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We show that the nonlocal two-flavor Nambu–Jona-Lasinio model predicts the enhancement of both
chiral and axial symmetry breaking as the chiral imbalance of hot QCDmatter, regulated by a chiral chemical
potential μ5, increases. The two crossovers are reasonably close to each other in the range of μ5 examined
here, and the pseudocritical temperatures risewith μ5. The curvatures of the chiral and axial crossovers for the
chiral quark chemical potential approximately coincide and give κ5 ≃ −0.011.We point out that the presence
of μ5 in thermodynamic equilibrium is inconsistent with the fact that the chiral charge is not a Noether-
conserved quantity for massive fermions. The chiral chemical potential should not, therefore, be considered
as a true chemical potential that sets a thermodynamically stable environment in themassive theory, but rather
as a new coupling that may require a renormalization in the ultraviolet domain. The divergence of an
unrenormalized chiral density, coming from zero-point fermionic fluctuations, is a consequence of this
property. We propose a solution to this problem via a renormalization procedure.
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I. INTRODUCTION

The chirality plays an important role in the fundamental
theory of strong interactions of quarks and gluons described
by QCD. In QCD with Nf massless quarks, the classical
formulation ofQCDenjoys the invariance underSUðNfÞL=R
chiral transformations ψL=R → UL=RψL=R, which trans-
forms, separately, the Nf-plets of quarks with left-handed,
ψL, and right-handed, ψR, chiralities. As a consequence of
the Noether theorem, the chiral charge is a conserved
quantity at the level of classical equations of motion. In
the quantum version of QCD, the chirality is no longer a
conserved number because quantum fluctuations break the
chiral symmetry spontaneously. The chiral condensate,
hψ̄ψi≡ hψ̄LψRi þ hψ̄RψLi, dynamically breaks the full
chiral group down to its diagonal (vector) subgroup,

SUðNfÞL×SUðNfÞR≡SUðNfÞV ×SUðNfÞA→SUðNfÞV .
Given the number of the light quarks, Nf ¼ 2, the chiral
symmetry breaking manifests itself in the appearance of
three Goldstone bosons, the light pseudoscalar mesons, that
correspond to the number of spontaneously broken gen-
erators, 2Nf − 1, of the chiral SUðNfÞA subgroup [1]. At a
classical level, QCD also possesses the axial symmetry
which reflects the invariance of the QCD Lagrangian under
the axial Uð1ÞA transformations that rotate all quark flavors
by the same, chirality-sensitive phase: ψL=R → e�iωψL=R.
This symmetry is broken at the quantum level by the axial
anomaly, which leads to nonconservation of the (otherwise,
classically conserved) axial current. The chiral and axial
symmetries of quarks are intrinsically related to the topo-
logical properties of the vacuum which are determined by
the gluonic sector of the theory [1].
It is established that at zero baryon chemical potential the

QCD medium experiences a smooth crossover from the
hadronic, low-temperature phase characterized by a non-
zero chiral condensate to the high-temperature phase of
quark-gluon plasma where the chiral condensate is almost
vanishing. As a result, the chiral symmetry gets approx-
imately restored with the rise of the temperature. The fact
that this is a crossover rather than a transition is related to
the nonzero quark masses that break chiral symmetry
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explicitly, so the chiral condensate serves as an approxi-
mate order parameter of the chiral symmetry breaking.
There are also arguments as to why the axial symmetry
should also be restored at high temperature [2]. The
nonconservation of the axial current is related to the
presence of topologically nontrivial configurations, usually
associated with the instantons. The strength of the instanton
fluctuations, quantitatively determined by the topological
susceptibility, depends on the environment: at high temper-
atures, instantons-based interactions among quarks are
suppressed. Therefore, one expects that the topological
susceptibility is small at high temperatures and the axial
symmetry, similarly to the chiral symmetry, gets restored at
the high-temperature phase. So far, a clear relation between
chiral and axial symmetry restoration is not very clear.
Although the topological susceptibility is not an order
parameter, it seems natural to consider this to be a relevant
quantity for quantifying the axial symmetry breaking and to
define the crossover for axial symmetry restoration as the
temperature range in which the topological susceptibility
has the largest change with temperature. This is the strategy
that we adopt in the present article, in which we report on
the study of the restoration of chiral and axial symmetry,
studying the latter bymeans of the topological susceptibility.
In this article, we model a thermal QCD medium at finite

chiral chemical potential, μ5, the latter being conjugated to
the asymmetry between left- and right-handed particles
density, n5. The chiral sector of QCD affects also various
transport properties of the system due to the presence of the
axial anomaly. The most famous example of such phenom-
ena is the chiral magnetic effect (CME) which generates an
electric current [3–8]: hJi ¼ ðe2=2π2Þμ5B, in the presence
of an external magnetic field B in a system of massless
fermions possessing a nonzero chiral density n5 ≠ 0. The
chiral density corresponds to the difference in densities of
quarkswith right- and left-handed chiralities, n5 ¼ nR − nL,
encoded in the difference between their chemical potentials,
μ5 ¼ μL − μR. The chiral chemical potential μ5 is thermo-
dynamically conjugated to the chiral densityn5, so that in the
thermal equilibrium, the finite density of massless fermions
is set by the help of the matter source term δL ¼ μ5n5. The
chiral density is the temporal component of the chiral (axial)
4-current:

jμ5 ≡ ðn5; j5Þ ¼ ψ̄γμγ5ψ : ð1Þ

The CME is suggested to play an essential role in a wide
number of physical systems ranging from astrophysical
systems and quark-gluon plasmas to chiral materials [9].
Although the CME does not exist in a thermodynamic
equilibrium [10–15], the electric CME current is a
nondissipative quantity even in the presence of strong
interactions thanks to the topological protection [9]. In
the electromagnetic sector, the nonzero chiral density
(μ5 ≠ 0) may be induced via the axial anomaly that creates

an imbalance in densities between right- and left-handed
chiral quarks in the near-equilibrium background of parallel
electric E and magnetic B fields. In the context of QCD, the
chiral density may also appear in the gluon sector, due to
topological transitions between different vacuum states
mediated by the instanton or sphaleron phase transitions.
The chiral density depletes due to mass effects, pion and
sigma exchanges at low temperature [16], and the Compton
scattering at high temperature [17]. Regardless of the
microscopic processes involved, the use of μ5 is appropriate
as long as one considers a thermodynamic system on a
timescale larger than that of the equilibration time.
In this study, the interaction among quarks is mimicked

by a nonlocal Nambu–Jona-Lasinio (NJL) model [18–34].
The nonlocal NJL models have been revealed to be
appropriate for the study of the chiral medium at finite
temperature, in particular because they predict that the
critical temperature for chiral symmetry restoration,
Tc, increases with μ5 [35,36], differently from what has
been found within models with a local interaction kernel
[7,37–40] (see, however, Ref. [41]) and in agreement with
lattice simulations [42–44] and calculations based on
Schwinger-Dyson equations [45–47], see also [48–54]
for other recent literature on the subject.
We report on the calculation of Tc versus μ5, confirming

the previous findings that Tc increases with the chiral
chemical potential at least as long as μ5 is smaller than the
typical ultraviolet scale of the model (for large values of μ5,
one should include the backreaction on the interaction
kernel, but the computation of this is well beyond the scope
of our study). Part of the study presented here is devoted to
the divergence of n5 coming from ultraviolet fermion
modes’ we discuss how this divergence arises from the
tail of the quark mass function and how this divergence can
be cured via a renormalization procedure. Then, we
compute the topological susceptibility as a function of T
and μ5 and try to relate this to a possible crossover from a
low-temperature phase in which axial symmetry is broken
by axions to the high-temperature phase in which axial
symmetry is partly restored; we also comment on the
simultaneity of this crossover and the chiral one, finding
that the two have substantial overlap, suggesting that
restoration of chiral symmetry is accompanied by the
restoration of the axial symmetry.
The structure of this paper is as follows. In Sec. II, we

present the nonlocal NJL model used in the study, discus-
sing also a renormalization of n5. In Sec. III, we present our
results about chiral and axial symmetry at finite temper-
ature and μ5. Finally, in Sec. IV, we collect our conclusions.

