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Abstract

Colonoscopy is the only screening that can detect polyps in the colon that can

mutate into colorectal cancer. The task of detecting polyps is a job done by the

doctors themselves who perform the procedure. It often happens that polyps are

not recognized for reasons such as fatigue of the doctor himself, preparation in

the previous days for the procedure not done correctly by the patient, confusion

between polyp or mucosa, probe lights, or water injected. The work in this thesis

was carried out thanks to a grant from Linkverse s.r.l., a company based in Rome,

Italy, which believes that Machine Learning can help physicians in the detection

of polyps and thus can help them identify the most difficult ones. During the

Ph.D. course, we tried to solve the problems related to this topic by using known

Object Detection architectures. The first contribution is related to the specialization

of a known object detection network through clustered features and fine-tuning

steps. The second contribution concerns an attention mechanism integrated into

an object detection network to focus on specific regions of each image used in the

training phase. Finally, the last contribution is about a framework created for Data

Augmentation by exploiting a known Inpainting network. This contribution is useful

to provide other researchers with a more extensive and variable dataset with realistic

data.
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Chapter 1

Introduction

1.1 Motivation

Among the medical tasks, colonoscopy aims at the screening of the intestine to

detect lesions (e.g., polyps) and to plan their removal. Nowadays, it is the gold

standard for diagnosis of colon cancer (CRC). Often, the antecedents of the CRC

are polyps that mutate and progress slowly, becoming invasive tumors that metas-

tasizes other parts of the body. A colon polyp, which can be seen in the figure 1.1,

is a cluster of cells found within the colon when developed within the colon and

often appear as a small hill like structure [1]. Since the risk of cancer development

can be reduced by early detection, colonoscopy is employed as primary method for

screening and prevention of CRC [2]. However, the colonoscopy procedure suffers of

an high percentage of miss-detections of polyps during the screening, especially in

the early stage of the disease. More recently, computer-aided diagnosis (CAD) and

automated Computer Diagnosis (ACD) were born in this context and contribute in

helping physicians make the process more automated. This is possible due in part

to the success of deep learning for the polyp detection task. Computer-aided polyp
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detection can reduce polyp miss detection rates and help doctors find the most crit-

ical regions to pay attention to.

The challenge in detecting polyps is due to the polyp’s morphology and size, and

these fall into false negative. Indeed, polyps may exhibit high variability in shapes

(e.g., depressed, flat, pedunculated, etc...). Moreover, the water injected from the

endoscope results in artifacts which impede the detection, and the lubricating mu-

cus causes light artifacts due its glossiness. The screening process is an operator-

dependent task; hence, human factors, such as fatigue, insufficient attentiveness

during colon examination, and lack of sensitivity to visual characteristics of polyps.

The doctor may also perform a polypectomy (removal of a polyp) during the proce-

dure if the polyp is under a certain size, otherwise surgery is used later [3]. Screening

has also assumed a key role in Italy between the ages of 50 and 69 years. In the

years between 2003 and 2014, incidence and mortality rates decreased significantly

in all areas except in the south and islands, where incidence increased and mortality

remained stable [4]. Missed polyps cause a survival rate of less than 10% [5]. The

aforementioned considerations motivate the introduction of new technologies able

to improve the rate of identification of intestinal lesions.

In addition, the state of the art analysis allowed us to infer that the datasets available

to researchers in this area are limited in terms of variability. The absence of large

and diverse dataset in this context does not allow an adeguate comparison of the

algorithms for polyp detection. Many studies use images in which the polyps appear

mainly/only in the foreground and in most of the cases in the center of the images

[6]. Moreover, images are usually extracted by medical devices, so depth of color

is compromised and the compression can destroy useful information to be exploited

by a detector. Another problem is that many of the images composing the current
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Figure 1.1: Different polyps in coloscopies frames.

available datasets are related the same polyp (i.e., samples of consecutive frames of

a colonoscopy video related to a polyp which have very similar appearance). Ide-

ally, a benchmark dataset should contains thousand of images related to a very high

number of different polyps. Therefore, in addition to the aspect of Computer-aided

polyp detection it was also found important to generate Colonoscopy Data in order

to increase the data but at the same time addressing new methodologies applied to

this field. Still in this field the perfermonces are not fully acceptable unlike other

types of detection such as in other application domains. This is mostly due to the

lack of labeled colonoscopy datasets available and labeled by experienced clinicians.

Other issues with datasets relate to variability and label type. Often it happens in

fact to have to train small datasets or medium / large size but with little variability

in terms of shape, color or scale. The labels that are provided are often segmentation

masks that do not respect the shape of the polyp itself but rather localize the lesion

in the image through ellipses or round shapes, so there is no real label of the data.

The need to have large datasets allows then to generalize a training and have better

performance in detection.
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1.2 Objectives and Approaches

This thesis work focuses on the detection of polyps in colonoscopies. Detection in

the medical field is indeed a difficult and critical, but it helps to speed up the time

of detection of lesions that may mutate into colorectal cancer. So detection in this

context is useful to the endoscopist. The images used are in fact derived from real

video sequences that are analyzed by a learning algorithm to identify a polyp inside

a normal mucosa. Therefore, this work does not replace the work of a doctor, but

it is a support to refine the level of precision that can escape the human eye. This

study has allowed us to identify important aspects in this field of research:

• the lack of real and numerous data;

• the difficulty in detecting some types of polyps due to artifacts and thus in

having many false negatives with the use of neural networks;

• the similarity between normal mucosa and polyp.

