term climate trend studies (Liu et al., 2018) and/or for 

capturing seasonal and inter-annual changes (Jiao et al. 2021). 

This study explored the potential of using the new released 

ECMWF climate reanalysis datasets (i.e., ERA5 and ERA5-L) for 

proving daily and seasonal agrometeorological information (Tair, Rs, 

RH, u10 and ET0) by determining their performance against measured 

ground-based observations within the Italian territory in the reference 

period 2008  2020. Moreover, since new user requirements are 

constantly emerging in society (Muñoz-Sabater et al. 2021), ad hoc 

user-interfaces GIS-based user-friendly tools have been developed in 

this study for supporting the needs of a diverse set of users, next to the 

climate and weather research motivations, within the reanalysis data 

pre-processing steps (Figs. S4.1-S4.4). 

Herein, a generally good agreement was observed between the 
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ability of ERA5 and ERA5-L products in reproducing the 

agrometeorological variables of interest (commonly used for ET 

calculation) in comparison to the ground-based observations collected 

at 66 study sites distributed over 7 irrigation districts. Specifically, the 

daily Tair estimates offered the most accurate reanalysis predictions, 

followed by the RH, Rs, and u10 variables, which still provided 

satisfactory results (Tabs 4.3-4.4, Figs 4.3-4.5). Similar (i.e., for RH) 

or slightly improved statistical metrics were obtained by ERA5 in 

comparison to ERA5-L (i.e., showing lower RMSE values than 

ERA5-L, for Tair and Rs, respectively, in 67% and 83% of the total 

number of the investigated irrigation districts). This can be attributed 

to the fact these variables are more homogeneous at the spatial scales 

provided by ERA5 products in comparison to ERA5-L (Fig. 5.S in 

Supplementary materials). The u10 performance was always more 

consistent for ERA5 than ERA5-L in comparison to the observations 

at all irrigation districts, most likely because ERA5-L does not 

consider the influence of the sea surface in its products (Muñoz-

Sabater 2019). Altogether, the daily Tair, Rs, RH, and u10 estimates 

were more accurate during the autumn season for both reanalysis 

datasets (Tabs 4.3-4.4). 

The influence of topographic features on the accuracy of the 

reanalysis data was also investigated, following the evidence that it 

could be significant provided by previous studies. For example, Gao 

and Hao (2014) evaluated the relationship existing between the 

elevation of the climate reanalysis data from ERA-Interim and the 

observed station’s elevation. These authors pointed out that 

differences in elevation can affect the accuracy of the reanalysis data, 

especially in areas with relatively higher altitudes. Analogous 

considerations are reported by Longo-Minnolo et al. (2022) for a 

Sicilian watershed, with elevation values ranging between 0 and 3,313 

m a.s.l., for which the highest RMSE values were observed in the 
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ERA5-L cells with relatively higher variations in altitude. To 

overcome these shortcomings in mountainous areas, other authors 

suggest applying altitude correction procedures, especially for water 

vapour, precipitation and Tair estimates (Zhao et al. 2008; Feng et al., 

2012; Hu et al. 2013; Negm et al. 2018). For altitudes below 1,000 m 

(a.s.l.), however, Jiao et al. (2021) found a good agreement between 

climate reanalysis and observational data. Similar results emerged 

from this study, where no specific relationships were obtained 

between the elevation changes and the goodness of reanalysis datasets 

in reproducing the agrometeorological variables of interest, at the site-

by-site scale, within the seven irrigation districts under investigation 

(Tab. 4.1). These findings show that the accuracy of the reanalyses 

products is strongly connected with the climatic conditions rather than 

the topographic distribution of the selected study sites. Due to the 

above-mentioned explanations and for maintaining the integrity of the 

reanalysis datasets, no topography corrections were applied in this 

study. 

The performance of reanalysis data strongly depends on the 

different climate conditions characterizing the investigated sites, as 

shown by Tarek et al. (2020). Specifically, these authors observed that 

Tair and precipitation estimated by ERA5 are systematically more 

performant in comparison to ERA-Interim at all the 13 Northern 

America climate zones under study. In addition, they reported that in 

situ measurements are higher than ERA5 for Cfa and hot-summer 

humid continental (Dfa) climate zones; elsewhere, these differences 

are less pronounced. In this sense, they did not experience the 

difference in hydrological modelling performance using both ERA5 

products and observations over 9 of the 13 climate zones. For the 

remaining regions (Bsk, Cfa, Dfa, and warm-summer humid 

continental climate, Dfb), the use of observations resulted in improved 

hydrological modelling performance. In agreement with Tarek et al. 
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(2020), in our study site-specific performance depended on the 

different investigated climate conditions (Tab. 4.1). In particular, the 

major part of the variables of interest (Rs, RH, u10 and ET0) resulted in 

greater and lower performance under Csa and Bks climate conditions, 

respectively, by both reanalysis datasets, except for Tair estimates 

provided by ERA5 that shows an inverted pattern due to the influence 

of the sea temperature in this product (Hersbach et al. 2020). 

Intermediate performance was observed under Cfa climate zones. 

The good quality of the reanalysis data was translated into 

reliable daily and seasonal ET0 estimates (with an underestimation 

from 2 up to 13% for the climate classes under study). Specifically, as 

for the other variables, ET0 estimates were more accurate in 

autumn/winter than in spring/summer by both reanalysis datasets in 

terms of RMSE values (Tab. 4.5 and Fig. 4.6). In addition, ERA5-L 

reproduces with greater accuracy and higher spatial resolution the ET0 

observations at most of the study sites even under different climate 

conditions, i.e., showing lower RMSE values than ERA5 in 86% of 

the total number of the irrigation districts under study. Thus, the high 

accuracy obtained in this study when estimating ET0 by reanalysis 

products (resulting in RMSE and NRMSE values ranging between 

0.57 and 0.90 mm d-1 and from 0.17 to 0.31, respectively) suggests the 

potential use of this information for calculating the daily crop 

evapotranspiration rates aiming at supporting the irrigation 

scheduling. In this sense, Rolle et al. (2021) have recently estimated 

the global irrigation requirement of 26 crops by implementing the 

Hargreaves-Samani method (Hargreaves and Samani 1985) to 

calculate ET0, by using information on Tair and Rs retrieved by the 

ERA5 dataset. Other studies assessed the use of a blended set of 

weather input data composed of ERA5-L outputs and different sources 

of climate data (i.e., reanalysis data and satellite-based radiation data) 

to evaluate the ET0 for the Campania region (Pelosi et al. 2020; Pelosi 
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& Chirico, 2021). Pelosi et al. (2021) combined the ERA5-L products 

with multispectral satellite imagery for estimating the past crop 

evapotranspiration. Under this scenario, the results of the present 

study may contribute to the informed use of reanalysis data in water 

management applications in Italy and elsewhere. 

4.5 Conclusion 

This study explores the performance of the ERA5 single levels 

and ERA5-L in depicting the agrometeorological data from 2008 to 

2020 in comparison to observational data measured at 66 sites 

distributed over 7 irrigation districts over the Italian territory. 

Specifically, the main findings that can be drawn from this study are 

the following: 

 the daily average Tair estimates offered the most accurate 

reanalysis predictions, followed by RH, Rs, and u10 

variables. This was translated into reliable daily ET0 

estimates resulting in RMSE and NRMSE values ranging 

between 0.57 and 0.90 mm d-1 and from 0.17 to 0.31, 

respectively; 

 similar or slightly improved statistical metrics were 

obtained by ERA5 in comparison to ERA5-L in estimating 

RH, Tair and Rs; whereas the u10 and ET0 performances 

were more consistent by ERA5 and ERA5-L, respectively, 

when compared to the observations at the majority of the 

irrigation districts under study; 

 the Rs, RH, u10 and ET0 estimates resulted in higher and 

lower performance under Csa and Bks climate conditions, 

respectively, by both reanalysis datasets; conversely, a 

reverse pattern was obtained for Tair estimates provided by 

ERA5, being more accurate under Bsk. Intermediate 

performance was observed under Cfa climate zones. 
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These results help to improve our understanding of the 

uncertain sources of reanalysis data under different climate conditions, 

the rational application of these datasets and the potential 

improvements for the next product generation. In addition, they open 

promising perspectives for the use of reanalysis data as an alternative 

data source to estimate ET0 for irrigation water management in 

different climate contexts, overcoming the limited availability of 

observed agrometeorological data in many areas. 
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5 Assessing the use of ERA5-Land reanalysis 

and spatial interpolation methods for retrieving 

precipitation estimates at basin scale4 

Abstract 

Precipitation data availability plays a crucial role in many 

climatic, hydrological and agricultural-related applications. In this 

study, the use of alternative data sources (i.e. interpolation methods 

and ERA5-L reanalysis data) was combined for improving the 

spatially distributed precipitation estimates at the Simeto river basin, 

located in Eastern Sicily (Italy). A total of 51 rain gauges were used 

to generate a monthly precipitation dataset for the reference period 

2002-2019. Among the 6 tested interpolation methods, Natural 

Neighbour was the method that predicted precipitation the best at 

monthly level with a Distance between Indices of Simulation and 

Observation (DISO) of 0.51. Radial Basis Functions and Inverse 

Distance Weighting provided the highest precipitation accuracies, 

respectively, for winter and autumn (with DISO values of 0.44 and 

0.50, respectively), and for spring and summer seasons (with DISO 

values of 0.50 and 0.63, respectively). Underestimations on the ERA5-

L precipitation estimates were observed when compared to the most 

accurate interpolation methods both at monthly (25%) and seasonal 

temporal scales (21% in winter and summer, 36% in autumn), with the 

exception for spring. The performance was significantly improved 

                                                      
4 A modified version of this Chapter was published as Longo-Minnolo, G., 

Vanella, D., Consoli, S., Pappalardo, S., & Ramírez-Cuesta, J. M. (2022). 

Assessing the use of ERA5-Land reanalysis and spatial interpolation methods 

for retrieving precipitation estimates at basin scale. Atmospheric Research, 

271, 106131. 
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when the interpolation estimates were corrected with local 

observations (with RMSD values ranging from 35.29 mm to 26.46 mm 

at monthly scale, and from 23.33 – 55.34 mm to 23.15 – 37.88 mm at 

seasonal level). The spatial distribution of the estimation errors 

associated to precipitation obtained from ERA5-L reanalysis revealed 

a significant positive correlation (p value < 0.05) with the altitude 

variation in each ERA5-L cell within the basin under study. These 

results confirm the good performance on the combined use of 

alternative precipitation data sources, while adjustments are required 

to reduce site-specific uncertainties due to local microclimatic 

conditions occurring at the basin scale. 