II. MODEL

A. Thermodynamic potential

In this work, we use a nonlocal version of the NJL model
[20]. As one of the main goals of this work is to evaluate the
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topological susceptibility, it is necessary to introduce the
θ dependence of the thermodynamic potential. In the QCD
Lagrangian, the topological angle θ appears as a CP-odd
term for the gluon fields,

δLθ ¼ θQ; ð2Þ

where the topological number of the gluonic field con-
figuration is computed via the field-strength tensor Fa

μν:

Q≡ ΔNCS ≡ NCSjt→−∞ − NCSjt→þ∞

¼ g2

64π2

Z
d4xεμνρσFa

μνFa
ρσ: ð3Þ

The topological number (3) is given by the difference the
Chern-Simons charge NCS ¼ NCSðtÞ at initial and final
gluonic configurations.
After performing a chiral rotation of the quark fields, the

topological term (2) disappears, and the θ dependence is
transmitted from the gluonic topological term (2) to the
quark sector in the form of the chiral (axial) chemical
potential μ5 ¼ ∂θ=∂t. In our work, we use the NJL model
to describe the dynamics of quarks. The gluon sector will
thus leave its imprint only in the phenomenological
interactions between quarks and in the mentioned chiral
chemical potential.
The Lagrangian density of the quark model that we use

in this study is given by the sum of the four terms,

L ¼ Lq þ Lm þ L4; ð4Þ

where

Lq ¼ ψ̄ðiγμ∂μ þ μ5γ
0γ5Þψ ≡ ψ̄iγμ∂μψ þ μ5n5 ð5Þ

denotes the free quark contribution with the chiral chemical
potential μ5 and the term

Lm ¼ −m0Ψ̄Ψ ð6Þ

introduces the current quark mass m0 via the quark field
dressed by interactions:

ΨðxÞ ¼
Z

d4yGðx − yÞψðyÞ: ð7Þ

We need to introduce this special form of the mass term,

Eqs. (6) and (7), instead of the standard term Lð0Þ
m ¼

−m0ψ̄ψ , because we aim to model the perturbative tail
of the current quark mass computed in the perturbative
QCD at large Euclidean momentum. The perturbative
matching will appear in the Fourier transform of the form
factor GðzÞ in Eq. (7) at large momentum p.
The last term in the quark Lagrangian (4) is a nonlocal

interaction term that mimics the gluon-exchange effects,

L4 ¼ G1

X3
l¼0

½ðQ̄τlQÞ2 þ ðQ̄iγ5τlQÞ2�

þ 8G2½eiθ detðQ̄RQLÞ þ e−iθ detðQ̄LQRÞ�; ð8Þ

where τl ¼ ð1; iτÞ is a quaternion and the spinor Q
represents yet another dressed (nonlocal) quark field,

QðxÞ ¼
Z

d4yFðx − yÞψðyÞ; ð9Þ

expressed via the form factor Fðx − yÞ to be specified later.
This form factor is similar to the function Gðx − yÞ that
appears in the other form of the dressed quark field (7)
used in the mass term of the quark Lagrangian (6). This
interaction has been considered in its local version in
Ref. [55] (see also references therein); therefore, we remind
the reader of that study for further details.
It is convenient to perform the chiral rotation of the

quark fields,

ψR → e−iθ=4ψR; ψL → eiθ=4ψL; ð10Þ

which removes the θ dependence in the interaction
Lagrangian (8):

L4 ¼ G1

X3
l¼0

½ðQ̄τlQÞ2 þ ðQ̄iγ5τlQÞ2�

þ 8G2½detðQ̄RQLÞ þ detðQ̄LQRÞ�: ð11Þ

The θ dependence reappears in the quadratic part of the
Lagrangian (4) in terms of the new fermionic fields,1

Lq þ Lm ¼ ψ̄ðiγμ∂μ þ μ5γ
0γ5Þψ

− Ψ̄ðm0þ þ im0−γ
5ÞΨ; ð12Þ

via the rotated current masses:

m0þ ¼ m0 cosðθ=2Þ; ð13Þ

m0− ¼ m0 sinðθ=2Þ: ð14Þ

It is also convenient to introduce the collective fields

σ ¼ GþQ̄Q; ð15Þ

η ¼ G−Q̄iγ5Q; ð16Þ

we have put G� ¼ G1 �G2. Following the established
procedure of bosonization at the one-loop approximation,
we get the thermodynamic potential,

1For the notational convenience, we use the same symbols for
the old and new fields, since the old ones will not appear again.
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Ω ¼ σ2

Gþ
þ η2

G−

− NcNfT
X
n

Z
d3p
ð2πÞ3 log β

4ðω2
n þ E2þÞðω2

n þ E2
−Þ;

ð17Þ

where β ¼ 1=T is the inverse temperature and ωn ¼
πTð2nþ 1Þ with n ∈ Z are the fermionic Matsubara
frequencies. In Eq. (17), we have also defined the energy
branches,

E2
�ðpÞ ¼ ðp� μ5Þ2 þM2ðpÞ þN 2ðpÞ; ð18Þ

with p≡ jpj and

MðpÞ ¼ m0þRðpÞ − 2CðpÞσ; ð19Þ

N ðpÞ ¼ m0−RðpÞ − 2CðpÞη: ð20Þ

Here, the function CðpÞ≡ F2ðpÞ is determined via the
Fourier transform FðpÞ of the form factor in Eq. (9).
The function RðpÞ ¼ GðpÞ2 gives the evolution of the
(renormalized) current quark mass with the UV scale that is
necessary to reproduce the independence of the combina-
tion mhq̄qi from the renormalization point.
The expectation (i.e., the mean field) values of the

condensates σ and η are determined at each temperature
T and chiral chemical potential μ5 by the minimization of
the thermodynamic potential Ω. For sake of notational
convenience, we have used σ and η to denote the mean field
values of these fields. To derive Eq. (17), we used the
imaginary time formalism to deal with the finite temper-
ature bath and employed the analytical continuation to
Euclidean momentum pE ¼ ðp; p4 ¼ −ip0Þ.
For future reference, it is useful to define the quantities

MðpEÞ ¼ m0RðpEÞ − 2σCðpEÞ; ð21Þ

mðpEÞ ¼ m0RðpEÞ; ð22Þ

which correspond to the quark mass function and the
current mass at θ ¼ 0, respectively.
We now specify the analytical forms of RðpÞ and CðpÞ.

For the latter, we follow Ref. [35] and take

CðpEÞ ¼ θðΛ2 − p2
EÞ

þ θðp2
E − Λ2ÞΛ

2

p2
E

ðlogΛ2=Λ2
QCDÞγ

ðlogp2
E=Λ2

QCDÞγ
; ð23Þ

here, pE is the Euclidean 4-momentum, and γ ¼ 1 − dm is
given by the anomalous dimension of the current quark
mass for a two-flavor QCD:

dm ¼ 12=29: ð24Þ

The second line mimics the quark mass function computed
in perturbative QCD arising from the chiral condensate
[33,34,56], while Λ is an additional parameter of the model
that corresponds to the momentum scale at which the
perturbative mass is matched to the nonperturbative one.
Differently from previous works, we have also introduced
an energy scale dependence of the current mass, which
mimics the running of this quantity computed in perturba-
tive QCD [33,34,56]:

RðpEÞ ¼ θðΛ2 − p2
EÞ þ θðp2

E − Λ2Þ ðlogΛ
2=Λ2

QCDÞdm
ðlogp2

E=Λ2
QCDÞdm

:

ð25Þ

The perturbative pE tails in the functions CðpEÞ andRðpEÞ
ensure that the divergence of the chiral condensate with an
UV cutoff ΛUV ≫ Λ is absorbed by that of the current mass
so that the combination m0hq̄qi is independent from the
UV cutoff ΛUV. Moreover, the log tail of the current quark
mass will make the divergence of n5 softer than that of a
fermion gas with a momentum independent mass, as we
discuss in Sec. III.
Strictly speaking, the thermodynamic potential (17) is a

UV divergent quantity which has to be regularized at a
proper subtraction point. In this study, we chose to subtract
the potential with the vanishing condensates σ ¼ η ¼ 0 at
T ¼ μ5 ¼ 0 and θ ≠ 0, namely, at the free vacuum Fermi
gas contribution at a finite topological angle θ. This
procedure is feasible since the subtracted quantity does
not depend on the quark condensate, temperature, and μ5,
and therefore it does not modify the thermodynamics of the
system. Therefore, we work with the following form of the
UV-regularized thermodynamic potential:

Ω ¼ σ2

Gþ
þ η2

G−

− NcNfT
X
n

Z
d3p
ð2πÞ3 log β

4ðω2
n þ E2þÞðω2

n þ E2
−Þ

þ 2NcNf

Z
d4pE

ð2πÞ4 log
�
p2
E þm2

0þ
Λ2

�
: ð26Þ

We added the factor Λ in the denominator of the last log
function for the sake of the dimensional consistency of the
equation. This addition is irrelevant for the computation of
any physical quantity.

B. Chiral condensate

Before proceeding with the actual calculations, we
discuss subtleties of the definition of the chiral condensate.
We first focus on the CP-invariant case μ5 ¼ 0; then, we
generalize the discussion to the case of the chiral medium
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with μ5 ≠ 0. Also, we ignore a possible presence of the η
condensate (16) because this condensate breaks the time
reversal symmetry (T: t → −t), while the chiral chemical
potential is a T-even quantity.
In general, we can write for each quark flavor q

hq̄qi ¼ −TrðS − S0Þ; ð27Þ

where S corresponds to the full quark propagator and S0
denotes the propagator of quarks with only the current mass
taken into account. The subtraction in Eq. (27) is necessary
to take into account only the contribution to hq̄qi that
comes from the interaction and not from the current
quark mass.
It is well known that the chiral condensate diverges

logarithmically with the renormalization scale in perturba-
tive QCD [33,34]; this behavior is respected in our model.
As a matter of fact, we have

hq̄qi ¼ −Nc

Z
d4pE

ð2πÞ4
4MðpEÞ

p2
4 þ p2 þMðpEÞ2

þ Nc

Z
d4pE

ð2πÞ4
4mðpEÞ

p2
4 þ p2 þmðpEÞ2

: ð28Þ

In the UV regime, each component of the Euclidean
momentum pE should be taken much larger than the
masses M and m,

hq̄qiUV ≈ −4
Z

ΛUV

Γ

d4pE

ð2πÞ4
½MðpEÞ −mðpEÞ�

p2
E

; ð29Þ

with Γ > Λ. From the above equation, it is clear that the
subtraction in Eq. (27) leaves the contribution of the
interaction as the only one that is taken into account for
the evaluation of the chiral condensate. Moreover, a simple
power counting shows that the integral possesses a log
divergence in the limit ΛUV ≫ Γ due to the perturbative tail
of MðpEÞ.
The previous discussion can be generalized to a nonzero

chiral chemical potential, μ5 ≠ 0. Instead of Eq. (28), we
now have

hq̄qi ¼ −Nc

Z
d4pE

ð2πÞ4
4MðpEÞ½MðpEÞ2 þ p2

4 þ p2 þ μ25�
½p2

4 þ λ2þðpEÞ�½p2
4 þ λ2−ðpEÞ�

þ Nc

Z
d4pE

ð2πÞ4
4mðpEÞ½mðpEÞ2 þ p2

4 þ p2 þ μ25�
½p2

4 þ ϕ2þðpEÞ�½p2
4 þ ϕ2

−ðpEÞ�
;

ð30Þ

where

λ2�ðpEÞ ¼ ðjpj � μ5Þ2 þMðpEÞ2; ð31Þ

ϕ2
�ðpEÞ ¼ ðjpj � μ5Þ2 þmðpEÞ2: ð32Þ

Again in the ultraviolet regime in which each component of
the Euclidean momentum pE is taken much larger than the
masses M and m. At the lowest order in μ5, we get

hq̄qiUV ≈ −4
Z

ΛUV

Γ

d4pE

ð2πÞ4
½MðpEÞ −mðpEÞ�

p4
E

ðp2
E þ μ25Þ;

ð33Þ

with the infrared cutoff Γ > Λ. Using the power counting,
we find that the chiral chemical potential gives a μ25
correction to the chiral condensate. This correction, propor-
tional to ½MðpEÞ −mðpEÞ�=p4

E is finite in the UV regime.
We finally remark that, although the chiral condensate

has a UV log divergence, the condensate σ ¼ hQ̄Qi
computed by minimization of the thermodynamic potential
(26) is a finite quantity independent of the ultraviolet
cutoff. Indeed, it is easy to realize that the gap equation,
∂Ω=∂σ ¼ 0, gives in this case

σ ¼ −2NcNfTGþ
X
n

Z
d3p
ð2πÞ3

Mðωn; pÞCðωn; pÞ
ω2
n þ E2þ

; ð34Þ

where we also used Eqs. (18) and (19). The loop integral on
the right-hand side of the above equation is finite in the
nonlocal NJL model due to the form factor (23) which
removes high-momentum modes. Note that this factor does
not appear in the chiral condensate. As a consequence,
while in the local NJL model the quark condensate is
proportional to σ, in the nonlocal model, this proportion-
ality is lost [20].

C. Chiral density

1. Thermodynamic definition

In this subsection, we discuss the chiral density within
the nonlocal NJL model. The chiral density

n5 ¼ −
∂Ω
∂μ5 ð35Þ

is given by the variation of the thermodynamic potential Ω
with respect to the chiral chemical potential μ5. From
Eq. (17), we get, at the minimum of Ω,

n5 ¼ 4NcNfμ5H; ð36Þ

with

H ¼ T
X
n

Z
d3p
ð2πÞ3

ω2
n − p2 þMðpEÞ2 þ μ25

½ω2
n þ λ2þðpEÞ�½ω2

n þ λ2−ðpEÞ�
; ð37Þ

where the functions λ� are defined in Eq. (31) and the
Euclidean momentum is determined at the Matsubara
frequencies, pE ¼ ðωn; pÞ.
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2. Divergence of unrenormalized chiral density

Before presenting the results on the chiral density n5
obtained within the nonlocal NJL model, we find it useful
to make a remark on the divergence of the density n5 for a
case when the quark mass is a fixed finite quantity. We limit
this short discussion to the zero-temperature case, T ¼ 0,
since the finite temperature part provides us with a finite
contribution; in this case, we substitute ωn → p4 and take
the integral over the continuous momentum p4 along the
full real axis.
If we set the dressed mass to zero, M ¼ 0, in Eq. (36),

then the trivial integration over the momentum p4 along the
full real axis gives us the following expression for the zero-
temperature chiral density:

n5 ¼ 2NcNf

Z
d3p
ð2πÞ3 θðμ5 − jpjÞ ¼ NcNfμ

3
5

3π2
: ð38Þ

The above equation provides us with the standard relation
between a density, n, and a chemical potential, μ, of an
ultrarelativistic massless fermion gas.
We now consider the effect of a momentum independent

mass, m0, on the chiral density n5. From Eq. (36) after
integrating over the momentum p4 along the real axis,
we get

n5 ¼ 2NcNf

Z
d3p
ð2πÞ3 XðpÞ; ð39Þ

where

Xðp; μ5Þ ¼
jpj þ μ5

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjpj þ μ5Þ2 þm2

0

p

−
jpj − μ5

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjpj − μ5Þ2 þm2

0

p : ð40Þ

The above equation can be interpreted as a distribution
function of a quark at T ¼ 0, μ5 ≠ 0, and m0 ≠ 0. For a
zero massm0 ¼ 0, Eq. (40) naturally leads to Eq. (38), thus
implying that a Fermi sphere is filled up to the Fermi
momentum at jpj ¼ μ5.
The effect of the presence of the massm0 is to enlarge the

chiral Fermi surface by putting particles above the Fermi
momentum. Indeed, we may take in Eq. (40) the large
spatial momentum jpj limit by assuming naturally the
order2 m0 ≪ μ5 ≪ jpj and obtain