The goal of the research initiated in the first year of the Ph.D. program was

to improve the detection of intestinal lesions in terms of timing and recognition of

polyps that are the cause of intestinal tumors and overcome the limits described

above. Initially, the company dataset was carefully studied to clean up the data and

analyze issues in the frames themselves that could interfere with any object detector

used. Therefore, a study of the state of the art was carried out in order to search for

existing methods for the detection of polyps in colonoscopies and gastroscopies, but

also of Object Detection methods based on Deep Learning. Considering also the

study of the state of the art, polyp-detection through YoloV3 [7] has been carried

out and results have been compared with the state of the art and with company
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results obtained in the past; in addition, an error analysis has been conducted and

a specialization of an architecture based on problems detected by the error analysis

has been created. Specifically, in order to improve the detection performance it

was decided to proceed with the study of morphologies and textures related to the

mucosa in the frames and to create clusters. The neural network was specialized

according to the morphological characteristics of the mucosa of each subset by per-

forming a Fine-Tuning phase [8].

Errors were then analyzed and it was found that many false negatives also fall

within the same video sequence between true-positives, so it was decided to exploit

this analysis to create a method to exploit information between frames within a

video sequence to detect as many true-positives as possible. It was also decided to

create an attention mechanism for the detector by exploiting the mask of the frame

preceding the considered frame.

Another topic of particular interest is data generation in this domain. It was de-

cided to use not corporate data, but available open-source data. Already from the

experiments with detectors, it has been found that using these datasets is more

difficult in the detection of polyps precisely because of the low numerosity of the

data and unrealistic characteristics for the purpose of an accurate research study.

At the state of the art, there are works that mainly exploit Generative Adversar-

ial Networks (GANs) [9] or Conditional GANs [10] to generate realistic data from

small publicly available datasets. Therefore, a number of scientific publications on

the topic have been explored in depth. In the literature for data generations is now

used also the Inpainting technique, so also related works on this have been deepened.

A data augmentation framework based on inpainting was then proposed to generate

realistic data.
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1.3 Contributions

The main contributions of this thesis are the follow:

• analysis of existing methodologies of object detection for polyp detection;

• analysis of existing open-source datasets and industrial dataset to learn the

issues;

• feature extraction for polyps to create clusters or specialization;

• deep learning method specialization based on features of the polyp;

• analysis of results with detectors to detect issues within video sequences;

• creation of an attention mechanism to improve polyp detection method;

• investigation of open-source datasets to understand the missing features and

then how to generate new data to improve the training performance in this

field;

• study of common technique of inpainting;

• proposal of a framework for data augmentation using inpainting.

The principal contribution of this thesis submitted and published in international

conferences:

International Journal:

• Pappalardo, G., Allegra, D., Stanco, F., & Farinella, G. M. Inpainting Based

Data Augmentation to Improve Polyp Detection in Colonoscopy. Submitted

to Computers in Biology and Medicine (CBM) Journal.



Chapter 1. Introduction 7

International conferences:

• Pappalardo, G., & Farinella, G. M. (2020, June). On the Detection of Col-

orectal Polyps with Hierarchical Fine-Tuning. In 2020 IEEE International

Symposium on Medical Measurements and Applications (MeMeA) (pp. 1-5).

IEEE.

• Pappalardo, G., Allegra, D., Stanco, F., & Farinella, G. M. (2020, December).

On the Exploitation of Temporal Redundancy to Improve Polyp Detection in

Colonoscopy. In 2020 IEEE 4th International Conference on Image Processing,

Applications and Systems (IPAS) (pp. 58-63). IEEE.

1.4 Thesis Outline

The remainder of this Ph.D. Thesis is divided in 6 chapters related to improve

performance for polyp detection. Chapter 2 is a presentation of literature works

which have been used for the work in this thesis. Chapter 3 presents neural networks

and methods used in this study. Chapter 4 describes a first approach to specialize

a neural network by hierarchy. Chapter 5 shows the visual attention mechanism

used to improve polyp detection performances. Chapter 6 presents a method of

augmenting the data to have a larger and more variable dataset on which to train

object detectors for polyp detection. Finally Chapter 7 concludes the thesis and

gives insights for future directions. Appendix A reports on work not directly related

to this thesis that was published during my Ph.D.
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Chapter 2

Related Work

This chapter reports related work from the major themes addressed during the

study. Specifically reported are the state-of-the-art contributions that were useful

in furthering the topics and providing our contributions.

2.1 Polyp Detection

The recent research focuses on the design and development of automatic polyps de-

tection in colonoscopy videos. Several approaches have been proposed to address

this task. A survey on different methods is given in [11]. In [12] a combination

of boosting and active learning is exploited to detect regions of interest contain-

ing polyps. In [13] multiple hand-crafted features based on color, discrete cosine

transformation (DCT) [14] and LBP have been used to feed a fuzzy or a decision

tree classifier. In [15] a convolutional neural network called ResYolo with temporal

information incorporated via a tracker is proposed to detect polyps and perform

temporal refinement of the results. Deep learning vs hand-crafted based methods

have been compared in [16] on different publicly available datasets.



Chapter 2. Related Work 9

In this context, it is very important to identify the largest number of polyps as

soon as possible (i.e., ideally during the first screening and, in any case, at very

small size). The main limit of the current literature is due to the scarce availabil-

ity of datasets with the adequate size and variability required to perform a valid

quantitative and qualitative evaluation benchmark of different polyp detection al-

gorithms. The absence of large and diverse dataset in this context does not allow

an adequate comparison of the algorithms for polyp detection. Many studies use

images in which the polyps appear mainly/only in the foreground and in most of

the cases in the center of the images [6]. Moreover, images are usually extracted by

medical devices, so depth of color is compromised and the compression can destroy

useful information to be exploited by a detector.