 

Keywords: Precipitation; missing data; ERA5-L; interpolation 

methods; bias correction; spatial variability 

5.1 Introduction 

Precipitation plays a fundamental role in the hydrologic cycle, 

conditioning runoff, infiltration, evapotranspiration and water yield 

processes (Taesombat & Sriwongsitanon, 2009), representing the 

most important variable related to the atmospheric circulation (Kidd 

& Huffman, 2011). For this reason, an accurate precipitation dataset, 

that is complete and reliable on a temporal and spatial basis, is required 

for several climatic, hydrological and agricultural-related applications 

(Di Piazza et al., 2011; Yilmaz et al., 2005). Traditionally, this 

information has been obtained from gauges, including rain gauges, 

disdrometers and radar, which measure precipitation directly at the 

Earth’s surface (Kidd, 2001; Tapiador et al., 2012). These gauge 

observations are not uniformly distributed in space and the 

availability, completeness and consistency of the data may not be 

adequate, leading to significant time gaps (Kidd et al., 2017; Kidd & 

Levizzani, 2011). To overcome these limitations, alternative data 
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sources, such as satellite-based, interpolation and reanalysis 

precipitation datasets have been proposed (Jiang et al., 2021). 

However, some uncertainties should be considered, as precipitation is 

one of the most challenging variables to estimate (Tapiador et al., 

2012).  

Methods based on satellite information provide spatially 

distributed and temporally complete datasets for many areas of the 

globe, offering a cost-effective way to measure precipitation and fill 

in data gaps (Kidd & Levizzani, 2011; Liu, 2015). Nowadays, several 

satellite precipitation datasets are available with different spatial 

coverage, spatial resolutions, and temporal spans and latencies (Mu et 

al., 2021), such as the Precipitation Estimation from Remotely Sensed 

Information using Artificial Neural Networks (PERSIANN; 

Sorooshian et al., 2000), the Tropical Rainfall Measuring Mission 

(TRMM) Multi-satellite Precipitation Analysis products (TMPA; 

Huffman et al., 2007), the Global Precipitation Measurement (GPM; 

Hou et al., 2008), the Global Satellite Mapping of Precipitation 

(GSMaP; Ushio et al., 2009) and the Multi-Source Weighted-

Ensemble Precipitation (MSWEP; Beck et al., 2017). Despite being a 

potentially useful source of data, satellite products are limited by their 

short recording duration and contain significant random errors and 

biases, limiting their use for various study purposes (Liu et al., 2020; 

Sun et al., 2018). 

On the other hand, spatial interpolation methods represent a 

good alternative to generate distributed and accurate spatial 

information using available measurements on certain areas (Antal et 

al., 2021; Chen et al., 2017). In general, spatial interpolation is based 

on Tobler’s first law (Tobler, 1970) which stated that “everything is 

related to everything else, but near things are more related than distant 

things”. Several interpolation methods have been used for spatializing 

the precipitation data, including deterministic, e.g. Inverse Distance 
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Weighting (IDW), Nearest Neighbour (NeN), Natural Neighbour 

(NN), Radial Basis Functions (RBF); and geostatistical, e.g. Ordinary 

Kriging (OK), CoKriging (CoOK) (de Amorim Borges et al., 2016; 

Hurtado et al., 2021; Lyra et al., 2018; Pellicone et al., 2018; Wagner 

et al., 2012). The selection of the most suitable interpolation technique 

varies from one study to another, as the performance of the methods 

depends on several factors, including the spatial and temporal 

resolution of the data and the selected parameters of the models (Ly et 

al., 2013). However, one of the critical issues when using interpolation 

methods, especially for precipitation estimation refers to the number 

and position of the gauges considered within the study area, which 

must be representative of the spatial distribution of precipitation (Ly 

et al., 2013; Wagner et al., 2012). Additionally, an accurate estimation 

of this variable is complicated in mountainous areas, where the 

precipitation pattern may be influenced by the irregular topography 

(Buytaert et al., 2006).  

Recent advances in global and regional NWP models 

(Srivastava et al., 2013), have led to an increased use of climate 

reanalysis methods since they provide complete and consistent dataset 

able to overcome the main data limitations (i.e. spatial and temporal 

availability) of the other techniques (Gleixner et al., 2020). In fact, 

reanalysis data are produced by running the current NWP models that 

sequentially assimilate the observed data on the atmosphere and the 

surface, with the aim of recreating the state variables of the Earth’s 

surface, oceans and atmosphere in the past (Pelosi et al., 2020). 

Several organizations, including the National Centers for 

Environment Prediction/National Center for Atmospheric Research 

(NCEP/NCAR), the Japanese Meteorological Agency (JPA), the 

National Aeronautics and Space Administration (NASA) and the 

ECMWF, provide climate reanalysis useful for deriving precipitation 

at global and regional scale. Focusing on global reanalysis systems, 
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NCEP/NCAR released NCEP1 (Kalnay et al., 1996) and NCEP2 

(Kanamitsu et al., 2002), with a resolution of 2.5° x 2.5° and 1.875° x 

1.875°, respectively. JPA have provided the second Japanese global 

atmospheric reanalysis project, Japanese 55-year Reanalysis (JRA-55; 

Ebita et al., 2011), which overcome the lacks in the first Japanese 

reanalysis project providing a long-term comprehensive atmospheric 

dataset, with a resolution of 1.25° x 1.25°. In 2017, NASA released 

the Modern-Era Retrospective analysis for Research and Applications, 

Version 2 (MERRA-2; Gelaro et al., 2017), which replaced the 

original MERRA (Rienecker et al., 2011) because of the advances 

made in the assimilation system that enables integration of satellite 

observations, with the same resolution of 0.5° x 0.67°. ECMWF have 

provided several reanalysis products, beginning with First Global 

Atmospheric Research Program Global Experiment (FGGE; 

Bengtsson, 1982), followed by ERA-15 (Gibson et al., 1997), ERA-

40 (Uppala et al., 2005), and ERA-Interim (Dee et al., 2011). In 2016, 

the fifth generation of the ECMWF reanalyses has been released, i.e. 

ERA5 (Hersbach et al., 2020) followed in 2019 by ERA5-L (Muñoz-

Sabater, 2021). Compared to the above-mentioned datasets, ERA5 and 

ERA5-L have several advantages, including the use of advanced data 

assimilation technologies and a higher spatial and temporal resolution. 

In fact, ERA5 covers the entire globe with a resolution of 0.25° x 

0.25°, whereas ERA5-L has a resolution of 0.1° x 0.1°, both datasets 

having a temporal scale of 1 hour. Specifically, ERA5-L has been 

produced using temperature, humidity and air pressure, in an 

atmospheric forcing process as input to control ERA5 simulated land 

fields. These atmospheric variables are corrected to account for the 

difference in altitude between the forcing and the higher resolution 

grid of ERA5-L (Muñoz-Sabater et al., 2021).  

Recently, the use of precipitation data from climate reanalysis 

methods has been addressed by several authors for many hydrological 
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and meteorological applications. However, some uncertainties related 

to the reanalysis data should be considered due to the errors of models 

and observations in the data assimilation system, leading to biased 

precipitation estimates (Jiang et al., 2021; Nie et al., 2015). Generally, 

the performance of ERA5 and ERA5-L was greater compared to other 

climate reanalysis (Gleixner et al., 2020; Hamm et al., 2020). Despite 

that, their accuracy can be improved by correcting some biases effects 

(Jiang et al., 2021). Additionally, a comprehensive evaluation on the 

spatial distribution of precipitation from these reanalysis datasets is 

essential to analyse the orographic effect on their estimations (Chen et 

al., 2021). 

The aim of this study was to improve monthly and seasonal 

estimates of spatially continuous distributed precipitation data at basin 

scale combining alternative data sources. Specifically, the 

interpolation methods and ERA5-L were assessed in order to reduce 

the precipitation data biases of the climate reanalysis and improve 

their accuracy. Furthermore, the spatial distribution of the estimation 

errors associated with ERA5-L was evaluated in order to detect a 

correlation with the variation in altitude. 

5.2 Materials and methods 

5.2.1 Study area 

The case study is the Simeto river basin, located in Eastern 

Sicily (insular Italy) (Fig. 5.1). The drainage area of the basin and the 

perimeter are of 4,196 km2 and 323 km, respectively. The altitude 

ranges between 0 and 3,313 m a.s.l., with an average value of 535 m 

a.s.l. and a slope of 15%. Most of the Simeto river basin is set on the 

Apennines-Maghrebian Chain terrains, covered by post-orogenic 

Miocene and Pliocene units. Due to the different geological evolution, 

the main characteristics of the Simeto river basin are quite various, 

with a strong difference between the northern and the southern areas. 
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A detailed geological and morphological description of the study area 

was provided by Lentini et al. (1991, 1994). The climate is typical 

Mediterranean with annual average Tair, RH and cumulative P values 

of 16 °C, 66% and 770 mm, respectively, in the study period (2002-

2019). 

 

 
Fig. 5.1. Simeto river basin with the localization of the rain gauges (red 

triangles indicate the Sicilian Agrometeorological Information Service - SIAS 

network; blue dots indicate the Basin Authority of the hydrographic district of 

Sicily - OA network) and the grid of the ERA5-L reanalysis dataset. The dotted 

circles indicate the selected weather stations to evaluate the coherence between 

the networks. 
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5.2.2 Estimation of spatially distributed precipitation data 

In order to improve the accuracy of the use of alternative data 

sources for estimating spatially distributed precipitation data at the 

basin scale, two main datasets were used: i) an interpolated 

precipitation dataset; and ii) the ERA5-L reanalysis precipitation 

dataset. 

Fig. 5.2 shows a summary of the methodology followed in the 

study. The interpolated precipitation data set was generated from 

ground observations from two main networks, i.e. SIAS 

(www.sias.regione.sicilia.it) and the Basin Authority of the 

hydrographic district of Sicily (OA - Autorità di Bacino del distretto 

idrografico della Sicilia, ex Osservatorio Acque; 

www.regione.sicilia.it/istituzioni/regione/strutture-

regionali/presidenza-regione/autorita-bacino-distretto-idrografico-

sicilia). In particular, a subset containing 60% of the dataset of ground-

based observations was used to perform the interpolation, while the 

remaining 40% was used to evaluate its accuracy. Six interpolation 

methods have been applied, i.e. IDW, NeN, NN, RBF, OK, CoOK. 