Xðp; μ5Þ ≈
m2

0μ5
jpj3 : ð41Þ

Despite the distribution (41) decays as fast as p−3, the
density of the states increases proportional to the phase-
volume factor p2. Therefore, the net contribution to the
chiral density behaves as

R
dp=p, thus giving rise to a

logarithmic divergence of the chiral density n5 in the
presence of a nonzero mass, m0 ≠ 0.
The discussion of the example with m0 ≠ 0 paves the

way for understanding of the properties of the chiral density
n5 in the nonlocal NJL model. In the latter case, the integral
over the momentum p4 cannot be taken explicitly to the
momentum dependence of the quark mass function
M ¼ MðpEÞ. Nevertheless, we may figure out the UV
divergence of the density n5 because to this end it is enough
to consider the asymptotic behavior of the integrand in
Eq. (38) in the high-momentum limit p4; p ∼ ΛUV with the
large ultraviolet cutoff ΛUV ≫ μ5, M.
We first expand the integrand in Eq. (37) in powers of the

quark mass function M at the lowest nontrivial order:

p2
4 − p2 þMðpEÞ2 þ μ25

½p2
4 þ λ2þðpEÞ�½p2

4 þ λ2−ðpEÞ�

≈
p2
4 − p2 þ μ25

½p2
4 þ ðjpj − μ5Þ2�½p2

4 þ ðjpj þ μ5Þ2�

þM2ðpEÞ
3p4 þ 2p2ðp2

4 − μ25Þ − ðp2
4 þ μ25Þ2

½p2
4 þ ðjpj − μ5Þ2�2½p2

4 þ ðjpj þ μ5Þ2�2
:

ð42Þ

Since we are interested in the UV limit of this integrand, we
can safely assume the hierarchy MðpEÞ ≪ μ5, which is
valid due to the diminishing perturbative tail of the quark
mass function MðpEÞ.
The first term on the right-hand side of Eq. (42) leads to a

finite integral and gives back the result (38) for the massless
quarks while the UV divergence of the chiral density n5
comes from the integral of the second term in the right-hand
side of Eq. (42). The quark mass function MðpEÞ gets
contributions from both the chiral condensate and the
current quark mass (19). However, for a large Euclidean
momentum pE, the latter factor dominates since the former
is suppressed by the perturbative tail 1=p2

E according to
Eqs. (23) and (25).
Therefore, in the high momentum limit of Eq. (42), we

can replace the quark mass function MðpEÞ with the mass
mðpEÞ. Moreover, in the UV region p4, jpj ≫ μ5, we can
make an asymptotic expansion in powers of μ5=p4, μ5=jpj,
to extract the behavior of the integrand at large Euclidean
momentum, and at the lowest order, this amounts to setting
μ5 ¼ 0 in the second term in the right-hand side of Eq. (42)
since higher powers of chiral chemical potential μ5 in a
μ5=jpEj expansion would only lead to convergent integrals.
Thus, we may finally rewrite Eq. (42) in the following
form:

2Assuming this specific order form0, μ5, and jpj is irrelevant in
the UV limit; this choice is closer to the nonlocal NJL model
because of the running of the current quark mass in the UV.
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p2
4 − p2 þMðpEÞ2 þ μ25

½p2
4 þ λ2þðpEÞ�½p2

4 þ λ2−ðpEÞ�

≈
p2
4 − p2 þ μ25

½p2
4 þ ðjpj − μ5Þ2�½p2

4 þ ðjpj þ μ5Þ2�

þm2ðpEÞ
3p2 − p2

4

p6
E

þOðm2ðpEÞμ25=p6
EÞ: ð43Þ

It is now easy to recognize in the last term, proportional to
the mass squared,m2ðpEÞ, the source of the UV divergence
of the chiral density n5. This divergence would be of a log
type if the mass m were a constant quantity. The actual pE-
dependence of the mass m ¼ mðpEÞ leads to somewhat
smoother divergence. Indeed, taking into account the
behavior of the aforementioned term at the momentum
shell Γ ≪ jpEj ≪ ΛUV, we get, ignoring an irrelevant
proportionality constant,

ndivergent5 ∼ μ5m2
0

�
log

Λ2
UV

Γ2

�
1−2dm

; ð44Þ

where dm is the anomalous mass dimension (24). In a two-
flavor QCD, the power of the logarithm in Eq. (44) is a
small, but positive number: 1 − 2dm ¼ 5=29 ≈ 0.17.

3. Zero-point origin of the divergence

The divergence (44) of the chiral density n5 occurs
if and only if the current quark mass is nonzero, m0 ≠ 0.
In this section, we demonstrate that this divergence has a
“vacuum” origin rather than a thermodynamic one.
The presence of the chiral chemical potential μ5 modifies

the functional behavior of the energy of the fermionic
modes (18), thus affecting the contribution to the often-
neglected part of the free energy which would normally be
associated with the vacuum energy. Consider, for example,
the simplest case of free fermions with the quark mass m0.
The positive-energy branch of the fermionic modes in the
presence of the nonzero chiral potential μ5 has the form

εðχÞp ðμ5Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjpj − χμ5Þ2 þm2

0

q
; ð45Þ

where χ ¼ �1 labels the helicity of the mode.
As the chiral chemical potential modifies the spectrum of

free field fluctuations, it should also modify the vacuum
energy carried by these fluctuations. According to the
standard rules of quantum field theory, this zero-point (ZP)
contribution is given by the sum over all modes:

ΩZPðμ5Þ ¼
X
χ¼�1

Z
d3p
ð2πÞ3 ε

ðχÞ
p ðμ5Þ: ð46Þ

In all other circumstances, this zero-point contribution is
automatically neglected because it does not depend on
physical parameters of the system such as temperature and

chemical potential and, therefore, may be undoubtedly
associated with the vacuum.
However in our case, the zero-point energy (46) depends

on the chiral chemical potential μ5, and consequently, the
free-energy term ΩZP must be taken into account in
addition to the conventional free energy of the system.
The explicit dependence of the energy of the zero-point
fluctuations (46) on the chiral chemical potential deter-
mines its nonzero contribution to the chiral charge density.
In particular, the zero-point energy determines the chiral
density at zero temperature, when the usual thermodynamic
contribution vanishes,

n5jT¼0 ¼ −
∂ΩZP

∂μ5
¼

X
χ¼�1

Z
∞

0

p2dp
π2

ðμ5 − χjpjÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμ5 − χjpjÞ2 þm2

0

p ; ð47Þ

which coincides with the functional form of Eqs. (39) and
(40) obtained earlier in another way.
For strictly massless fermions, m0 ¼ 0, the expression

under the integral (47) coincides with the hard Fermi cutoff,
θðμ5 − jpjÞ, which usually appears in the thermodynamic
(and not in the zero-point) part:

n5
���m0¼0

T¼0

¼ 1

π2

Z
∞

0

p2dpθðμ5 − jpjÞ ¼ μ35
3π2

: ð48Þ

We automatically recover the finite thermodynamic expres-
sion (38) for Nf ¼ Nc ¼ 1.
As we already figured out, the behavior of the chiral

density (47) changes qualitatively for massive fermions
with m0 ≠ 0. At a large momentum jpj ≫ m, jμ5j, the
integral in Eq. (47) behaves as

n5ðT ¼ 0Þ ¼ μ5m2
0

π2

Z
ΛUV dp

p
∼
μ5m2

0

π2
log

ΛUV

m0

þ…; ð49Þ

which leads precisely to the logarithmic divergence found
already in Eq. (44) (with vanishing anomalous dimension,
dm ¼ 0, as it is appropriate to a free theory).
Evidently, this zero-point divergence of the chiral density