Another problem is that many of the images composing the current available

datasets are related the same polyp (i.e., samples of consecutive frames of a colonoscopy

video related to a polyp which have very similar appearance). Ideally, a benchmark

dataset should contains thousand of images related to a very high number of differ-

ent polyps. A large dataset is useful also to properly train polyps detectors based

on deep learning architectures. Indeed, considering the available datasets, to deal

with training problems when exploiting deep learning based frameworks for polyps

detection, some works propose to augment data during training by generating syn-

thetic samples with generative adversarial network (GAN) approaches [16].

Previously, classic methods employing swallow features or geometrical properties

have been proposed. Hwang et al.[17] proposed a technique in which the polyp re-

gion detection is based on the elliptical shape. In [18], texture features are employed

for polyps and regular tissue classification. A Support Vector Machine (SVM) [19]

is applied as a classification tool in the polyps detection scheme. The authors of [20]
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employed spatio-temporal features and Conditional Random Field model (CRF).

The CRF models the temporal dependencies in colonoscopy videos, while multiple

eigentissue images, at different angles, robustly model the various tissue types. In

addition, the system employs an automatic quality assessment algorithm to prepro-

cess videos by removing low-quality frames. In [21] a method is proposed, which

collects a set of edge pixels and then refines this edge map by patch descriptors and

classification scheme, before the polyp localization.

The most recent literature is dedicated to the topic of deep learning for the auto-

matic detection of polyps in colonoscopy images. Zhang et al.[22] introduced a novel

transfer learning framework utilizing features learned from big nonmedical datasets.

This method exploited, in the first step, features of non-polyp images to identify

polyp images followed by predicting the polyp histology. Yu et al.[23] designed a

novel offline and online three-dimensional deep learning integration framework by

leveraging the 3-D fully convolutional network for automated detection of polyps

from colonoscopy videos. In [24] it is proposed a system that extracts color wavelet

features and convolutional neural network (CNN) features from each sliding window

of video frames. The fusion of all the features is fed into SVM for the classification.

Dijkstra et al.[25] used a fully convolutional neural network model for semantic seg-

mentation and the transfer learning to produce detection and localization.

In [26] the authors used convolutional neural networks (CNNs) combined with au-

toencoders. To validate the results, they use the three publicly available databases,

namely CVC-ColonDB, CVC-ClinicDB and ETIS-LaribPolypDB [27, 28, 6]. They

applied classical data augmentation techniques. Mori et al. [29] review and focus on

published prospective studies in which AI tools have been used in real-time during

colonoscopies to illustrate the practical potential and drawbacks of this cutting-edge
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technology. They have also explored the potential for clinical implementation of this

technology by assessing the regulatory approval requirements for new AI tools for

colonoscopies.

2.2 Data Augmentation

Common open source strategies are used to perform data augmentation on datasets.

There are two different macro-areas of data augmentation [30]: data augmentations

based on basic image manipulations (geometric and photometric transformations),

and data augmentations based on Deep Learning techniques. The first group in-

cludes geometric transformations (such as rotation, traslation, etc) and color space

transformations (such as color jittering). Photometric transformations includes ker-

nel filters, mixing images, random erasing. The last macro-area we investigated in

this paper, includes feature space augmentation, adversarial training, GAN-based

augmentation, neural style transfer, and meta-learning schemes. Deep based aug-

mentation has been exploited to generate images of colonoscopies with polyps. An

example of the classic data augmentation is employed in [31] where the authors

perform Polyp Segmentation through the Mask R-CNN. Augmentation is mainly

proposed to prevent the problem of overfitting. the The author suggest vertical

flipping, horizontal flipping, random rotation between -45 and 45 degrees, arbitrary

scaling ranging from 0.5 to 1.5, random shearing between -16 and 16 degrees, ran-

dom Gaussian blurring with a sigma of 3.0, random contrast normalization by a

factor of 0.5 to 1.5, random brightness ranging from 0.8 to 1.5, and random crop-

ping and padding by 0-25% of height and width. Nguyen et al. [32] suggested

another methodology to improve the segmentation performance. They propose
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a novel encoder-decoder architecture which can recover the full-resolution predic-

tion by applying data-dependent upsampling method, namely MED-Net, to extract

the most useful visual features from multi-scale image inputs. They introduce a

new boundary-focused data augmentation method for randomly generating a high

number of boundary-aware polyp patterns from each training image. This method

contributes to the improvement of MED-Net. They also propose a new adaptive

weighted loss function to boost the segmentation performance of MED-Net. They

present an attention-based loss function that allows the network to focus more on

the polyps and their boundaries. The combination of the loss functions leads to

a better performance, because the network can focus on learning iteratively polyp

boundaries. Mathew et al. [33] proposed, to expoloit a well known deep learning

framework, based on CycleGAN [34]. It is an extended and directional CycleGAN

for lossy image-to-image translation unpaired between optical colonoscopy (OC) and

virtual colonoscopy (VC). Translating between OC and VC can be generalized to

image-to-image domain translation. In their work, authors augment OC video se-

quences with scale-consistent depth information from VC and augment VC with

patient texture, color, and specular reflections from OC (e.g., for realistic polyps

synthesis). They introduce a novel extended cycle consistency loss for lossy image

domain translation. The network so does not need to hide information in the lossy

domain by replacing OC comparisons with VC comparisons. Stronger deletion of

these specular reflections and textures are handled via a Directional Discriminator

that differentiates the direction of translation as opposed to the standard CycleGAN

which is direction-agnostic. This Directional Discriminator is similar to a discrimi-

nator in a conditional GAN and deals with paired data thus giving the network, as

a whole, a better understanding of the relation between the two domains.
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Authors of [35] exploited of generative adversarial networks (GANs) for synthetic

data generation. For classification, a CNN is trained to discriminate between be-

nign polyps vs. malignant polyps. Authors conducted experiments on two datasets

demonstrating that the GAN based data augmentation technique can be effectively

used to improve colonic polyps classification.