Once the best performing interpolator was identified, the interpolated 

precipitation estimates, both non-corrected (Pint,nc) and corrected 

(Pint,bias), were compared to the ERA5-L reanalysis estimates. The 

corrected interpolation estimates were obtained adjusting the bias as 

follows: 

 

Pint,bias = a + b ∗ Pint,nc      (1) 

where a and b coefficients corresponded with the intercept and 

slope terms obtained from the correlation between the interpolation 

and validation subsets. The value of these parameters for the specific 

interpolation methods selected at different temporal levels are 

included in Tab. S4.1 (see Supplementary materials at the end of the 

http://www.sias.regione.sicilia.it/
http://www.regione.sicilia.it/istituzioni/regione/strutture-regionali/presidenza-regione/autorita-bacino-distretto-idrografico-sicilia
http://www.regione.sicilia.it/istituzioni/regione/strutture-regionali/presidenza-regione/autorita-bacino-distretto-idrografico-sicilia
http://www.regione.sicilia.it/istituzioni/regione/strutture-regionali/presidenza-regione/autorita-bacino-distretto-idrografico-sicilia
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Thesis). 

Then, the spatial distribution of the estimation errors associated 

with the climate reanalysis dataset in the study area was assessed for 

evaluating the correlation with the variation in altitude within each cell 

of ERA5-L (Fig. 5.2). 

 

 
Fig. 5.2. Workflow applied for assessing the use of ERA5-L reanalysis and 

interpolation methods to estimate spatially distributed precipitation data at the 

study area. Grey boxes identify the inputs. SIAS and OA refer to the Sicilian 

Agrometeorological Information Service and the Basin Authority of the 

hydrographic district of Sicily, respectively. IDW, NeN, NN, RBF, OK and 

CoOK refer to Inverse Distance Weighting, Nearest Neighbour, Natural 

Neighbour, Radial Basis Functions, Ordinary Kriging and CoKriging methods, 

respectively. 
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5.2.2.1 Ground-based observations  

The observed daily precipitation data used in this study were 

recorded at 51 rain gauges managed by SIAS and OA networks (Fig. 

5.1, Tab. 5.2) for the reference period 2002-2019. In order to evaluate 

the coherence between both weather stations networks, a linear 

regression was performed between the daily precipitation values 

recorded by 3-pairs of weather stations belonging to the 2 networks 

(SIAS and OA), located at a maximum distance of 3 km (Fig. 5.1). 

Fig. S4.1 shows a good agreement between daily rainfall 

measured by SIAS and OA networks. In general, the SIAS network 

has overestimated the precipitation values by 2%, with b and R2 values 

of 1.02 and 0.82 respectively, and a RMSE value of 5.25 mm. 

The daily precipitation values were, subsequently, aggregated 

on a monthly level and then grouped in 4 periods for seasonal analysis, 

as follows: winter (December, January, February), spring (March, 

April, May), summer (June, July, August), autumn (September, 

October, November). The consistency of the dataset was evaluated 

through a preliminary analysis to detect all the missing data during the 

study period 2002-2019. The weather stations exceeding 30% of 

missing daily values were excluded from the dataset for that specific 

month. No temporal interpolation was performed for data gap filling. 

The obtained monthly dataset was divided into 2 main subsets: 

i) interpolation subset, consisting of 60% of the monthly precipitation 

values, used to perform the different interpolation methods; and ii) 

validation subset, consisting of 40% of monthly precipitation values, 

used to validate the results (Fig. 5.2). In this way, the validation was 

completely independent of the formulation of the interpolation method 

(Ly et al., 2012). The assignment of the weather stations to one or 

another subset was performed considering the spatial distribution of 

the weather stations. Thus, the most externally located weather 

stations (Fig. 5.1) were assigned to the interpolation subset in order to 
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perform the spatial interpolation covering the entire area minimizing 

the errors in the edge of the basin. Additionally, the completeness of 

the data series for all the study period was considered, favouring the 

allocation of weather stations with a more complete dataset to the 

interpolation subset. As shown in Tab. 5.1, SIAS weather stations 

mostly respected these criteria. 
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Tab. 5.1. Meteorological stations in the study area, including the identification 

number (Station ID) the name, the relative network (SIAS and OA), the type of 

subset (interpolation and validation), the coordinates (longitude, X and latitude, 

Y) in decimal degrees (°) (reference system: World Geographic System - 

WGS84) and the elevation (Z) (m, a.s.l.). 

 

ID Station name Network Subset X(°)  Y(°) Z(m) 
77 Pomiere OA Validation 14.491 37.888 1348 

78 Capizzi OA Validation 14.483 37.853 1161 

92 Pietrarossa Diga OA Validation 14.573 37.369 197 

112 Troina OA Validation 14.603 37.789 1008 

114 Nicosia OA Validation 14.402 37.754 757 

115 Agira OA Interpolation 14.528 37.655 785 

116 Catenanuova OA Interpolation 14.692 37.575 202 

117 Raddusa OA Validation 14.535 37.476 361 

127 Cerami OA Interpolation 14.505 37.805 956 

128 Gagliano Castelferrato OA Validation 14.526 37.713 831 

130 Mineo OA Validation 14.693 37.271 484 

133 Mirabella Imbaccari OA Validation 14.444 37.328 462 

134 Castel di Iudica OA Interpolation 14.647 37.503 670 

137 Paternò OA Interpolation 14.924 37.595 405 

138 Presa Dittaino OA Interpolation 14.502 37.555 233 

157 Pozzillo Diga OA Validation 14.609 37.674 359 

164 Ancipa Diga OA Validation 14.576 37.830 949 

173 Don Sturzo Diga OA Interpolation 14.576 37.445 213 

174 Nicoletti Diga OA Interpolation 14.346 37.604 387 

177 Sciaguana Diga OA Validation 14.592 37.602 261 

179 Ponte Barca Traversa OA Validation 14.871 37.534 67 

186 Simeto a Ponte Giarretta OA Validation 14.916 37.457 23 

203 Contrada Cicera OA Validation 14.315 37.789 656 

210 Nissoria OA Validation 14.451 37.651 672 

214 Aidone OA Validation 14.445 37.411 835 

215 S. Michele di Ganzaria OA Validation 14.418 37.291 355 

216 Gela SIAS Interpolation 14.334 37.159 70 

224 Bronte SIAS Validation 14.787 37.755 424 

227 Caltagirone SIAS Interpolation 14.575 37.232 260 

228 Catania SIAS Interpolation 15.069 37.443 10 

230 Linguaglossa SIAS Interpolation 15.131 37.828 590 

231 Maletto SIAS Interpolation 14.873 37.828 1040 
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232 Mazzarrone SIAS Interpolation 14.562 37.096 300 

233 Mineo SIAS Interpolation 14.726 37.321 205 

234 Paternò SIAS Interpolation 14.855 37.516 100 

235 Pedara SIAS Interpolation 15.049 37.644 803 

237 Randazzo SIAS Interpolation 14.980 37.889 680 

238 Enna SIAS Interpolation 14.176 37.517 350 

241 Nicosia SIAS Interpolation 14.424 37.764 700 

242 Piazza Armerina SIAS Interpolation 14.367 37.317 540 

243 Aidone SIAS Interpolation 14.467 37.451 350 

245 Caronia SIAS Interpolation 14.487 37.897 1470 

246 Cesarò SIAS Interpolation 14.680 37.839 820 

252 Militello Rosmarino SIAS Interpolation 14.667 38.040 460 

253 Mistretta SIAS Interpolation 14.340 37.863 690 

259 S. Fratello SIAS Interpolation 14.624 37.955 1040 

269 Gangi SIAS Interpolation 14.194 37.816 833 

291 Francofonte SIAS Interpolation 14.894 37.246 100 

292 Lentini SIAS Interpolation 14.926 37.342 50 

312 Agira SIAS Validation 14.502 37.623 467 

316 Ramacca Giumarra SIAS Validation 14.634 37.482 263 
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5.2.2.2 Spatial interpolation algorithms  

In order to estimate the spatially distributed precipitation for the 

study area from the weather station data, 6 interpolation methods - 

IDW, NeN, NN, RBF, OK, CoOK - were applied, using the Spatial 

Analyst and the Geostatistical Analyst tools implemented in ArcGIS 

10 (ESRI ©). The IDW method interpolates using a weighted average 

of the observations, weighing by the inverse distance between each 

observation and the point to be estimated (Shepard, 1968). In the 

current study, a power of 2 was used to perform the IDW 

interpolations. The NeN method is based on the assumption that the 

estimated precipitation value at a certain point corresponds to the 

observed value at the nearest weather station. It is performed by 

applying Delaunay tessellation (Watson, 1981) to create a network of 

Thiessen polygons by the perpendicular bisectors that connect 

neighbouring stations to other related stations. The NN method 

(Sibson, 1981) also interpolates using a weighted average of the 

observations as in IDW, but the weight for each station is 

proportionally based on the area determined by the construction of the 

Thiessen polygons rather than on the distance. The RBF interpolates 

using a weighted linear function of the distance between a specified 

number of nearby observed points and the point to be estimated, 

adding a bias. The function used in the study is the thin plate spline 

(TPS; Hutchinson and Gessler, 1994), which generates a smooth 

folded surface passing through each observed value. 

Regarding the geostatistical interpolators, Kriging method 

(Metheron, 1971) uses a weighted average of observations, where the 

weights are evaluated using a semivariogram, which considers the 

spatial autocorrelation of the data. Alternatively, OK interpolates 

using a linear combination of observed values in which the mean is 

assumed to be constant, but unknown (Isaaks, 1989). In this study, a 
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stable function was used to model the empirical semivariogram, and 

the model parameters (including nugget and partial sill) were 

optimized using the cross-validation. Additionally, CoOK 

incorporates one or more auxiliary variables to perform the 

interpolation (Isaaks, 1989). In this study, a digital elevation model 

(DEM), with 20 m of spatial resolution 

(www.pcn.minambiente.it/mattm/servizio-di-scaricamento-wcs), was 

used as covariate. 

5.2.2.3 ERA5-Land reanalysis dataset  

ERA5-L is an integral and operational component of the 

Copernicus Climate Change Service (C3S), of the ECMWF. Data is 

available hourly and can be downloaded on a regular 

latitude/longitude grid of 0.1° x 0.1° via the Climate Data Store (CDS) 

catalogue (cds.climate.copernicus.eu) in GRIB or NetCDF format. 

The update frequency is monthly with a delay of about three months 

compared to the actual date. 

In this study, hourly ERA5-L precipitation data, in NetCDF 

format, were collected for the period 2002-2019 for the entire study 

area (Fig. 5.1). These data were converted into TIFF format obtaining 

a multi-bands raster (24 bands) for each day of the study period, in 

which each single band identifies the cumulated precipitation value 

until that hour of the day. Thus, the 24th band of each raster represents 

the cumulative value of the precipitation of the whole day. 