(49) cannot be renormalized by a conventional subtraction
method that is usually used with respect to the vacuum
contribution. Moreover, the divergence of the chiral density
has deeper roots since the zero-point contribution to the free
energy (46) contains the logarithmically divergent part
which depends on the chiral chemical potential as well.
This divergence, however, does not affect the mass gap
equation which may be regularized without requiring the
renormalization of the chiral chemical potential [41]. Thus,
in order to deal with a finite chiral chemical potential in the
theories with a finite fermion mass, we need to modify the
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normalization prescription itself. We discuss this question
in the next section.
Before finishing this section, we would like to make

three comments.
First, this type of divergence does not occur in dense

fermionic systems with vanishing chiral chemical potential.
Indeed, the vector chemical potential μ shifts the particle
energy modes linearly without modifying the functional
form of the momentum dependence of the energy:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jp2j þm2

0

p
→

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jp2j þm2

0

p
� μ. Therefore, the presence

of the vector chemical potential does not affect the zero-
point energy.
Second, in a local NJL model, in which the constituent

quark mass M has no momentum dependence, we would
get the constituent quark mass M instead of the current
quark mass m0 in Eq. (44) which would give a divergence
in the chiral limit as well. This is precisely the divergence
that has been found in Ref. [39]. On the other hand, within
the nonlocal NJL model, if we were in the chiral limit, we
would have gotten a finite n5. The divergence, as we have
just demonstrated, appears due to the zero-point fluctua-
tions which exist in both local and nonlocal models.
Third, the divergence of the chiral density n5, in

particular Eq. (44), are most probably valid in full QCD
as well since both the fermionic spectrum (45) and the zero-
point energy (46) have a rather universal origin. One could
counterargue that the present model represents a very crude
description of the interaction that leads to the spontaneous
chiral symmetry breaking of QCD. However, the model
describes correctly the behavior of the quark mass function
at large pE, which is the region of interest for the discussion
of the divergence of n5, giving an argument that the result in
Eq. (44) is applicable to QCD as well.

4. Renormalization of the chiral chemical potential

The chiral density has been computed in the first-
principle numerical calculations in the scope of lattice
QCD endowed with the dynamical rooted staggered fer-
mions [42]. To this end, the Lagrangian has been shifted by
a lattice version of the source term μ5n5, which effectively
induces a nonzero the chiral density n5 ≠ 0 at a non-
vanishing chiral chemical potential μ5 ≠ 0. While the UV
divergence of the chiral density n5 in the linear term has
been also been noticed for naive formulation of lattice
fermions, the full dynamical QCD calculations seem to
support a finite result n5 ∼ Λ2

QCDμ5, where ΛQCD is a finite
mass parameter of the order of a typical QCD energy scale.
This result matches well the chiral perturbation theory
(χPT) which implies n5 ∼ f2πμ5 for small μ5 at T ¼ 0 in the
chiral limit [42]. Here, fπ ∼ ΛQCD is a pion decay constant.
It is an easy exercise to prove that Eq. (36) is consistent
with χPT at the lowest order in the chiral chemical potential
μ5 and in the current quark mass by putting μ5 ¼ 0 in the
integrand and using Eq. (4.26) of Ref. [19].

We want to note, however, that we have been unable to
reproduce the χPT relation n5 ∼ f2πμ5 for a nonregularized
chiral density n5 in the context of the nonlocal NJL model.
This relation is unlikely to hold in this model because the
integrals for the naively-defined n5 and the pion decay
constant, fπ, entering at different sides of the relationship
are pretty inconsistent (see, for example, Ref. [20]). In
particular, fπ is given in terms of convergent integrals,
while the nonregularized n5 still possesses a UV divergence
in this model (44). In the nonlocal NJL model, we can
renormalize the chiral condensate n5 by removing the
logarithmic divergence (44) similarly to a standard renorm-
alization procedure in any well-defined renormalizable
theory.
As we discussed in the previous section, the divergence

appears from zero-point fluctuations of the fermionic
modes which possess the unconventional energy dispersion
in the presence of the chiral chemical potential. This feature
appears both in the nonlocal NJL model (18) as well as in
the case of free fermions (45). In the standard quantum field
theory, the contribution from the zero-point fluctuations
can easily be subtracted because it does not depend on the
parameters of the matter sector of the theory. In our case,
however, the zero-point term contains also a matter con-
tribution which cannot be neglected. This leads to subtleties
in the normalization procedure.
Postponing the physical justification of the formal

renormalization procedure to a later discussion, we notice
that the source of the zero-point ultraviolet divergence can
be easily traced in Eq. (43). We define a renormalized chiral
density as

nR5 ¼ 4NcNfμ5ðH −H0Þ; ð50Þ

where the counterterm

H0 ¼
Z

d4pE

ð2πÞ4
ð3p2 − p2

4ÞmðpEÞ2
½p2

E þmðpEÞ2�3
ð51Þ

is computed at zero temperature T ¼ 0 and it is indepen-
dent of the chiral condensate.
According to the discussion in the previous section, the

subtraction in the chiral density (51) is intimately con-
nected to a similar renormalization of the zero-point
contribution of the free energy (46). The renormalization
of both these quantities does not explicitly involve the
renormalization of the chiral chemical potential μ5.
However, since n5 and μ5 are thermodynamically conju-
gated quantities, the renormalization of the density at the
leading order points to a possible renormalization of the
associated chemical potential at the next-to-leading order.
When multiplied by the chiral chemical potential μ5 in

Eq. (50), the regularized contribution depends only on μ5.
The term mðpEÞ2 that appears in the denominator of the
integrand in Eq. (51) makes it possible to avoid the
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apparent infrared divergence at low Euclidean momenta,
pE → 0. This definition of the chiral density is consistent
with Eq. (38) in the chiral limit, at which both the
constituent and current masses are zero, M ¼ m ¼ 0.
The subtraction in Eq. (50) is enough to cancel the mild

logarithmic divergence of the chiral density (44) since
higher-order terms in powers of the chemical potential μ5 in
Eq. (43) would lead to convergent integrals. Moreover, we
also verified that within the nonlocal NJL model at zero
temperature n5 ≃ CMM2

qμ5, where Mq denotes the quark
mass function at p ¼ 0 and finite μ5. Numerically, the
proportionality constant turns out to be CM ≃ 0.5 at low
chemical potentials up to μ5 ≈ 300 MeV, while for larger
chemical potentials μ5, the proportionality becomes softer,
finally reaching CM ≃ 0.3 at μ5 ¼ 400 MeV. These results
are in agreement with the lattice QCD studies reported in
Ref. [42] in which it is found that the chiral density n5 at
zero temperature is of the order of the anticipated value
μ5Λ2

QCD.
The straightforwardly defined chiral density is finite in

the chiral limit (where the fermion mass is zero) and
divergent for the massive fermions (44). Therefore, it is
natural to suggest that the divergence of the chiral density
(44) is directed related to the presence of the fermions’
mass and, naturally, to the inconsistency of the notion of the
chiral chemical potential for fermions with a nonzero mass.
Indeed, the chiral charge is not conserved as it dissolves via
the chirality flips for a massive fermion regardless of the
origin of it mass which could be either a current mass or a
dynamically generated mass. For a free Dirac fermion with
a mass M, the axial (chiral) current (1) has a nonzero
4-divergence at the level of the classical equations ofmotion:

∂μj
μ
5 ¼ 2iMψ̄γ5ψ : ð52Þ

For strictly massless fermions, the chirality is a conserved
number: ∂μj

μ
5 ¼ 0.