2.3 Inpainting

Differently, in the present work we propose to improve detection performance by

operate a data augmentation through an inpainting approach. Arnold et al. [36]

a method for segmentation of specular highlights based on nonlinear filtering and

colour image thresholding and an efficient inpainting method that alters the specu-

lar regions in a way that eliminates the negative effect on most algorithms and also

gives a visually pleasing result. They also present an application of these methods

in improvement of colour channel misalignment artefacts removal. Their inpainting

algorithm is performed on two levels. They first use the filling technique where they

modify the image by replacing all detected specular highlights by the centroid colour

of the pixels within a certain distance range of the outline, then they filter this mod-

ified image using a Gaussian kernel. For the second level, the binary mask marking

the specular regions in the image is converted to a smooth weighting mask. In [37]

the authors present a work focused on the development of automatic polyp local-

ization methods. They present the first study that takes into account the impact of

different endoluminal scene elements in polyp localization results. They address the

influence of specular highlights, blood vessels and the black mask that surrounds the

endoluminal scene. Their method integrates valley information to locate the polyp.
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They discern between valley information that comes from polyps and the one that

is related to other elements in order to improve polyp localization results. The nov-

elty of their work presented is the assessment of the impact that different elements

of the endoluminal scene have on polyp localization results. In this regard, they

exploited inpainting and, precisely, a diffusion step of the inpainting algorithm for a

pixel: they considered pixels under a given detection mask M and pixels outside M .

Then, a calculation of the new value from the valid neighbors is performed. To get

an even more realistic image, they created a dilated mask by performing a dilation

with a circular structural element and then convolving the result with a Gaussian

kernel.

Alsaleh et al. in [38] proposed a mirror region segmentation method based on an au-

tomatic color matching threshold and a gradient-based edge detector. Their insight

is that specular reflections are common in endoscopic images and such reflections are

caused by the strong reflectivity of the mucus layer on the organs and the relatively

high intensity of the light source. This problem is a source of error that can affect

the performance of screening and any other system for polyp detection. Segmented

regions are recovered using a robust mask-specific Sobolev inpainting approach [39],

corresponding to interpolating missing pixels using surrounding information.

Akbari et al. [40] address the problem of detection and removal of reflections, in

order to improve the image quality of colonoscopy and facilitate the diagnosis pro-

cedure. They propose a novel reflection detection method based on both RGB and

HSV color spaces with an SVM classifier. They also introduce an inpainting method

based on patch selection around each reflection region. It consists of appropriate

selection of replacement patches and removal of blocking effects They also propose

an edge smoothing algorithm to enhance the quality of inpainted image.
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2.4 Dataset

One of the main problem in assessing the performances of polyp detection framework

is the lack of publicly available and representative dataset to perform experiments.

The most popular dataset available is the CVC-12k [41, 42]. It is composed by

only 11,954 images with ground truth masks related to only 18 different videos

(i.e., 18 patients). Most importantly, images of this dataset are very redundant

(more 10K images from only 18 videos) and have small resolution (384×288 pixels),

which means that some important features that could be useful during training to

set parameters of a deep learning based detector to distinguish polyps tissues from

normal mucosa could have been destroyed in the resizing. Other dataset in literature

in this context, such as CVC-356 and CVC-612 [27] are much smaller than CVC-12k

and have lesions which are clearly visible and mostly of them are centered in the

frames. In the CVC-612 all images were extracted from 31 different colonoscopy

videos which contain 31 unique polyps. All ground truths of polyp regions were

annotated by skilled video endoscopists. In all the previous mentioned datasets

there is low variability in terms of polyps type (i.e., flat vs others) and few polyps

between folds.

Due to the above limitations, for the experiments of this paper we have created a

novel dataset twenty times larger than CVC-12k (i.e., > 200k images), with images

sampled and labelled by colonoscopy experts considering more than 180 videos. In

our company’s dataset [43], the same polyp occurs in a video sequence for a large

number of consecutive frames. Of course, sequences which do not present any lesions

in a subset of frames also included.

The dataset has been labeled by experts with ground truth bounding boxes for each

polyp. The dataset contains more than 500 different polyps and about 200 videos,
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and allow us to learn a detector which may exploit temporal information. Among

the sources of variability of the polyps in the dataset are the type and occlusions.

The dataset has a high variability in terms of size of polyps.
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Chapter 3

Preparative Background

In this chapter we provide an overview of the key concepts and known state-of-the-

art methodologies used and explored over the course of the PhD years.