Subsequently, the 24th bands of each multi-band raster were extracted 

and summed to obtain monthly single-band raster. These processes 

were performed using ArcGIS toolboxes specifically created for this 

purpose in GIS environment (ArcMap 10 ©), using ArcPy.  

http://www.pcn.minambiente.it/mattm/servizio-di-scaricamento-wcs
https://cds.climate.copernicus.eu/
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5.2.3 Statistical performance 

The performance of each interpolation algorithm was evaluated 

using linear regressions, comparing the interpolated precipitation 

estimates (interpolation subset) with the observed data from the 

validation subset (Fig. 5.2; Tab. 5.1). In particular, b and R2 were 

evaluated by forcing intercept to 0. In addition, the following 

statistical metrics were adopted to quantitatively describe the accuracy 

of the methods: RMSE (mm; Eq. (2)); MAE (mm; Eq. (3)), PBIAS 

(%; Eq. (4)). 

 

RMSE =  √
∑(Pi−Oi)2

n
      (2) 

MAE = ∑
|Pi−Oi|

n
       (3) 

PBIAS =  
∑(Pi−Oi)

∑ Oi
 ∙ 100      (4) 

where 𝑃𝑖 is the predicted precipitation obtained by applying the 

interpolation algorithms (interpolation subset, Fig. 5.2), 𝑂𝑖 is the 

observed precipitation from the weather stations (validation subset, 

Fig. 5.), and n is the number of observations. 

To select the best interpolation method, the Taylor diagram 

(Taylor, 2001) and the DISO (Hu et al., 2019) were determined. 

Specifically, Taylor diagram provides a statistical summary of the 

estimation performance of the 6 interpolation methods applied in the 

study, using: i) the Pearson correlation coefficient (r), ii) the RMSE 

and iii) the standard deviation (σ). The result of each method is 

graphically displayed as a point and the one closest (i.e. lower DISO 

value) to the reference point (observed field) indicates the best results. 

DISO quantitatively shows the overall performance of the different 

methods, as follows: 
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DISO =  √(r − 1)2 + (RB)2 + (NRMSE)2    (5) 

 

where RB and NRMSE are the Normalized Absolute Error and 

the Normalized RMSE, calculated dividing both the Absolute Error 

and the RMSE by the mean value of the observations, respectively. 

Finally, to assess the accuracy of the ERA5-L reanalysis dataset 

compared to the best interpolation algorithm, a linear regression was 

conducted, determining: b; R2; Root Mean Square Difference (RMSD 

(mm); Eq. (6)), Mean Absolute Difference (MAD (mm); Eq. (7)), and 

Percentage Difference (PDIFERENCE (%); Eq. (8)).  

 

RMSD =  √∑(PERA5L,i − PINT,i)
2

n
     (6) 

MAD = ∑
|PERA5L,i− PINT,i|

n
      (7) 

PDIFFERENCE =  
∑(PERA5L,i − PINT,i)

∑ PINT,i
 ∙ 100    (8) 

where 𝑃𝐸𝑅𝐴5𝐿,𝑖 and 𝑃𝐼𝑁𝑇,𝑖 are the precipitation values predicted 

by ERA5-L and the best interpolation method, respectively. 

Furthermore, the probability of detection (POD (%)), indicating 

the probability of ERA5-L to detect the precipitation event, was 

calculated for the rainy days, as follows: 

 

POD =  
hit

hit+miss
       (9) 

 

where hit refers to the precipitation events simultaneously 

detected by both ERA5-L and the interpolation algorithm; and miss 

includes only those detected by one of the approaches but not by the 

other.  

The significance of the correlation between the estimation error 
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associated with the ERA5-L reanalysis and the variation in altitude 

was evaluated using the p value (<0.05). Specifically, the variation in 

altitude within each ERA5-L cell was calculated as its standard 

deviation. 

5.3 Results 

5.3.1 Evaluation of the interpolated precipitation data 

5.3.1.1 Monthly analysis  

As shown in Fig. 5.4 and Tab. 5.2, the best performances were 

obtained using deterministic interpolation methods (IDW, NeN, NN 

and RBF), with b and R2 values ranging from 1.08 to 1.14 and from 

0.64 to 0.75, respectively. The accuracy was also evaluated in terms 

of RMSE, MAE and PBIAS, with values ranging from 25.70 to 32.84 

mm, 17.66 to 20.95 mm and 13.52 to 20.06% respectively. The 

geostatistical methods (i.e. OK, CoOK), instead, showed lower 

accuracy and precision, with b and R2 values respectively of 0.76 and 

0.52 - 0.53. RMSE and MAE values oscillated between 63.96 - 64.33 

mm and 49.32 - 49.48 mm, respectively, whereas PBIAS were of 

17.05 and 17.40%, respectively. 
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Tab. 5.2. Statistical performance of monthly precipitation (mm) estimated by 

the interpolation methods for the reference period 2002-2019. 

Interpolation 

method 
b R2 

RMSE 

(mm) 

MAE 

(mm) 

PBIAS 

(%) 
DISO 

IDW 1.13 0.75 26.05 18.26 20.06 0.53 

NeN 1.12 0.64 32.84 20.95 17.33 0.65 

NN 1.11 0.74 25.70 17.66 17.03 0.51 

RBF 1.08 0.71 26.34 17.90 13.52 0.52 

OK 0.77 0.52 64.33 49.48 17.05 1.51 

CoOK 0.77 0.53 63.96 49.32 17.40 1.51 

 

From the Taylor diagram (Fig. 5.3) it was inferred that IDW, 

NN, and RBF were the interpolation methods with the smallest RMSE 

and σ and highest r. The DISO analysis (Tab. 5.2) confirmed also the 

similar behaviour of NN, RBF and IDW, with values of 0.51, 0.52 and 

0.53, respectively. 

 
Fig. 5.3. Taylor diagram at monthly level of the deterministic interpolation 

methods applied at the study basin. 
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5.3.1.2 Seasonal analysis  

In general, as shown in Fig. 5.4 and Tab. 5.3, for all seasons, 

the deterministic interpolation methods (IDW, NeN, NN and RBF) 

gave better results than the geostatistical ones (OK, CoOK). 

In winter, b and R2 values of IDW, NeN, NN and RBF ranged 

from 1.05 to 1.14 and 0.61 to 0.66, respectively. RBF was the most 

accurate, showing the lowest RMSE, MAE, and PBIAS values (26.47 

mm, 18.68 mm, and 9.47%, respectively). Geostatistical approaches 

showed lower performance, with b and R2 values of 0.81 and 0.22 – 

0.23 respectively, and RMSE, MAE and PBIAS values ranging 

between 62.32 and 62.79 mm, 46.79 to 46.93 mm and 1.05 to 1.92%, 

respectively. 

In spring, deterministic interpolators resulted in b values of 1.00 

and R2 varying from 0.59 to 0.68. RMSE, MAE and PBIAS values 

ranged from 15.50 to 19.41 mm, from 10.83 to 13.17 mm and from 

6.28 to 7.93%. IDW resulted the most accurate in terms of RMSE 

(15.50 mm) and MAE (10.83 mm), but the worst among the 

deterministic interpolators in terms of PBIAS (7.93%). As in winter, 

OK and CoOK were less accurate than the deterministic approaches, 

resulting in precipitation overestimates of 19%, with R2 of 0.66 – 0.68. 

Low accuracy was also indicated by the RMSE, MAE and PBIAS 

indices, with values of 63.04 – 63.33 mm, 47.65 – 47.86 mm and 92.82 

– 92.97%, respectively. 

In summer, all interpolation methods showed good accuracy 

with reference to values of b (1.06 – 1.13) and R2 (0.40 – 0.83). 

However, RMSE, MAE and PBIAS were lower for the deterministic 

methods (20.67 – 29.96 mm, 14.79 – 19.37 mm and 16.60 – 23.48%, 

respectively) than for the geostatistical ones (65.48 – 66.18 mm, 53.60 

– 54.02 mm, 87.64 – 88.54%, respectively). IDW showed the lowest 

RMSE and MAE values, but not for PBIAS (Tab. 5.4).  

The worst performance for all methods was observed in 



5. Assessing the use of ERA5-Land reanalysis and spatial interpolation 

methods for retrieving precipitation estimates at basin scale 

177 

autumn. Specifically, IDW, NeN, NN and RBF showed b and R2 

between 1.12 and 1.18 and between 0.56 and 0.69. The low 

performance was detected also in terms of RMSE, MAE and PBIAS, 

with values ranging from 32.95 to 44.62 mm, from 23.34 to 29.10 mm 

and from 17.31 to 26.20%, respectively. Geostatistical interpolators 

showed b and R2 values of 0.58 and 0.30 - 0.31 respectively, with 

RMSE, MAE and PBIAS values ranging from 68.05 to 68.18 mm, 

from 51.96 to 52.05 mm and from -21.51 to -21.23%, respectively. 
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Fig. 5.4. Comparison of monthly precipitation (mm) estimated from the interpolation methods (PPredicted) and measured in the 

ground-based meteorological stations (PObserved), for the different seasons within the reference period 2002-2019 (number of 

observations: 803 for winter; 720 for spring; 550 for summer; 798 for autumn). The solid line is the 1:1 line.
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Tab. 5.3. Statistics of the interpolation methods used to estimate precipitation for the reference period 2002-2019 

Season Interpolation method b R2 RMSE (mm) MAE (mm) PBIAS (%) DISO 

Winter 

IDW 1.14 0.66 28.79 20.72 20.26 0.49 

NeN 1.12 0.61 32.28 21.81 16.48 0.54 

NN 1.10 0.66 27.39 19.50 16.32 0.46 

RBF 1.05 0.64 26.47 18.68 9.47 0.44 

OK 0.81 0.22 62.79 46.93 1.05 1.24 

CoOK 0.81 0.23 62.32 46.79 1.92 1.23 

Spring 

IDW 1.00 0.68 15.50 10.83 7.93 0.50 

NeN 1.00 0.59 19.41 13.17 6.28 0.63 

NN 1.00 0.67 15.75 10.87 7.41 0.51 

RBF 1.00 0.67 16.23 11.16 5.52 0.52 

OK 1.19 0.66 63.33 47.86 92.82 2.35 

CoOK 1.19 0.68 63.04 47.65 92.97 2.35 

Summer 

IDW 1.08 0.59 20.67 14.79 19.09 0.63 

NeN 1.06 0.40 29.96 19.37 16.60 0.91 

NN 1.11 0.55 23.52 16.18 22.36 0.72 

RBF 1.13 0.52 26.34 17.87 23.48 0.80 

OK 1.13 0.79 66.18 54.02 88.54 2.28 

CoOK 1.12 0.83 65.48 53.60 87.64 2.27 

Autumn 

IDW 1.18 0.69 34.52 25.76 26.20 0.55 

NeN 1.17 0.56 44.62 29.10 24.05 0.69 

NN 1.14 0.68 33.37 23.81 20.86 0.51 

RBF 1.12 0.68 32.95 23.34 17.31 0.50 

OK 0.58 0.30 68.18 51.96 -21.51 1.31 

CoOK 0.58 0.31 68.05 52.05 -21.23 1.30 
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In Fig. 5.5, Taylor diagrams shows the performances of 

deterministic interpolation methods for all the seasons. These results 

confirmed what observed in terms of RMSE and MAE. For all 

seasons, deterministic interpolators presented lower DISO values (< 

0.91) than the geostatistical ones (> 1.24). Additionally, deterministic 

interpolators’ performance was dependent on the season of the year. 