A generic chemical potential has a well-defined meaning
only for conserved quantities such as the electric (vector)
charge. One may alternatively say that no chemical
potential can thermodynamically be conjugated to a non-
conserved quantity. In the photodynamics, for example, it is
impossible to self-consistently introduce a chemical poten-
tial for the total number of photons as the latter number is
evidently not conserved. In a free theory, such a “chemical
potential,” associated with a nonconserved quantity, decou-
ples from the dynamics of the theory. In an interacting
theory, this type of chemical potential may affect the
dynamics as we discuss below.
In QCD, the chiral properties of fermions are connected

to the topology of the gluonic sector of the theory. For
example, the instanton- and sphaleron-induced transitions
between adjacent topologically distinct vacua induce
changes in the chiral charge of the fermions due to the
axial anomaly in QCD,

ðNR − NLÞjt→−∞ − ðNR − NLÞjt→þ∞ ¼ −2NfΔNCS; ð53Þ

where N5 ≡ Vn5 ¼ NR − NL is the difference between
the numbers of fermions possessing the right-handed (NR)
and left-handed (NL) chiralities, and change ΔNCS in the
Chern-Simons number between initial and final configu-
rations is given by the topological charge (3) of the gluonic
configuration.
Since the fermion and gluon sectors of the theory are

interacting with each other, a finite chiral chemical poten-
tial may also induce a response in the topological gluon
sector in thermal equilibrium of QCD. Therefore, the finite
chiral chemical potential may have a physical sense in
QCD with massive fermions, regardless of the fact that the
chiral number is not a conserved quantity. The relaxation of
the chiral density may induce physical changes in the
topological charge fluctuations in the gluonic sector of the
theory. We will see below that the topological susceptibility
of the theory is seemingly correlated with the chiral density
in the background of the chiral chemical potential.
Since the chiral charge is not conserved (52), the

introduction of the chiral chemical potential (5) cannot
be justified in the thermodynamical sense. On the contrary,
the chiral chemical potential μ5 should be treated as a new
coupling of QCD, which—in general—needs a renormal-
ization. The corresponding thermodynamically conjugated
quantity, the density, should also require a renormalization
as well (for example, in QCD, both the gluon coupling and
gluon fields/strength tensors are renormalized perturba-
tively). Therefore, Eq. (50) defines nothing but a certain
renormalization scheme in the chiral sector.

III. RESULTS

In this section, we report the main results of our study on
the nonperturbative quantities associated with the chiral
quark density in the scope of the nonlocal NJL model.
Below, we discuss the dynamical quark mass M; the chiral
condensate hq̄qi; the chiral density n5; the topological
susceptibility χtop; and, finally, the phase diagram in the
ðμ5; TÞ parameter plane as originates from the nearly
critical behavior of the chiral density and the topological
susceptibility.
First, we fix the parameters of the NJL model. We take

Λ ¼ 550 MeV for the matching scale and m0 ¼ 5 MeV
for the undressed quark mass. Finally, the value of quartic
quark interaction constant G ¼ 2.6=Λ2 and G1 ¼
ð1 − cÞG1 is chosen in order to reproduce the phenom-
enological value of the light quark condensate hq̄qi ¼
ð−250 MeVÞ3 in the vacuum at T ¼ μ5 ¼ 0, and G2 ¼ cG
with c ¼ 0.2 [55]. In the numerical computations, we
regularize the thermodynamic potential (17) by summing
over all the Matsubara’s frequencies and restricting the
integration over the 3-momentum at the momentum sphere
jpj ≤ ΛUV with the ultraviolet cutoff ΛUV ¼ 3Λ (we have
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verified that changing this UV cut does not change the
results drastically).

A. Catalysis of chiral symmetry breaking

Our first aim is demonstrate that the nonlocal NJL model
is capable of describing the catalysis of chiral symmetry
breaking induced by μ5, at least for relatively moderate
values of the latter, jμ5j ≲ Λ. To this end, we first discuss
the constituent quark mass and the quark condensate at
finite temperature T and chiral chemical potential μ5. As
some features of the quark mass at μ5 ≠ 0 were already
been discussed in Refs. [35,36], here we limit ourselves to
showing the evolution of the quark mass at zero Euclidean
momentum pE ¼ 0 with varying T and μ5. For the
computation of the quark mass, we restrict ourselves to
vanishing topological angle θ ¼ 0. Therefore, the pseudo-
scalar condensate vanishes, η ¼ 0, while the chiral con-
densate σ is the only condensate left.

1. Constituent quark mass

In Fig. 1, we plot the constituent quark mass at zero
Euclidean momentum versus temperature. The figure
indicates that the increase in the chiral misbalance enhances
the chiral symmetry breaking at any temperature in agree-
ment with conclusions of Ref. [57].
In our model, we have verified that the catalysis of the

chiral symmetry breaking occurs up to μ5 ≈ Λ. Above this
value, the constituent mass decreases with μ5, but this
feature might be related to the fact that we have not
included any backreaction on the interaction kernel. We
also notice that the constituent mass decreases in a narrow
range of temperatures; there is a crossover to a high-
temperature phase in which the chiral symmetry is

approximately restored. The smoothness of the transition
appears to be supported by thermal fluctuations. We will
see in the next section that the chiral symmetry restoration
is accompanied by the approximate restoration of the
Uð1ÞA symmetry as well.
One way to determine position of the thermal crossover

is to identify it, at a fixed chemical potential μ5, with the
temperature Tc ¼ Tcðμ5Þ at which the absolute value of the
slope of the infrared quark mass jdMðpE ¼ 0Þ=dTj takes
its maximum. For example, one finds Tc ≃ 125 MeV at
μ5 ¼ 0, which agrees very well with the value quoted
earlier in Ref. [18]. Figure 1 also implies that the critical
temperature is an increasing function of μ5 in the whole
range of chemical potentials μ5 covered by this study.
A more accurate way to find the thermal crossover is to

find a suitable fitting function that may smoothly inter-
polate the low- and high-temperature behavior of the
constituent quark mass. And indeed, this quantity may
be well described in a wide region of temperatures by the
function (with O ¼ M in the considered case)

Oðμ5; TÞ ¼ C1ðμ5ÞTν tanh

�
T − Tcðμ5Þ
δTcðμ5Þ

�
þ C2ðμ5Þ; ð54Þ

where C1, C2, ν, Tc, and δTc are the fitting parameters
defined at each fixed value of the chiral chemical potential
μ5. The power ν is usually quite small (ν ∼ 0.1 or smaller).
Below, we will use the generic function (54) to describe
other quantities in the pseudocritical region. We do not put
the superscript O to the fitting parameters to keep our
notations concise.
The best fits of the mass gap M by the function (54) are

shown in Fig. 1 by the solid lines. The pseudocritical
temperature Tc ¼ Tcðμ5Þ and the width δTc ¼ δTcðμ5Þ the
pseudocritical region, as determined by the mass gap
M≡Mðp ¼ 0Þ, follow very closely the corresponding
quantities for the chiral condensate and the topological
susceptibility, which we will discuss in more detail below.

2. Chiral condensate

The catalysis of the chiral symmetry breaking, induced
by the chiral chemical potential μ5, is also evident from the
behavior of the chiral condensate, hq̄qi, as defined in
Eq. (27). In Fig. 2, we plot the chiral condensate for one of
the light quarks, σu ≡ hūui, versus temperature for several
fixed values of μ5. The magnitude of the chiral condensate
increases with the rise in the chiral chemical potential μ5.
Thus, we have yet another confirmation that the chiral
chemical potential acts as a catalyzer of the chiral sym-
metry breaking.
The approximate restoration of the chiral symmetry at a

finite temperature is via a smooth crossover and not via
a real thermodynamic phase transition. In the absence of a
thermodynamic singularity in the parameter space, the very
definition of the critical temperature leaves a large room for

FIG. 1. Constituent quark masses M at a zero momentum
p ¼ 0 vs temperature T. The blue dots denote a vanishing
chiral chemical potential μ5 ¼ 0; the green squares stand for
μ5 ¼ 100 MeV; the light green diamonds correspond to
μ5 ¼ 200 MeV; the orange upward-pointing triangles stand for
μ5 ¼ 300 MeV; and, finally, the red downward-pointing triangles
denote μ5 ¼ 400 MeV. The solid lines represent the best fits (54).
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ambiguities. Moreover, the transition temperature depends
not only on the method of its definition but also on the
particular thermodynamic quantity used to identify the
temperature. The chiral condensate σu ≡ hūui (and, equiv-
alently, for σd ≡ σu) may be described by the same type of
function that has also been used for the constituent quark
(54). The best fits are shown in Fig. 1 by the solid lines. We
will discuss the pseudocritical temperature Tc ¼ Tcðμ5Þ
and the width δTc ¼ δTcðμ5Þ in more detail at the end of
this section.