3.1 Data Sampling

Data sampling provides a collection of techniques that transform a training dataset

in order to balance or better balance the class distribution. Once balanced, standard

machine learning algorithms can be trained directly on the transformed dataset with-

out any modification. This allows the challenge of imbalanced classification, even

with severely imbalanced class distributions, to be addressed with a data prepa-

ration method (Fig. 3.1). Two approaches to make a balanced dataset out of an

imbalanced one are under-sampling and over-sampling. Undersampling methods

delete or select a subset of examples from the majority class. Under-sampling bal-

ances the dataset by reducing the size of the abundant class. This method is used

when quantity of data is sufficient. On the contrary, oversampling instead is used

when the quantity of data is insufficient. It tries to balance dataset by increasing

the size of rare samples. These methods duplicate examples in the minority class
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Figure 3.1: Representation of data sampling, which provides a set of techniques that
transform a training dataset in order to better balance or equilibrate the class distribution.

or synthesize new examples from the examples in the minority class. Some of the

more widely used and implemented oversampling methods include [44]: Random

Oversampling, Synthetic Minority Oversampling Technique (SMOTE) [45]. Some

of the more widely used and implemented undersampling methods include: Random

Undersampling [46], Condensed [47], edited nearest neighbors (ENN) rule [48], Near

Miss Undersampling (NMU) [49], One-Sided Selection (OSS) [50], Neighborhood

Cleaning Rule (NCR) [51]. A combination of over- and under-sampling is often

successful as well. Although an oversampling or undersampling method when used

alone on a training dataset can be effective, experiments have shown that applying

both types of techniques together can often result in better overall performance of

a model fit on the resulting transformed dataset. Some of the more widely used

and implemented combinations of data sampling methods include: SMOTE and

Random Undersampling, SMOTE and Tomek Links, SMOTE and Edited Nearest

Neighbors Rule.
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3.2 Clustering: K-Means

Clustering is the task of dividing the population or data points into a number of

groups such that data points in the same groups are more similar to other data points

in the same group than those in other groups. In simple words, the goal is to separate

groups with similar traits and assign them into clusters. There are different types of

clustering: exclusive clustering, overlapping clustering, hierarchical clustering. Each

methodology follows a different set of rules to define the ” similarity” between data

points. In fact, more than 100 clustering algorithms are known. But few algorithms

are commonly used, let’s examine them in detail:

• Connectivity models: as the name suggests, these models are based on the

notion that the closest data points in the data space show more similarity to

each other than the most distant data points. These models can follow two

approaches. In the first approach, they begin by classifying all data points

into separate clusters and then aggregating them as the distance decreases. In

the second approach, all data points are classified as a single cluster and then

partitioned as the distance increases. In addition, the choice of distance func-

tion is subjective. These models are very easy to interpret but lack scalability

for handling large data sets. Examples of these models are the hierarchical

clustering algorithm and its variants.

• Centroid models : these are iterative clustering algorithms in which the notion

of similarity is derived from the proximity of a data point to the centroid of

the clusters. The K-Means clustering algorithm is a popular algorithm that

falls into this category. In these models, the number of clusters required at

the end must be mentioned in advance, which makes it important to have
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prior knowledge of the dataset. These models are run iteratively to find local

optimums.

• Distribution models: these clustering models are based on the notion of how

likely it is that all data points in the cluster belong to the same distribution

(e.g.: normal, Gaussian). These models often suffer from overfitting. A pop-

ular example of these models is the expectation maximization algorithm that

uses multivariate normal distributions.

• Density models: these models search for areas of different density of data

points in the data space. It isolates various regions of different densities and

assigns data points within these regions in the same cluster. Popular examples

of density models are DBSCAN and OPTICS.

K-means clustering is a type of unsupervised learning, which is used when we

have unlabeled data (i.e., data without defined categories or groups). The goal of

this algorithm is to find groups in the data, with the number of groups represented

by the variable K (Fig. 3.2). The algorithm works iteratively to assign each data

point to one of K groups based on the features that are provided. Data points are

clustered based on feature similarity. There are two possible ways to choose the

optimal number of K clusters. 1) Elbow method: a curve is drawn between WSS

(within the sum of squares) and the number of clusters. (2) Purpose-based: run the

k-means clustering algorithm to get different clusters based on a variety of purposes.

It is possible to see how well they perform for that particular case. The K-means

algorithm works in the following way:
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• Initialization: randomly initialize two points called cluster centroids. The k-

means clustering algorithm is an iterative algorithm and iteratively follows the

next two steps.

• Cluster assignment: in this step, perform the calculation of the distance be-

tween the initial centroid points with other data points. It means to group the

data points which are closer to centriods.

• Move the centroid: calculate the mean values of the clusters created and the

new centriod values will these mean values and centroid is moved along the

graph.

• Optimization: again the values of euclidean distance is calculated from the

new centriods.

• Convergence: finally, this process has to be repeated until find a constant

value for centroids and the latest cluster will be considered as the final cluster

solution.

Summarizing:

0. Start with initial guesses for cluster centers (centroids)

1. For each data point, find closest cluster center (partitioning step). Write

xi = (xi1, ...xip): If centroids are m1,m2, ...mk, and partitions are c1, c2, ...ck,

then one can show that K-means converges to a local minimum of

K∑︂
k=1

∑︂
i∈ck

||xi −mk||2 Euclidean distance

(within cluster sum of squares)
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K-means

UNLABELLED DATA LABELLED CLUSTERS

X = centroid

X X

X

Figure 3.2: Representation of the k-means objective: determining internal clustering in
an unlabeled data set.

2. Replace each centroid by average of data points in its partition;

3. Iterate steps 1) and 2) until convergence. continue repeating steps 2 and 3

until the centroids do not change, i.e. a point of convergence is reached where

there are no more changes in the clusters.We say that the stop condition in

this case has been reached. Usually it is represented by one of the following

options: no data points change clusters; the sum of distances is reduced to a

minimum; a maximum number of iterations is reached.