Thus, in winter, spring and autumn, IDW, NN and RBF showed 

similar patterns in terms of DISO values, oscillating between 0.44 and 

0.55. However, in summer, the differences among the deterministic 

approaches were more marked, with IDW presenting the lowest DISO 

value (i.e. 0.63). In all seasons, NeN was the deterministic 

interpolation method that provided the higher DISO values (0.54 – 

0.91). 
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Fig. 5.5. Taylor diagram at seasonal level of the deterministic interpolation 

methods applied at the study area. 
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5.3.2 Estimation of spatially distributed precipitation data by 

combining interpolated and ERA5-Land dataset 

5.3.2.1 Accuracy evaluation at monthly and seasonal level  

As shown in Fig. 5.6 and Tab. 5.4, a low performance for 

simulating monthly precipitation was obtained at the study area by 

using ERA5-L when compared to non-corrected NN estimates, with b 

and R2 values of 0.75 and 0.61, respectively. RMSD, MAD and 

PDIFFERENCE were of 35.29 mm, 22.30 mm and 13.66%, 

respectively. However, the precipitation events were detected in 94% 

of cases. On the other hand, the comparison of ERA5-L and NN 

estimates corrected by site-specific observations using the validation 

dataset, resulted in higher b, R2 and POD values (0.93, 0.65 and 97%, 

respectively), whereas RMSD, MAD and PDIFFERENCE decreased 

to 26.46 mm, 17.88 mm and 1.17%, respectively.  

Seasonally, as shown in Fig. 5.7 and Tab. 5.4, the best 

performance was observed in spring by comparing ERA5-L to the 

non-corrected IDW estimates, with b and R2 values of 1.03 and 0.47, 

respectively. Additionally, RMSD, MAD and PDIFFERENCE values 

were 23.33 mm, 16.66 mm, and 25.53%, respectively, with a POD of 

91%. Moderate underestimates were observed for the other seasons. 

In winter, the comparison between ERA5-L and non-corrected 

estimates from RBF, resulted in b and R2 values of 0.79 and 0.62 

respectively, with RMSD, MAD and PDIFFERENCE of 34.67 mm, 

23.12 mm and -11.82%, respectively. Despite this low performance, 

the POD reached the 96%. 

In summer, the comparison between ERA5-L and non-

corrected IDW shows b and R2 values of 0.79 and 0.61, respectively, 

with RMSD, MAD and PDIFFERENCE of 26.88 mm, 16.92 mm and 

-11.16%, with a POD value of 78%. In autumn, the comparison 

between ERA5-L and RBF is underperforming, with b and R2 values 
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of 0.64 and 0.30, and RMSD, MAD and PDIFFERENCE of 55.34 

mm, 38.23 mm and -23.18%, respectively. Despite the low accuracy 

in estimating precipitation values, the POD was 96%. 

The statistical indicators generally improved when ERA5-L 

was compared to the corrected interpolation values obtaining higher 

values of b and R2 and lower values of RMSD, MAD and 

PDIFFERENCE. In winter, comparing the climatic reanalysis with the 

corrected RBF estimates, the b and R2 values were respectively 0.94 

and 0.68, with RMSD, MAD and PDIFFERENCE of 25.73 mm, 18.38 

mm and -2.34%, respectively, and a POD value of 100%. In summer, 

very high accuracy was observed comparing the climatic reanalysis 

with the corrected IDW estimates, with a b value of 1.02 and R2 of 

0.63. Additionally, the RMSD, MAD and PDIFFERENCE values 

were 23.80 mm, 15.16 mm and 2.44%, respectively; with a POD of 

90%. In autumn, when comparing ERA5-L with the corrected RBF 

estimates, b and R2 values of 0.82 and 0.54, respectively, were 

detected. The RMSD, MAD and PDIFFERENCE values were 37.88 

mm, 27.22 mm, and -9.98%, respectively, with a POD of 100%. In 

spring, even if PDIFFERENCE increased from 25.23 to 35.20%, R2 

increased from 0.47 to 0.54 and RMSD and MAD values decreased 

from 23.33 to 23.15 mm and from 16.66 to 16.63 mm, respectively. 
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Fig. 5.6. Comparison of monthly precipitation (mm) from ERA5-L reanalysis 

(PERA5-LAND) and NN method (PNN), for the reference period 2002-2019 (number 

of observations: 13284). Grey points refer to non-corrected interpolation 

estimates, whereas white points refer to corrected interpolation estimates. The 

solid line is the 1:1 line.
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Fig. 5.7. Comparison of seasonal precipitation (mm) from ERA5-L reanalysis (PERA5-LAND) and the most accurate interpolation method for each season (RBF for winter and autumn – PRBF; IDW 

for spring and summer – PIDW), for the reference period 2002-2019 (number of observations: 3330 for winter; 3312 for spring; 3366 for summer; 3276 for autumn). Grey points refer to non-

corrected interpolation estimates, whereas white points refer to corrected interpolation estimates. The solid line is the 1:1 line. 
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Tab 5.4. Main statistics of monthly and seasonal precipitation (mm) estimated by ERA5-L, in comparison with non-corrected 

and corrected interpolation data, for the reference period 2002-2019. In parenthesis, it is indicated the most accurate 

interpolation method used for performing the comparison in each temporal period. 

   b R2 RMSD (mm) MAD (mm) PDIFFERENCE (%) POD (%) 

Non-

corrected 

Monthly (NN) 0.75 0.61 35.29 22.30 -13.66 94 

Winter (RBF) 0.79 0.62 34.67 23.12 -11.82 96 

Spring (IDW) 1.03 0.47 23.33 16.66 25.53 91 

Summer (IDW) 0.79 0.61 26.88 16.92 -11.16 78 

Autumn (RBF) 0.64 0.30 55.34 38.23 -23.18 96 

Corrected 

Monthly (NN) 0.93 0.65 26.46 17.88 1.17 97 

Winter (RBF) 0.94 0.68 25.73 18.38 -2.34 100 

Spring (IDW) 1.20 0.54 23.15 16.36 35.20 98 

Summer (IDW) 1.02 0.63 23.80 15.16 2.44 90 

Autumn (RBF) 0.82 0.54 37.88 27.22 -9.98 100 
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5.3.2.2 Spatial variability  

Figs. 5.8 and 5.9 show the spatial distribution of RMSD 

associated with the ERA5-L reanalysis, during the reference period 

2002-2019. A decrease in the RMSD was observed when the 

interpolation estimates, were corrected with local observations. 

Generally, the highest RMSD values were observed in the ERA5-L 

cells with higher variation in altitude, showing a significant direct 

correlation (p value < 0.05). In particular, the value of R2 between the 

monthly RMSD and the variation in altitude was 0.52 (Fig. 5.10).  

 

 
Fig. 5.8. Spatial distribution of RMSD (mm) over the study area at monthly 

level associated to ERA5-L reanalysis, by using (a) non-corrected and (b) 

corrected interpolated estimates (NN method), respectively. 
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Fig. 5.9. Spatial distribution of RMSD (mm) over the study area at seasonal 

level, associated to ERA5-L reanalysis, by using (a) non-corrected and (b) 

corrected interpolated estimates (RBF method for winter and autumn, IDW 

method for spring and summer), respectively. 
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Fig. 5.10. Correlation between RSMD (mm) and altitude variation (m) within 

each ERA5-L cell, on a monthly basis within the study area.  
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5.4 Discussion 

In this study, interpolated precipitation data showed that 

deterministic methods, including IDW, NN and RBF, and to a lesser 

extent NeN, provided most accurate results at monthly and seasonal 

level than geostatistical interpolators. The reliability of deterministic 

interpolators for estimating precipitation has been also proved by 

several authors. For example, Amorim Borges et al. (2016), compared 

IDW, RBF, OK, CoOK, detrended universal kriging (DUK), multiple 

linear regression (MReg), and residual interpolation using IDW 

(MRegIDW) and OK (MRegOK) for estimating annual and seasonal 

precipitation in Brazil. The results showed the good performance of 

the IDW, OK, MRegIDW and MRegOK methods at annual scale, with 

mean square error values of 3334.5, 3681.2, 2512.0 and 2956.9 mm, 

respectively, and r values of 0.95, 0.94, 0.97 and 0.96, respectively. 

Lyra et al. (2017) applied and compared 5 deterministic methods, 

including IDW, NN, NeN, RBF and triangulation with linear 

interpolation, to estimate monthly precipitation values in Brazil. The 

applied methods showed high accuracy with specific reference to RBF 

in terms of R2 and RMSE. Amini et al. (2019) used 6 interpolation 

methods, namely IDW, NN, RBF, OK, universal kriging (UK), to map 

monthly basin-scale temperature and precipitation values in Iran. NN 

was found to be the most accurate interpolation method for predicting 

precipitation values, with a MAE value of 0.52 mm. 

Contrarily to what obtained in the present study, Hurtado et al. 

(2021) found no performance differences between kriging and IDW 

methods. The goodness of these methods depends on several factors 

including the density of the data and the size and distribution of the 

sample (Hurtado et al., 2021). Indeed, as suggested by Li & Heap 

(2008), the performance of OK and CoOK improves with increasing 

sample size, as this affects the reliability of the semivariogram. In this 
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study, the size of the interpolation subset ranged from 13 to 23 rain 

gauges available over the different months, because of the different 

time intervals which may have influenced the performance of the 

geostatistical methods. Furthermore, and agreeing with the results 

obtained in our study, Ly et al. (2011) concluded that the use of 

altitude as a covariate in CoOK did not improve the accuracy of the 

interpolation for estimating precipitation values. 

All of the previously cited researches used different statistics, 

including the RMSE, MAE and BIAS indices applied in this study, to 

select the most accurate interpolation method. As suggested by Zhou 

et al. (2021), it could result difficult to discriminate the performance 

using single metrics (Tabs 5.2 and 5.3). In fact, although IDW, NN 

and RBF have shown the greatest accuracies, it was difficult to 

establish the best interpolation method using these metrics separately 

because, each of them, showed better performance with reference to 

one index, but worse capabilities in the others. To overcome this 

limitation, alternative methodologies as the Taylor diagram or the 

DISO approach have been proposed to quantify the overall 

performance of the applied interpolators combining several statistical 

indicators (Hu et al., 2019; Amato et al., 2019; Antal et al. 2021; 

Kalmar et al., 2021). However, the similar statistical performances of 

deterministic methods used in our study made difficult to select a 

single interpolator as the most accurate, even using the Taylor diagram 

and DISO approach (Figs. 5.3 and 5.5 and Tabs. 5.2 and 5.3). 