B. Chiral density

In Fig. 3, we plot the regularized chiral density n5,
defined in Eqs. (50) and (51), versus temperature T for
several values of the chiral chemical potential μ5. The
qualitative trend of n5 versus temperature is obviously the
same for every fixed μ5: as temperature rises, the chiral
density increases. This property is related to the fact that
thermal excitations contribute more to the thermodynamic

potential at temperature rises. Alternatively, the increase of
the chemical potential μ5 at any fixed temperature T results
in the increase of the chiral density.
For every fixed chiral chemical potential μ5, the chiral

density exhibits a kneelike structure which separates the
low-temperature from high-temperature behavior, as seen
in Fig. 3. This behavior may be described with a very good
accuracy by the function

n5ðμ5; TÞ ¼ n1ðμ5ÞF
�
T − T0ðμ5Þ
δT0ðμ5Þ

�
þ n2ðμ5Þ; ð55Þ

where FðxÞ ¼ ln ð1þ exÞ. The fitting parameters are n1,
n2, T0, and δT0, where the temperature T0 discriminates
between the low- and high-temperature behavior, while the
quantity δT0 has a sense of the width of the transition
region. All fitting parameters are the functions of the chiral
chemical potential μ5. The best fits are shown in Fig. 3 by
the solid lines.
Since the chiral density n5 is not an order parameter of the

deconfining transition, the knee temperature T0 does not
have ameaning of a (pseudo)critical temperature, especially,
for a crossover transition. We get T0 ≃ 135 MeV with the
width δT0 ≃ 20 MeV.

C. Topological susceptibility

The topological susceptibility measures the strength of
fluctuations of the topological charge in the medium. In our
model, the topological susceptibility can be computed as
the curvature:

χtop ¼
∂2Ω
∂θ2

����
θ¼0

: ð56Þ

It is well known that for two degenerate flavors of light
quarks the topological susceptibility (56) is related to the
quark condensate jhq̄qij as follows: χtop ¼ mjhq̄qij where
m is the current quark mass. This relation, valid at zero
temperature, shows the link between the fluctuations of the
topological charge (56) and the dynamics of the light quark
flavors that leads to the spontaneous chiral symmetry
breaking. First-principle lattice simulations [58–60] indi-
cate that the topological susceptibility tends to decrease
with rising temperatures and that the axial symmetry tends
to be restored at high temperatures at the chirally unbro-
ken phase.
In a local NJL model, the topological susceptibility with

light quarks in the chiral medium was studied for the first
time in Ref. [39]. It has also been recently subjected to the
first-principle lattice calculations at zero temperature in
Ref. [42]. Both studies agree qualitatively with each other
on the fact that at zero temperature χtop increases with μ5,
while a quantitative comparison is not feasible due to the
different quark masses used in these calculations.

FIG. 2. Chiral condensate σu ≡ hūui vs temperature. Conven-
tions for colors and symbols are the same as in Fig. 1. The solid
lines represent the best fits (54).

FIG. 3. Regularized chiral density n5, defined via Eqs. (50)
and (51), vs temperature. Conventions for colors and symbols are
the same used in Fig. 1. The solid lines show the fits by the
function (55).
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On the other hand, the local NJL model [39] indicates
that when the temperature is close to Tc the chiral chemical
potential tends to lower χtop. This property is an artifact of
the local interaction and of the three-dimensional regulator
used in Ref. [39]. Already with a four-dimensional regu-
lator, the critical temperature Tc increases with the increase
of the chiral chemical potential μ5, at least for small μ5 [35].
Cutoff effects become substantial at large values of μ5 in
any regularization scheme, and Tc tends to be lowered with
the rise of μ5. For this reason, here we compute χtop both at
zero and at finite temperature by using the nonlocal NJL
model, which offers a more trustable response of critical
temperature Tc considered as the function of the chiral
chemical potential μ5.
In Fig. 4, we plot χtop versus temperature. In the figure,

the susceptibility is given in units of its vacuum value,

χ1=40 ≡ χ1=4top jT¼μ5¼0 ≃ 76 MeV; ð57Þ

where the numerical number is presented for the set
of parameters used in our study. The value of the topo-
logical susceptibility (57) matches well the benchmark
result of numerical simulations in full QCD [61], χ0 ¼
75.6ð1.8Þð0.9Þ MeV.
We notice that the increase the chiral density results in

the increase of the topological susceptibility at each fixed
temperature. This result is in a disagreement with previous
calculations that use the localNJLmodel [39], which instead
predict an increase of χtop at small T but a decrease of χtop at
large T. The result of Ref. [39] was obtained within a local
NJL model; thus, the behavior of χtop in that model follows
that of the constituent quark mass at finite μ5.
Figure 4 indicates that there is a narrow range of

temperatures in which the susceptibility χtop decreases
abruptly, thus signaling the partial restoration of the axial
Uð1ÞA symmetry. To extract the pseudocritical temperature

more accurately, we describe the topological susceptibility
by the function (54). The best fits are shown in Fig. 4 by the
solid lines. In the next subsection, we will discuss the
pseudocritical temperature Tc for this topological crossover
in more detail.

D. Pseudocritical temperatures

In Fig. 5, we compare the pseudocritical temperatures Tc
of the chiral and axial crossovers, as well as their thermal
widths, as functions of the chiral chemical potential μ5.
The figure shows a few interesting qualitative features of

the chiral phase transition. First of all, both pseudocritical
temperatures rise in unison as the chiral density increases.
Second, the restoration of the axial symmetry, as revealed
by the topological susceptibility, appears at a higher
temperature than the restoration of the chiral symmetry.
This statement is independent of the chiral chemical
potential. At large values of the chiral chemical potential,
we observe a flattening of the both pseudocritical temper-
atures, which, however, should be attributed to the crude-
ness of the model used in our studies. In particular, we have
neglected any possible backreaction induced by the chemi-
cal potential μ5 on the form factor. From this point of view,
the computation of the quark mass function at finite μ5
using the Schwinger-Dyson equation, which should allow
one to incorporate the aforementioned dependence in the
mass form factor, would be interesting.
The widths of both axial and chiral crossover transitions,

δTc, show a tendency for shrinking as the chiral matter gets
denser, thus implying a strengthening of both transitions as
the chiral chemical potential increases. However, we see no

FIG. 4. Topological susceptibility (56) vs temperature, in units
of the vacuum susceptibility χ0 (57). Conventions for colors and
symbols are the same used in Fig. 1. The solid lines represent the
best fits by the function (54).