3.3 YOLOv3: An incremental improvement

YOLOv3 (You Only Look Once, Version 3) [7] is a real-time object detection algo-

rithm that identifies specific objects in videos, live feeds, or images. It is the third

version of YOLO [52]. It presents better backbone classifier with respect to the

first generation and a higher average precision for small objects. The three different

scales for the object are obtained by downsampling the size of the input image by

32, 16, and 8, respectively. Also, YOLOv3 uses independent logistic classifiers for
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each class instead of a regular softmax layer. This architecture has 53 convolutional

layers and the first one input layer accepts a 416x416 image (as in Fig. 3.3). Ground

truth annotations for an image are given in text form, by reporting a line for each

object which include the centre position (x, y) of the bounding box and its size (i.e,

width and height). The input image is expected to be an RGB images, namely a

416× 416× 3 tensor.

The YOLOv3 algorithm first separates an image into a grid. Each grid cell predicts

some number of boundary boxes (sometimes referred to as anchor boxes) around

objects that score highly with the aforementioned predefined classes. Each bound-

ary box has a respective confidence score of how accurate it assumes that prediction

should be, and detects only one object per bounding box. The boundary boxes are

generated by clustering the dimensions of the ground truth boxes from the original

dataset to find the most common shapes and sizes. YOLOv3 is fast and accurate

in terms of mean average precision (mAP) [53, 54, 55] and intersection over union

(IOU) [53] values as well. It runs significantly faster than other detection methods

with comparable performance. YOLOv3 increased the AP for small objects by 13.3,

which is a massive advance from YOLOv2.

3.4 Attention Mechanism and Visual Attention

The attention mechanism is one of the most valuable breakthroughs in Deep Learn-

ing research in the last decade. A neural network is considered to be an effort to

mimic human brain actions in a simplified manner. Attention Mechanism is also an

attempt to implement the same action of selectively concentrating on a few relevant

things, while ignoring others in deep neural networks. The attention mechanism
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Figure 3.3: Structure detail of YOLOv3.It uses Darknet-53 as the backbone network and
uses three scale predictions. Image from [56].

emerged as an improvement over the encoder decoder-based neural machine trans-

lation system in natural language processing (NLP). Later, this mechanism, or its

variants, was used in other applications, including computer vision, speech process-

ing, etc. In short, there are two RNNs [57] /LSTMs [58]. One it is called the encoder

– this reads the input sentence and tries to make sense of it, before summarizing it.

It passes the summary (context vector) to the decoder which translates the input

sentence by just seeing it (Fig. 3.4). The main drawback of this approach is evi-

dent. If the encoder makes a bad summary, the translation will also be bad. And

indeed it has been observed that the encoder creates a bad summary when it tries

to understand longer sentences. It is called the long-range dependency problem of

RNN/LSTMs. RNNs cannot remember longer sentences and sequences due to the

vanishing/exploding gradient problem. It can remember the parts which it has just

seen. Although an LSTM is supposed to capture the long-range dependency better

than the RNN, it tends to become forgetful in specific cases. Another problem is

that there is no way to give more importance to some of the input words compared

to others while translating the sentence.



Chapter 3. Preparative Background 25

In addition to models that incorporate the concept of Attention Mechanism, there

are also procedures that allow the standard deep learning models to focus on spe-

cific features. This allows for a more robust model.Attention can be applied to any

kind of inputs, regardless of their shape. In the case of matrix-valued inputs, such

as images, we can talk about visual attention. Let I ∈ RH×W be an image and

g ∈ Rh×w an attention glimpse i.e. the result of applying an attention mechanism

to the image I.

An attention map is a scalar matrix representing the relative importance of layer

activations at different 2D spatial locations with respect to the target task, i.e., an

attention map is a grid of numbers that indicates what 2D locations are impor-

tant for a task. Important locations correspond to bigger numbers and are usually

depicted in red in a heat map. There are two different terms for the concept of

attention [59]:

• Soft attention uses “soft shading” to focus on regions. Soft attention can be

learned using good old backpropagation/gradient descent (the same methods

that are used to learn the weights of a neural network model.) Soft attention

maps typically contain decimals between 0 and 1.

• Hard attention uses image cropping to focus on regions. It cannot be trained

using gradient descent because there’s no derivative for the procedure “crop

the image here.” Techniques like REINFORCE [60] can be used to train hard

attention mechanisms. Hard attention maps consistent entirely of 0 or 1, and

nothing in-between; 1 corresponds to a pixel that is kept, and 0 corresponds

to a pixel that is cropped out.

There have been some promising works on the visual attention mechanism,

but through the development of algorithms applied to different fields from that
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addressed by us. Xu et al.[61] introduced an attention-based model that auto-

matically learns to describe the content of images; it can show the modality of

training in a deterministic manner using standard backpropagation techniques

and by stochastically maximizing a variational lower bound. The proposed

attention model in [62] not only outperforms average and max-pooling, but

it is useful to diagnostically visualize the importance of features at different

positions and scales. It introduced extra supervision to the output of fully

convolutional neural networks (FCNs) at each scale, and the work proposes

to jointly train the attention model and the multi-scale networks. In [63] the

authors proposed a novel convolutional neural network called SCA-CNN that

incorporates Spatial and channel-wise attention in a CNN. This model learns

to pay attention to every feature entry in the multi-layer 3D feature maps.

Chu et al. [64] suggested using a visual attention mechanism to automatically

learn and infer the contextual representations, driving the model to focus on

the region of interest. The approach is proposed for human pose estimation by

stacked hourglass networks to generate attention maps from features at multi-

ple resolutions with various semantics. The conditional random field (CRF) is

utilized to model the correlations among neighboring regions in the attention

map.