The reliability of the ECMWF reanalysis products for the 

estimation of spatially distributed precipitation data has been 

evaluated by different authors, at different spatial and temporal scales. 

Gleixner et al. (2020) assessed the overall performance of ERA5 for 

predicting temperature and precipitation in Africa. Comparing the 

climate reanalysis with the monthly grid observational datasets, r 

value of 0.97 and 0.96 were found for temperature and precipitation, 
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respectively. Jiang et al. (2021) evaluated the accuracy of ERA5 for 

precipitation estimates in different climate contexts on the Chinese 

mainland. The climate analysis was evaluated using grid precipitation 

products obtained by applying the IDW by means of pluviometric 

observations, on a daily basis. In general, their results showed r, 

RMSD and POD values of 0.78, 3.55 mm/d and 85%, respectively. In 

terms of spatial distribution, ERA5 showed higher values of RMSD in 

humid climate areas. Gao et al. (2020) compared the performance of 

several satellite and precipitation reanalysis products, including 

ERA5-L, against grid rain gauge data in southern China. Very low 

performance of ERA5-L was observed on a daily and hourly level. In 

fact, on a daily level, the values of r, RMSD and PDIFFERENCE were 

respectively 0.57, 13.41 mm/d and 26.16%. At hourly level, the values 

of r, RMSD and PDIFFERENCE were 0.22, 1.80 mm/h and 18.26%. 

In the proposed study, when comparing ERA5-L and the interpolated 

data in order to improve the precipitation estimates accuracy, 

underestimates on a monthly and seasonal level were observed, with 

the exception of the spring season (Figs 5.6 and 5.7, Tab. 5.4). Autumn 

and winter presented the largest errors (in terms of RMSD and MAD) 

due to the higher amount of precipitation occurred during these 

seasons in comparison to spring and summer. Other authors also 

detected this seasonal error trend using climate reanalysis data. 

Specifically, Jiao et al. (2021) and Izado et al. (2021) observed the 

highest errors during the rainy season whereas the lowest errors 

occurred in the dry season when evaluating the accuracy of ERA5 

precipitation data in China and Iran, respectively. 

Furthermore, the spatial distribution of the estimation error 

associated with ERA5-L was explored in the Simeto river basin, with 

the greatest RMSD values observed at high altitude areas (Figs. 5.8 

and 5.9). Some studies showed that the accuracy of reanalysis data in 

mountainous terrain was generally lower than in flat terrain, 
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highlighting the altitudinal-dependence of reanalysis precipitation 

estimates (Liu et al., 2018; Li et al., 2020; Chen et al., 2021; Jiao et 

al., 2021). According to these authors, a significant positive 

correlation was observed in this study with the variation in altitude 

within each ERA5-L cell (Fig. 5.10). Moreover, the unevenly 

distribution of the error in the study area is also associated to the 

reference gridded product used for comparing the climate reanalysis. 

In this sense, according to Hofstra et al. (2008), such higher errors may 

be related to the lower meteorological station density at high altitude 

areas, which hinders the application of interpolation approaches in 

these regions; and to the use of interpolation methods that do not 

consider the effect of elevation. 

However, the specific adjustments made on the interpolation 

dataset, with local observations, allowed the improvement of the 

performance (Tab. 5.4). In fact, the underestimates of precipitation 

have become milder in terms of b values and the accuracy was 

improved in terms of R2, RMSD and MAD, as well as the probability 

of the climate reanalysis to detect the precipitation event in term of 

POD. 

5.5 Conclusion 

This research work evaluated the use of alternative data sources 

(including interpolated precipitation and reanalysis dataset) to 

improve the spatially distributed precipitation estimates at the Simeto 

river basin scale over an 18-year period, from 2002 to 2019. In 

particular, the performance of 6 interpolation methods (IDW, NeN, 

NN, RBF, OK, CoOK) was evaluated for the study area by linear 

regression analysis. The DISO indicator was used to select the best 

performing techniques. Subsequently, the best interpolation estimates 

were used as reference grid products to compare the reanalysis 

precipitation dataset, i.e. ERA5-L, for improving the accuracy of the 
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spatially distributed precipitation estimates at basin scale.  

Overall, the results of the study confirmed a certain 

underestimation (25%) of precipitation. However, when local 

observations were used to correct the reference grid products, the 

performance has significantly improved and the underestimates have 

become milder (7%). In addition, the spatial distribution of the 

estimation error associated with ERA5-L suggested a dependence on 

the variation in altitude within each cell of ERA5-L. 

In conclusion, the results of the study confirm the possibility of 

using interpolation methods and ERA5-L reanalysis as potential 

alternative data sources for the estimation of spatially distributed 

precipitation data at the basin scale, while specific adjustments are 

required to reduce site-specific uncertainties due to microclimatic 

conditions. 
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6 General conclusions 

The herein Thesis explored a methodological approach based 

on the use of RS and alternative meteorological data sources with the 

aim of improving the sustainability of the irrigated agriculture at 

different spatial scales. 

At the farm scale, a RS-based model (i.e. ArcDualKc) was tested 

for determining reliable spatially distributed ETc estimates, 

representing this variable a significant proxy for scheduling irrigation. 

A general good performance of ArcDualKc was observed, even 

combining RS data and forecast meteorological data provided by 

COSMO. In fact, despite the inaccuracies of the non-hydrostatic 

limited-area atmospheric model, very slight overestimations in terms 

of ETc and Kc were detected. Additionally, differences in terms of Kcb 

were found between the different irrigation strategies (DI strategies 

versus full irrigation) applied at the experimental site, highlighting the 

ability of ArcDualKc in detecting site specific conditions. 

A stand-alone optical RS approach for mapping at high 

resolution irrigated areas under different climate conditions was 

suggested. The proposed approach was based on the use of the 

unsupervised classification on NDVI time series and OPTRAM, with 

the main advantage of requiring only few input data (i.e. satellite 

images, rainfall values and soil parameters), without needing any 

reference cropland data. It was applied and tested firstly in Austria, 

under a Dfb climate, obtaining a good overall accuracy, and later in 

Italy, under Csa climate, where the results were compared with the 

Reclamation Consortium data, finding an overestimation of irrigated 

areas. However, future researches could enhance the methodology by 

studying in detail how crop types affect OPTRAM performances and 

how to solve the main uncertainties related to the soil parameters. 

At the district scale, a deeper study on alternative 

meteorological data sources was carried out. Specifically, the 
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reliability of climate reanalysis (i.e. ERA5 datasets) was tested for 

predicting the main agrometeorological variables (Rs; Tair; RH; u10; 

ET0) into seven irrigation districts distributed under different climates 

and topography in Italy. The results showed accurate estimated of Tair, 

followed by RH, Rs, and u10 variables, resulting into reliable daily ET0 

estimates. Similar or slightly better performance was observed for 

ERA5 in comparison to ERA5-L in estimating RH, Tair and Rs; 

whereas the u10 and ET0 performances were more consistent by ERA5 

and ERA5-L, respectively. From a climate point of view, Rs, RH, u10 

and ET0 estimates resulted in higher and lower performance under Csa 

and Bks climate conditions, respectively, by both reanalysis datasets; 

conversely, a reverse pattern was obtained for Tair estimates provided 

by ERA5, being more accurate under Bsk. Intermediate performance 

was observed instead under Cfa climate zones. 

Furthermore, being precipitation data fundamental for 

determining IWR, and being one of the most challenging variables to 

estimate, a specific focus on this variable was conducted. Specifically, 

the use of alternative data sources, including interpolation and ERA5-

L reanalysis datasets, was evaluated for improving the spatially 

distributed precipitation estimates at the basin scale. Firstly, the 

performance of 6 interpolation methods (i.e. IDW, NeN, NN, RBF, 

OK, CoOK) was tested for the study area. The best interpolation 

estimates, obtained by applying NN at monthly level, RBF for winter 

and autumn seasons, and IDW for spring and summer seasons, were 

later used as reference grid products to compare the reanalysis 

precipitation dataset, for improving the accuracy of the spatially 

distributed precipitation estimates. In general, ERA-Land 

underestimated precipitation values, but when local observations were 

used to correct the reference grid products, the performance has 

significantly improved and the underestimates have become milder. 

Additionally, the spatial distribution of the estimation error associated 

with ERA5-L suggested a dependence on the variation in altitude 
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within each cell of ERA5-L. 

On the basis of these results, the main findings of the Thesis are 

the following: 

 ArcDualKc is a reliable model that could be applied for 

improving precision irrigation and water resource 

management at farm scale even in a context of deficit 

irrigation strategies. Additionally, the combined use of this 

RS-based model with forecast meteorological data as 

alternative data source, allows to obtain ETc estimates in 

advance, permitting the farmers to better plan the irrigation 

scheduling; 

 The proposed approach based on the coupling of the 

unsupervised classification and OPTRAM represents a 

potential tool for irrigation purposes, being able to be used as 

an operational monitoring system by water management 

authorities for regular reporting of irrigated areas. It could 

allow the promotion of efficient water saving strategies, 

assisting EU member states for meeting their obligations 

under the WFD; 

 ERA5 and ERA5-L climate reanalysis are promising datasets 

that could be used as alternative data sources at the district 

scale to estimate ET0 and thus CWR for irrigation water 

management in different climate contexts, overcoming the 

limited availability of observed agrometeorological data in 

many areas; 

 Interpolation methods and ERA5-L represent potential 

alternative data sources for the estimation of spatially 

distributed precipitation data at the basin scale, although 

specific adjustments are required to reduce site-specific 

uncertainties due to microclimatic conditions. 
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However, some limitations of the Thesis should be also 

considered, needing further investigations: 

 Even if ArcDualKc was already validated by the original 

authors, in the Chapter 2 a comparison between the outputs of 

the model and measured values in terms of ETc and Kc was 

omissed. Additionally, the model was run in standard 

conditions, without considering eventual crop water stress. 

Thus, an updating of the model with the introduction of the 

stress coefficient Ks for the application in non-standard 

conditions would increase its reliability; 

 The results of the proposed approach for detecting the 

irrigated areas in the Chapter 3 are not completely accurate. 

In this sense, the advanced studies already discussed in the 

Section 3.1 would provide additional relevance; 

 A practical application of ERA5 datasets presented in the 

Chapter 4 and Chapter 5 for improving the irrigation 

management would be valuable.  