FIG. 5. Pseudocritical temperatures Tc of the chiral symmetry
restoration (the orange squares) and the axial symmetry restora-
tion (the green circles) as functions of the chiral chemical
potentials μ5. The inset shows the thickness of each transition.
The data are obtained by fits of, respectively, the chiral con-
densate (Fig. 2) and the topological susceptibility (Fig. 4); see the
text for more details. The dashed lines are drawn to guide the eye.
The shaded regions represent the quadratic-curvature behavior of
Eq. (58).
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signature of a critical end point in the ðμ5; TÞ phase diagram
in the studied region of the chiral chemical potential μ5.
These conclusions are in certain disagreement with

previous studies that used a local interaction kernel
[37,38] as well as with recent works using the Wigner
function technique [62]. On the other hand, the absence of
the phase transition point in the ðμ5; TÞ plane agrees well
with the results obtained within the nonlocal NJL models
[35,36,63], with the solution of the Schwinger-Dyson
equations [45–47], and with the first-principle QCD
studies in a limited range of temperatures and chemical
potentials [43].
A quantitative analysis reveals a less sharp picture given

the smooth nature of both crossover transitions. First of all,
the magnitude of the increase of both axial and chiral
pseudocritical temperatures is very small; the rise of the
chemical potential, from μ5 ¼ 0 to a rather large value
μ5 ¼ 400 MeV, leads to the enhancement of the critical
temperature by about ΔTc ≃ 5 MeV, or less than by 5%.
This variation of the temperature is located well within the
broad widths of both crossovers, which are wider than
15 MeV for all studied values of the chiral chemical
potential. Moreover, at each given chiral density, both
crossovers overlap strongly since the difference in the axial
and chiral pseudocritical temperatures is within ð2–3Þ MeV.
With both crossover transitions appearing so close to

each other, we expect that the effects of the chiral- and
axial-symmetry restorations will happen smoothly and
simultaneously. As the temperature rises, (i) the meson
masses will experience a small deep due to the diminishing
mass gap at the chiral crossover, followed by (ii) a rise in
the masses due to the thermal effects. The gradual restora-
tion of the axial symmetry will have its imprint in the
particle spectrum via enhancing the degeneracy of the
whole nonet of the pseudoscalar bosons as the masses of all
axial partners will approach each other. We refer the reader
to Ref. [64] for a recent detailed discussion.
We also determine the curvature κ5 of the crossover

transition in the ðμ5; TÞ plane,

Tcðμ5Þ
Tcð0Þ

¼ 1 − κ5
μ25

T2
cð0Þ

þ…; ð58Þ

which is usually applied to the low-density domain with
jμ5j ≪ Tc. According to the conventions used in the
literature, a positive curvature κ corresponds to a diminish-
ing (pseudo)critical temperature as the chemical potential
increases. In a realistic QCD with three quark flavors
(Nf ¼ 2þ 1, with two light u and d quarks and one heavier
s quark), the baryonic curvature κB determines the curva-
ture of the pseudocritical temperature with respect to
increase of the baryonic potential μB ¼ 3μ (see, for
example, the recent studies in Ref. [65]),

Tcðμ5Þ
Tcð0Þ

¼ 1 − κB
μ2B

T2
cð0Þ

þ…; ð59Þ

where μ≡ μq is the quark chemical potential. In our article,
we identify the chiral curvature (58) with respect to the
chiral (axial) chemical potential μ5 ≡ μA.
The curvatures of the chiral and axial crossovers for the

chiral quark chemical potential approximately coincide
and give κaxial5 ¼ −0.0105ð4Þ obtained from the topo-
logical susceptibility and κchiral5 ¼ −0.0108ð3Þ as extracted
from the chiral condensate. The corresponding quadratic
dependencies are shown in Fig. 5 by the shaded regions.
The width of each region corresponds to the statistical error.
We would like to notice that the quadratic dependence of
the critical temperature on the chiral chemical potential
holds very well for the relatively large values of the chiral
chemical potential, μ5 ∼ Tc.

IV. CONCLUSIONS

We have reported on our study of the chiral and axial
symmetry breaking in chirally imbalanced QCD with two
flavors of light fermions at finite temperature using a
nonlocal Nambu–Jona-Lasinio model. We studied the
chiral condensate, hq̄qi; the topological susceptibility,
χtop; and chiral density, n5, of a chiral medium, namely,
a system with chiral chemical potential μ5 ≠ 0, at finite
temperature. All the calculations have been performed
within a nonlocal NJL model with quark mass function
that agrees with perturbative QCD at large Euclidean
momentum. Our approach differs from almost all of the
previous calculations in which local effective models have
been used. The use of a nonlocal NJL model is favored over
the local ones since the former predicts that the critical
temperature for the approximate chiral symmetry restora-
tion, Tc, increases with μ5 in agreement with the solution of
the Schwinger-Dyson equations as well as with the first-
principle lattice QCD calculations. On the contrary, the
conclusions of our approach disagree with the predictions
of most of the local the NJL models (see Ref. [41] for an
exception) as well as with the results obtained recently
within the Wigner function approach.
The response of the chiral condensate to a finite chiral

charge density at zero and finite temperature shows that the
chiral chemical potential μ5 serves as a catalyzer of chiral
symmetry breaking: the chiral condensate strengthens as the
chiral density increases. This conclusion is in agreement
with other studies [57]. Moreover, the behavior of the
topological susceptibility at a finite chiral chemical potential
indicates that the chiral medium tends to break the axial
symmetry as well; the topological susceptibility becomes
larger with increase of the chiral density at all studied
temperatures. In other words, the chiral medium increases
the fluctuations of the topological charge, thus enhancing
the breaking of the axial Uð1ÞA symmetry. We have
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confirmed that the critical temperature of the chiral cross-
over rises with μ5; we also noted the same behavior for the
axial crossover and pointed out an apparent hierarchy
of the temperatures Taxial

c > Tchiral
c . However, the axial

and chiral crossovers possess substantial thermal widths,
δTc ∼ ð15–20Þ MeV, which imply that these transitions
overlap as Taxial

c − Tchiral
c ∼ ð2–3Þ MeV. Thus, in our model,

the axial symmetry restoration happens simultaneously with
chiral symmetry restoration.
Part of this study has been devoted to the divergence of

the chiral density. We argued that the presence of the chiral
chemical potential should be treated as a Lorentz-frame-
dependent coupling. The main argument is that the quarks
get substantial masses due the chiral symmetry breaking,
while the chiral charge is not a classically conserved
quantity for the massive fermions. Therefore, the corre-
sponding thermodynamically conjugated chiral chemical
potential should not, therefore, be considered as a true
chemical potential. The divergence of an unrenormalized
chiral density (44) is a consequence of this property.
Technically, the presence of a nonzero chiral chemical

potential modifies the functional form of the momentum
dependence of the fermionic eigenenergies. The latter
contributes to the zero-point energy which is no longer
associated with the pure vacuum contribution due to the
apparent dependence of the chiral chemical potential.
Consequently, the zero-point fermionic fluctuations con-
tribute to the density of the chiral charge. The zero-point
contribution is finite for massless fermions, but it gives a
logarithmically divergent term if the fermions have
a mass. This fact highlights thermodynamic incompatibility
between formation of a finite chiral density and the absence
of the chiral symmetry for massive fermions. In the
response, the system generates an ultraviolet divergent
contribution to the free energy Ω ∼m2

0μ
2
5 lnΛ=m0, which

forces the dynamical system to make the chiral chemical
potential μ5 vanishing. In our work, we suggest that this
divergence may, however, be regularized and then renor-
malized in order to describe transient phenomena with a
nonzero chiral density in the theories with dynamical mass

generation (for example, in quark-gluon plasma formed in
heavy-ion collisions).
To support the need of the renormalization of the chiral

chemical potential in QCD with nearly massless quarks,
we invoked the following chain of arguments: the bare
chemical potential creates a chiral charge density, that
tends to decay due to chirality flips that are catalyzed by
the presence of the dynamical mass; the dynamical mass
appears as a result of the interactions of the theory, and
the interactions require the renormalization of the corre-
sponding couplings and observables. Thus, the processes
that involve the (non)conservation of the chiral density
are affected by the flow in the renormalization-group
space of QCD, so the chiral charge and the thermody-
namically conjugated chiral chemical potential should
also be affected by the renormalization. This statement
also applies to the theories where the quark mass appears
dynamically as a result of the spontaneous breaking of
chiral symmetry.
It will be interesting to check whether these predictions

are valid also in a model with three dynamical flavors and
to explore the behavior of different topological suscep-
tibilities to probe the axial symmetry restoration that
emerges in various contexts [66–70]. We leave these
projects to near-future studies.
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