Attention mechanisms have been successfully applied in several contexts. The

first part of [65] is related to the introduction of the binary segmentation

masks to construct synthetic RGB-Mask pairs as inputs to be used for a mask-

guided contrastive attention model (MGCAM) to learn features separately for

the person body and background regions. In [66] it is proposed a network

composed of two main modules, namely a re-identification (Re-ID) module,
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Figure 3.4: Simple representation of traditional Encoder-Decoder architecture using
RNN/LSTM. Image from [68].

and a recurrent mask propagation (Re-MP) module. The Re-ID module helps

to build confident starting points in non-successive frames and retrieve miss-

ing segments generated by occlusions. Based on the segments provided by

the Re-ID module, the Re-MP module propagates their masks bidirectionally

from a recurrent neural network to the full video. Authors of [67] exposed

both the reference frame with annotation and the current frame with previous

mask estimation to a deep network. The network detects the target object by

matching the appearance at the reference frame and also tracks the previous

mask by referencing the previous target mask in the current frame. Differently

by previous works we exploit an attention mechanism for polyp detection based

on temporal redundancy.
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3.5 Conditional generative adversarial nets

Introduced in 2014 by University of Montreal PhD student Mehdi Mirza and Flickr

AI architect Simon Osindero, Conditional GAN[10] is a generative adversarial net-

work whose Generator and Discriminator (Fig. 3.5) are conditioned during training

by using some additional information. This auxiliary information could be, in the-

ory, anything, such as a class label, a set of tags, or even a written description.

Conditional generative adversarial network, or cGAN for short, is a type of GAN

that involves the conditional generation of images by a generator model. GANs rely

on a generator that learns to generate new images, and a discriminator that learns

to distinguish synthetic images from real images. In cGANs, a conditional setting is

applied, meaning that both the generator and discriminator are conditioned on some

sort of auxiliary information (such as class labels or data) from other modalities. As

a result, the ideal model can learn multi-modal mapping from inputs to outputs by

being fed with different contextual information. Even the random distribution that

the fake images follow will have some patter; it is possible to control the output of

the generator at test time by giving the label for the image you want to generate.

This type of network works in the following way:

1. The generator takes a random noise and a one-shot encoded class label as

input. And it produces a false image of a particular class.

2. The discriminator takes an image with one-hot labels added as depth to the

image (channels), i.e. for an image of 28 * 28 *1 size and a one-hot vector of

size n, the image size will be 28 * 28 * (n+1).

3. The discriminator produces whether the image belongs to that class or not,

i.e. real or false.
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Figure 3.5: Conditional adversarial net. Image from [10].

3.6 Edgeconnect:Generative image inpainting with

adversarial edge learning

In [69] the authors propose a new approach for image inpainting. This network

includes an edge generator followed by an image completion network. The edge gen-

erator is capable of hallucinating edges in missing regions given edges and grayscale

pixel intensities of the rest of the image; so it hallucinates the edges of the missing

region (either regular or irregular) of the image. The image completion network com-

bines edges in the missing regions with color and texture information of the rest of

the image to fill the missing regions. They also propose an end-to-end trainable net-

work that combines edge generation and image completion to fill in missing regions
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Figure 3.6: Incomplete grayscale image and edge map, and mask are the inputs of G1 to
predict the full edge map. Predicted edge map and incomplete color image are passed to
G2 to perform the inpainting task. Image from [69].

showing fine details. Specifically, in their methodology includes: a first network

called Edge Generator, the Inpaint Network and another called Image Completion

Network. Both stages follow an adversarial model, i.e. each stage consists of a

generator/discriminator pair (Fig. 3.6).

The generators consist of encoders that down-sample twice, followed by eight

residual blocks [70] and decoders that upsample images back to the original size.

Dilated convolutions with a dilation factor of two are used instead of regular convo-

lutions in the residual layers, resulting in a receptive field of 205 at the final residual

block. For discriminators, they use a 70×70 PatchGAN [71, 34] architecture. They

also use instance normalization [72] acrossall layers of the network.
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Figure 3.7: Region Proposal Network (RPN) and some example detections using RPN
proposals on PASCAL VOC 2007 test (Image from [73]).

3.7 Faster R-CNN: Towards Real-Time Object De-

tection with Region Proposal Networks (Faster

RCNN)

One of the most popular object detection methods is the R-CNN series, developed

by Ross Girshick et al in 2014, improved upon with Fast R-CNN [74] and then finally

with Faster R-CNN [73]. The differentiating approach that makes Faster R-CNN

better and faster is the introduction of Region Proposal Network (RPN). RPN is a

fully convolutional network, trained end-to-end, that simultaneously predicts object

boundaries and object scores at each detection.

A Faster R-CNN object detection network [73] is composed of a feature extraction

network which is typically a pretrained CNN, similar to what we had used for its

predecessor.

This is then followed by two subnetworks which are trainable. The first is a

Region Proposal Network (RPN), which is, as its name suggests, used to generate

object proposals and the second is used to predict the actual class of the object. So

the primary differentiator for Faster R-CNN is the RPN which is inserted after the
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last convolutional layer. This is trained to produce region proposals directly without

the need for any external mechanism like Selective Search. After this we use ROI

pooling and an upstream classifier and bounding box regressor similar to Fast R-

CNN [74]. As the feature extraction, ROI pooling and classifier are the same as the

previous versions. The goal of RPN is to output a set of proposals, each of which has

a score of its probability of being an object and also the class/label of the object.