A future work could be based on the integration of ArcDualKc 

model with climate reanalysys for determining IWR at the district 

scale for those irrigated areas determined by applying the proposed 

method based on the use of OPTRAM. The validation of this approach 

could be done at farm scale considering several reference farms by 

comparing the outputs with the actual irrigation volumes supplied by 

the farmers. Later, the IWR obtained at district scale could be 

compared with the irrigation volumes provided by the Reclamation 

Consortium in order to evaluate the overall irrigation water 

management and eventually detect unauthorized water uses. 
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7 Other research and academic activities 

7.1 Scientific contributions 

7.1.1 Published articles 

1. Vanella, D, Ramírez-Cuesta, J.M., Longo-Minnolo, G., Longo, 

D., D’Emilio, A. Consoli, S. (2022). Identifying soil-plant 

interactions in a mixed-age orange orchard using electrical 

resistivity imaging. Plant and Soil, 1-17. 

https://doi.org/10.1007/s11104-022-05733-6 

2. Ramírez-Cuesta, J. M., Consoli, S., Longo, D., Longo-Minnolo, 

G., Intrigliolo, D. S., & Vanella, D. (2022). Influence of short-

term surface temperature dynamics on tree orchards energy 

balance fluxes. Precision Agriculture, 1-19. 

https://doi.org/10.1007/s11119-022-09891-6 

3. Vanella, D., Ferlito, F., Torrisi, B., Giuffrida, A., Pappalardo, S., 

Saitta, D., Longo-Minnolo, G., & Consoli, S. (2021). Long-term 

monitoring of deficit irrigation regimes on citrus orchards in 

Sicily. Journal of Agricultural Engineering, 52(4). 

https://doi.org/10.4081/jae.2021.1193 

4. Longo-Minnolo, G., Vanella, D., Consoli, S., Intrigliolo, D. S., 

& Ramírez-Cuesta, J. M. (2021). Combining Remote Sensing 

and Weather Forecast for Crop Evapotranspiration Estimation 

Under Different Irrigation Strategies. Acta Horticulturae, 1314, 

pp. 17–22.  

https://doi.org/10.17660/ActaHortic.2021.1314.3 

5. Saitta, D., Consoli, S., Ferlito, F., Torrisi, B., Allegra, M., Longo-

Minnolo, G., Ramírez-Cuesta, J. M., & Vanella, D. (2021). 

Adaptation of citrus orchards to deficit irrigation 

strategies. Agricultural Water Management, 247, 106734. 

https://doi.org/10.1016/j.agwat.2020.106734 

https://doi.org/10.1007/s11104-022-05733-6
https://doi.org/10.1007/s11119-022-09891-6
https://doi.org/10.4081/jae.2021.1193
https://doi.org/10.17660/ActaHortic.2021.1314.3
https://doi.org/10.1016/j.agwat.2020.106734
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6. Vanella, D., Ramírez-Cuesta, J. M., Sacco, A., Longo-Minnolo, 

G., Cirelli, G. L., & Consoli, S. (2021). Electrical resistivity 

imaging for monitoring soil water motion patterns under different 

drip irrigation scenarios. Irrigation Science, 39(1), 145-157. 

https://doi.org/10.1007/s00271-020-00699-8 

7. Vanella, D., Intrigliolo, D. S., Consoli, S., Longo-Minnolo, G., 

Lizzio, G., Dumitrache, R. C., Mateescu, E., Deelstra, J., & 

Ramírez-Cuesta, J. M. (2020). Comparing the use of past and 

forecast weather data for estimating reference 

evapotranspiration. Agricultural and Forest Meteorology, 295, 

108196.  

https://doi.org/10.1016/j.agrformet.2020.108196 

8. Saitta, D., Vanella, D., Ramírez-Cuesta, J. M., Longo-Minnolo, 

G., Ferlito, F., & Consoli, S. (2020). Comparison of orange 

orchard evapotranspiration by eddy covariance, sap flow, and 

FAO-56 methods under different irrigation strategies. Journal of 

Irrigation and Drainage Engineering, 146(7), 05020002. 

https://doi.org/10.1061/(ASCE)IR.1943-4774.0001479 

7.1.2 Conference proceedings 

1. Longo-Minnolo, G., Deissenberger, F., Consoli, S., Vanella, D., 

Ramírez-Cuesta, J.M., Vuolo, F. (2022). Optical remote sensing 

for supporting irrigation management under different climate 

conditions. BIOSYSTEMS ENGINEERING TOWARDS THE 

GREEN DEAL, AIIA International Conference, 19-22 

September 2022, Palermo; 

2. Pappalardo, S., Chiaradia, A. E., Longo-Minnolo, G., Vanella, 

D., Consoli, S. (2022). Monitoring and predicting irrigation 

requirements of tree crops in Eastern Sicily as a tool for 

sustainability. BIOSYSTEMS ENGINEERING TOWARDS 

THE GREEN DEAL, AIIA International Conference, 19-22 

September 2022, Palermo; 

https://doi.org/10.1007/s00271-020-00699-
https://doi.org/10.1016/j.agrformet.2020.108196
https://doi.org/10.1061/(ASCE)IR.1943-4774.0001479
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3. Vanella, D., Longo-Minnolo, G., Castagna, A., Quarta, R., 

Ippolito, M., Comegna, A., Belfiore, O.R. (2022). Estimating 

reference evapotranspiration by ERA5 products under different 

irrigation districts. BIOSYSTEMS ENGINEERING TOWARDS 

THE GREEN DEAL, AIIA International Conference, 19-22 

September 2022, Palermo; 

4. Belfiore, O.R., Castagna, A., Longo-Minnolo, G., Ippolito, M., 

Bavieri, A., Comegna, A. (2022). Monitoring of irrigation water 

use in Italy by using IRRISAT methodology: the INCIPIT 

project. BIOSYSTEMS ENGINEERING TOWARDS THE 

GREEN DEAL, AIIA International Conference, 19-22 

September 2022, Palermo; 

5. Vanella, D., Longo-Minnolo, G., Ramírez-Cuesta, J.M., Longo, 

D., D'Emilio, A., Consoli, S. (2022). Characterizing soil-plant 

interactions under heterogeneous micro-irrigated citrus orchards. 

https://doi.org/10.5194/egusphere-egu22-9931, EGU General 

Assembly, 23-27 May 2022, Vienna; 

6. Longo-Minnolo, G., Consoli, S., Vanella, D., S., Ramírez-

Cuesta, J. M. (2021). Evaluation of climate reanalysis as potential 

data source for estimating reference evapotranspiration at 

national scale. 2nd Joint Meeting of Agriculture-oriented PhD 

Programs, 11-15 October 2021, Giovinazzo; 

7. Longo-Minnolo, G., Vanella, D., Consoli, S., Pappalardo, S., 

Ramírez-Cuesta, J. M. (2021). Accuracy evaluation of alternative 

precipitation data sources at basin scale. AISSA#under40 

Conference, 1-2 July 2021, Sassari; 

8. Longo-Minnolo, G., Consoli, S., Vanella, D., Ramírez-Cuesta, 

J. M. (2020). Remote sensing for supporting the sustainable 

irrigation management under semi-arid conditions. 2nd Joint 

Meeting of Agriculture-oriented PhD Programs,14-16 September 

2020, Catania; 
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7.1.3 Books 

1. Analisi del regime pluviometrico del bacino del Fiume Simeto. A 

cura di: Simona Consoli, Daniela Vanella, Giuseppe Longo 

Minnolo, Salvatore Barbagallo. QUADERNI CSEI Catania III 

serie vol. 20. ISSN 2038-5854. Catania, Ottobre 2021. 
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7.2 Visiting research stays 

A six months’ period abroad was spent at the Institute of Geomatics 

of the University of Natural Resources and Life Sciences, Vienna 

(Austria), from 25 October 2021 to 30 April 2022, under the 

supervision of Dr. Francesco Vuolo. During this period, activities 

finalized to develop and test a stand-alone optical RS method were 

carried out in order to detect the irrigated areas under different climate 

contexts. Specifically, a deeper study on the Optical Trapezoid Model 

(OPTRAM) was conducted. After an initial phase of bibliographic 

review and data collection, OPTRAM was applied for calculating the 

soil water content of a test site and tested by using sensors 

measurements. Later, the OPTRAM was used as a tool for detecting 

the irrigation events and mapping the irrigated areas. This study was 

carried out for two test sites: the Marchfeld region (Austria) within the 

irrigation season 2021 and the irrigation district “Quota 102.50” in 

Sicily (Italy), within the irrigation seasons 2019-20. The results 

obtained from this training period abroad were summarized into two 

scientific contributions: 

 Longo-Minnolo, G., Deissenberger, F., Consoli, S., Vanella, D., 

Ramírez-Cuesta, J.M., Vuolo, F. (2022). Optical remote sensing 

for supporting irrigation management under different climate 

conditions. BIOSYSTEMS ENGINEERING TOWARDS THE 

GREEN DEAL, AIIA International Conference, 19-22 

September 2022, Palermo; 

 Longo-Minnolo, G., Consoli, S., Vanella, D., Ramírez-Cuesta, J. 

M., Greimeister-Pfeil, I., Neuwirth, M., & Vuolo, F. (2022). A 

stand-alone remote sensing approach based on the use of the 

Optical Trapezoid Model for detecting the irrigated areas. Under 

review on Agricultural Water Management.  
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7.3 Participation at research projects  

1. INCIPIT - INtegrated Computer modelling and monitoring for 

Irrigation Planning in Italy (homepage: 

https://www.principit2017.it/). The objective of the project is to 

develop and test a methodological framework for supporting the 

control and planning of irrigation water uses at different spatial 

scales and under different conditions of hydraulic and 

meteorological data availability; 

2. HANDYWATER - Handy tools for sustainable irrigation 

management in Mediterranean crops. The objective of the project 

is to apply sustainable water management methodologies (e.g. 

deficit irrigation strategies), for the main crops in the 

Mediterranean area. Moreover, soil conservation techniques will 

be evaluated for the improving of hydrological soil properties: 

3. WATER4AGRIFOOD - Miglioramento delle produzioni 

agroalimentari mediterranee in condizioni di carenza di risorse 

idriche. The project aims to find innovative solutions for 

improving the water use efficiency in agriculture. 

7.4 Scientific collaborations 

1. Collaborator at the CSEI Catania, Centre for the Study of Applied 

Economics to Engineering, within the project entitled “H2Olivo 

- Gestione sostenibile di impianti di ulivo attraverso tecniche di 

irrigazione deficitaria e uso di acque reflue”. The project aims to 

the sustainable management of olive orchards through deficit 

irrigation strategies and wastewater use. 

2. Collaborator at the CRISAM, Research Center for the 

Sustainable Development of the Mediterranean Area, within the 

project entitled “Progetto DOPCILIETNA, sottomisura 16.1 PSR 

Sicilia 2014-2020”. The collaboration concerns the research 

activity for the irrigation of cherry trees. 

https://www.principit2017.it/
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3. Collaborator at the CSEI Catania, Centre for the Study of Applied 

Economics to Engineering, within the assignment entitled 

“Richiesta della concessione di grande derivazione ad uso irriguo 

delle fluenze del fiume Simeto a Barca di Paternò”. The 

collaboration concerns the hydrological and hydraulic analysis of 

the basin under study to catch water for agricultural irrigation 

purposes. 

4. Collaborator at the CSEI Catania, Centre for the Study of Applied 

Economics to Engineering, within the assignment entitled 

“Servizio di monitoraggio pluviometrico ed analisi di eventi di 

massima intensità di precipitazione presso le aree di cantiere del 

raddoppio della linea ferroviaria Bicocca-Catenanuova”. The 

collaboration concerns the precipitation data analysis and 

monitoring of the study area and the detection of extreme events. 

5. Collaborator at the CSEI Catania, Centre for the Study of Applied 

Economics to Engineering, within the assignment entitled 

“Servizio di analisi delle immagini multispettrali e database 

geografico dell’uso del suolo con caratterizzazione delle superfici 

agricole nell'intorno della costruenda ferrovia in località Bicocca-

Catenanuova”. The collaboration concerns the analysis of 

satellite images for the environmental monitoring of the study 

area. 
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7.5 Institutional activities 

7.5.1 Scientific committee 

1. Member of the scientific committee of the 3rd Joint Meeting of 

Agriculture-oriented PhD Programs UniCT, UniFG, UniUd, 11-

15 October 2021, Giovinazzo. 

2. Member of the scientific committee of the 2022 IEEE 

International Workshop on Metrology for Agriculture and 

Forestry, 3-5 November, Perugia. 

7.5.2 Peer review of scientific articles 

1. Reviewer (2 reviews) for the Journal of Hydrology: Regional 

Studies. 

7.5.3 Given seminars 

1. Consoli, S., Vanella, D., Longo-Minnolo G., (2022). “Il ruolo 

del telerilevamento per il monitoraggio e la salvaguardia 

dell’ambiente”. Contribution within the seminar “Il valore 

dell’ambiente” organized by the CSEI Catania and the 

Department of Agricultural, Food and Environment Science 

(Di3A) of the University of Catania. 31 May 2022, Catania. 

2. Longo-Minnolo G. (2022). “Classificazione automatica delle 

immagini satellitari”. Seminar for the students of the bachelor 

degree course in “Land and landscape planning and protection” 

at the Department of Agricultural, Food and Environment 

Science (Di3A), University of Catania, Italy. 23 May 2022, 

Catania. 

3. Longo-Minnolo G. (2022). “Introduzione al telerilevamento”. 

Seminar for the students of the bachelor degree course in “Land 

and landscape planning and protection” at the Department of 

Agricultural, Food and Environment Science (Di3A), University 

of Catania, Italy. 11 May 2022, Catania. 
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4. Longo-Minnolo G., Ramírez-Cuesta, J. M. (2021). “Il 

telerilevamento a supporto dell’agricoltura irrigua”. Seminar 

organized by the CSEI Catania and the Department of 

Agricultural, Food and Environment Science (Di3A) of the 

University of Catania. 11 May 2021, Catania. 

7.5.4 Educational activities 

1. Teaching support in “Hydrology and Water Resources 

Management” and “Basin Hydrology”, within the bachelor 

degree course in “Land and landscape planning and protection” 

at the Department of Agricultural, Food and Environment 

Science (Di3A), University of Catania, Italy. During the courses, 

practical lessons of Geographic Information Systems, online data 

sources, hydrological analysis, spatial interpolation of 

meteorological data and remote sensing were given. 

7.5.5 Thesis tutoring 

1. Bachelor’s degree in “Land and landscape planning and 

protection” at the Department of Agricultural, Food and 

Environment Science (Di3A), University of Catania, Italy. 

“Metodi di analisi pluviometrica per il monitoraggio del 

territorio” (April 2021). Student: Biagio Musarra. Tutor: Prof. 

Simona Consoli. Co-Tutor: Dott. Giuseppe Longo Minnolo. 

2. Bachelor’s degree in “Agricultural Science and Technology” at 

the Department of Agricultural, Food and Environment Science 

(Di3A), University of Catania, Italy. “Prospettive sull’uso del 

telerilevamento e dei SIT per la gestione delle risorse idriche in 

agricoltura” (November 2020). Student: Gaetano Florio. Tutor: 

Prof. Simona Consoli. Co-Tutor: Dott. Giuseppe Longo Minnolo. 
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7.6 Attendance to courses 

1. Advanced methods in Remote Sensing, organised by the Institute 

of Geomatics - University of Natural Resources and Life 

Sciences, Vienna, 17 January - 04 February 2022 (duration 75 

hrs); 

2. Analisi statistica multivariata, organised by the PhD course 

(University of Catania), 27 September - 1 October 2021 (duration 

40 hrs); 

3. Advanced English Course – Centro Linguistico d’Ateneo 

organised by the University of Catania, 16 February - 22 April 

2021 (duration 40 hrs); 

4. CAD, GIS and Participatory Mapping course, organised by the 

PhD course (University of Catania), 8-18 February 2021 

(duration 45 hrs); 

5. Corso di Python, organised by JobFormazione, 20 January - 15 

March 2021 (duration 40 hrs); 

6. A Guide to a Succesful PhD Thesis: Connecting Structure, 

Research Methods and Management, organised by the University 

of Catania, 29 June - 03 July 2020 (duration 35 hrs); 

7. Introduction to optical remote sensing: basic concepts and 

applications, organised by the CSEI Catania and the University 

of Catania,17 April 2020 (duration 2 hrs); 

8. Biometry and data analysis course, organised by the PhD course 

(University of Catania) 18-22 November 2019 (duration 40 hrs).
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Supplementary material 

Tab. S3.1. Sentinel-2 images used in the study for the two test sites. For each image, the type of Sentinel satellite (A or B), the daily rainfall value (mm) and the cumulated rainfall value (mm) in 

the previous 10 days are reported. The dry dates selected during the irrigation season for applying the OPTRAM are also indicated with X. 
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Tab. S3.2. OPTRAM parameters (id, sd, iw, sw) obtained for the potentially 

irrigated clusters at Marchfeld Cropland for the irrigation season 2021. 

 

CLUSTER 

Dry edge Wet edge 

id sd iw sw 

4 0.00 1.79 2.20 3.79 

8 0.00 1.79 2.50 3.16 

9 0.00 1.58 1.00 5.79 

12 0.10 1.47 0.20 8.21 

13 0.00 1.58 1.50 5.79 

14 0.15 1.73 -5.55 16.36 

15 0.50 2.50 -14.50 27.50 

16 0.50 2.50 -30.43 47.43 

19 0.00 2.50 -6.33 18.33 

20 3.70 2.50 -13.00 30.00 
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Tab. S3.3. OPTRAM parameters (id, sd, iw, sw) obtained for the potentially 

irrigated clusters at the irrigation district Quota 102,50 for the irrigation 

seasons 2019-2020. 

 

2019 2020 

CLUSTER 

Dry edge Wet edge 

CLUSTER 

Dry edge Wet edge 

id sd iw sw id sd iw sw 

6 0.40 0.40 1.90 4.10 8 0.30 0.70 2.80 3.90 

10 0.30 1.10 1.80 1.20 9 0.30 0.70 2.20 1.80 

13 0.40 1.10 1.70 1.70 12 0.30 1.00 1.60 2.00 

14 0.30 1.20 1.40 2.10 14 0.30 1.00 1.70 2.00 

15 0.30 1.20 2.00 2.00 15 0.30 1.00 1.70 2.80 

16 0.30 1.40 1.50 3.80 16 0.30 1.00 2.20 2.20 

17 0.20 1.40 1.00 4.00 17 0.40 0.90 0.70 4.70 

18 0.20 1.40 1.20 4.00 18 0.50 0.90 0.70 5.00 

19 0.30 1.40 0.50 4.30 19 0.50 0.90 0.70 5.00 

20 0.40 1.40 0.50 5.10 20 0.40 1.30 0.40 5.80 
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Fig. S3.1. Localization of the ground-based automatic meteorological stations used in the study for collecting rainfall data at the 

irrigation district Quota 102,50 (a) and at the Marchfeld Cropland region (b). 
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Fig. S3.2. Map of the potentially irrigated (yellow) and non-irrigated (red) areas obtained at the Marchfeld Cropland region 

during the irrigation seasons 2021 
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Fig. S3.3. Map of the potentially irrigated (yellow) and non-irrigated (red) areas obtained at the irrigation district Quota 102,50 

during the irrigation seasons 2019-2020. 
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Fig. S3.4. Irrigated surface variation (%) between 2019 and 2020. The polygons represent the sub-districts at the irrigation 

district Quota 102,50.
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Fig. S4.1 User interface of the developed GIS-based toolbox used for converting 

the hourly reanalysis data from the source format (NetCDF) to a raster format 

(TIF). This toolbox uses 4 inputs and specifically the data input source folder, 

the desired variable to be converted and the raster extent, including the latitude 

a longitude coordinates. 
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Fig. S4.2 User interface of the developed GIS-based toolbox used for 

aggregating the reanalysis data from hourly to daily time-step (e.g. for Tair, Rs, 

V10, U10). 
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Fig. S4.3 User interface of the developed GIS-based toolbox used for 

determining daily maximum and minimum values for the interest variable (eg. 

for Tair), respectively.
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Fig. S4.4 User interface of developed the GIS-based toolboxes used for calculating: (on the left) the daily wind speed at 10 (u10) 

and 2 m (u2), using the V10 and U10 components from the reanalysis datasets; and (on the right) for estimating the daily relative 

humidity (RH) given in Eq. (1) – chapter 3. 
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Fig S4.5. Scatterplots between the elevation (m, a.s.l.) of the weather station 

understudy and the average elevation (m, a.s.l.) observed ay the ERA5 and 

ERA5-L cell-size, respectively. The black line refers to the 1:1 line and the bars 

shows the standard deviation values. 
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Tab S5.1. Values of a and b parameters for the selected interpolation methods and temporal levels used in Eq. 1 to correct the 

bias of the selected interpolated precipitation dataset. IDW, NN, RBF refer to Inverse Distance Weighting, Natural Neighbour 

and Radial Basis Function methods, respectively. 

 

Level Interpolation method a b 

Monthly NN 6.93 0.74 

Winter RBF 12.83 0.74 

Spring IDW 4.51 0.80 

Summer IDW 5.33 0.72 

Autumn RBF 11.32 0.72 
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Fig. S5.1. Comparison of observed daily precipitation (mm) data from SIAS 

(PSIAS) and OA (POA) networks for the reference period 2002-2019. The solid 

line is the 1:1 line, whereas the red dotted line is the trend line.  
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Fig. S5.2. Correlation between RSMD (mm) and altitude variation (m) within 

each ERA5-L cell, on a seasonal basis within the study area. 

 

 