RPN can take any sized input to achieve this task. These proposals are further

refined by feeding to 2 sibling fully connected layers-one for bounding box regression

and the other for box classification i.e is the object foreground or background. The

RPN that generates the proposals slide a small network over the output of the

last layer of the feature map. This network uses an nxn spatial window as input

from the feature map. Each sliding window is mapped to a lower dimensional

feature.The position of the sliding window provides localization information with

reference to the image while the regression provides finer localization information.

Anchor boxes are some of the most important concepts in Faster R-CNN. These are

responsible for providing a predefined set of bounding boxes of different sizes and

ratios that are used for reference when first predicting object locations for the RPN.

The original implementation uses 3 scales and 3 aspect ratios, which means k=9.

If the final feature map from feature extraction layer has width W and height H ,

then the total number of anchors generated will be W*H*k.Anchor boxes at each

spatial location, mark an object as foreground or background depending on its IOU

threshold with the ground truth. All the anchors are placed in a mini-batch and

trained using softmax cross entropy to learn the classification loss and smooth L1

loss for regression. NMS is the second stage of filtering used to get rid of overlapping

boxes. In Figure 3.7 the architecture of Region Proposal Network (RPN) and some
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example detections using RPN proposals on PASCAL VOC 2007 test.

3.8 Focal loss for dense object detection (Reti-

naNet)

Lin et al. [75] highlight that the one-stage detectors that are applied over a regu-

lar, dense sampling of possible object locations have the potential to be faster and

simpler, but have trailed the accuracy of two-stage detectors thus far. So they inves-

tigate why this is the case. They discover that the extreme foreground-background

class imbalance encountered during training of dense detectors is the central cause.

They introduce to address this class imbalance by reshaping the standard cross en-

tropy loss such that it down-weights the loss assigned to well-classified examples.

Their novel Focal Loss focuses training on a sparse set of hard examples and prevents

the vast number of easy negatives from overwhelming the detector during training.

They design and train a simple dense detector that call RetinaNet which uses a Fea-

ture Pyramid Network(FPN) [76] with Resnet [70] Backbone. FPN involves adding

top level feature maps with the feature maps below them before making predic-

tions. Adding a top level feature map with a feature map below usually involves

upscaling the top level map, dimensionality matching of the map below using a 1x1

conv and performing element wise addition of both. One more important aspect is

the initialization of model probabilities for foreground class before start of training.

All positive anchors are assigned a prior probability of 0.01 so that they contribute

more to the loss and to make sure large number of negative examples do not hamper

training during the initial stage.

There are four major components of a RetinaNet model architecture (Fig. 3.8):
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Figure 3.8: The one-stage RetinaNet network architecture uses a Feature Pyramid Net-
work (FPN) backbone on top of a feedforward ResNet architecture (a) to generate a rich,
multi-scale convolutional feature pyramid (b). To this backbone RetinaNet attaches two
subnetworks, one for classifying anchor boxes (c) and one for regressing from anchor boxes
to ground-truth object boxes (d). Image from [75].

• Bottom-up Pathway - The backbone network (e.g. ResNet) which calculates

the feature maps at different scales, irrespective of the input image size or the

backbone.

• Top-down pathway and Lateral connections - The top down pathway upsam-

ples the spatially coarser feature maps from higher pyramid levels, and the

lateral connections merge the top-down layers and the bottom-up layers with

the same spatial size.

• Classification subnetwork - It predicts the probability of an object being present

at each spatial location for each anchor box and object class.

• Regression subnetwork - It’s regresses the offset for the bounding boxes from

the anchor boxes for each ground-truth object.
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3.9 EfficientDet: Scalable and Efficient Object De-

tection

EfficientDet [77] is an object detector which achieves state-of-the-art accuracy while

being up to 9x smaller and using significantly less computation compared to prior

state-of-the-art detectors. It’s based on the traditional idea of running the algorithm

on multiple resolutions of the same image hoping to capture both small and large

scale phenomena. EfficientDet detectors are single-shot detectors much like SSD [78]

and RetinaNet. Here, however instead of using the image at different resolutions

authors use feature maps at different resolutions. The paper makes two major

modifications to EfficientNet, namely BiFPN (or Weighted Bi-directional Feature

Pyramid Network) and a new compound scaling method. EfficientDet uses the

same backbone as EfficientNet but adds a bi directional feature pyramid network

to help in multi scale feature fusion. BiFPN has 5 modifications over a normal

FPN (Fig. 3.9): (1) Instead of only top-down feature, it adds another bottom-up

feature fusion branch. (2) It has skip connections from the initial feature map to the

fused feature map. (3)Nodes with only one input are removed, cause they do not do

much fusion as other nodes. (4) The entire module is repeated multiple times. (5)

Features are not summed directly, instead a weighted average is used hoping different

resolution feature maps contribute to the fusion at different capacity. Unbounded

weights bring problems in backprop, so we need to normalise it. They tried applying

softmax to the weight values which worked but slowed down training. So a simple

average after relu activation is used to normalise the weights. The need for a new

scaling technique comes from the fact that there is the BiFPN as an additional

module in the network and that too can be scaled. But there’s no heuristic given
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Figure 3.9: EfficientDet architecture. EfficientDet uses EfficientNet as the backbone net-
work and a newly proposed BiFPN feature network. Image from [80].

about the scaling technique. The backbone networks are ImageNet[79] pretrained

EfficientNets[80].
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Chapter 4

Hierarchical Fine Tuning and

Clustering

Ideally, a benchmark dataset should contains thousand of images related to a very

high number of different polyps. A large dataset is useful also to properly train

polyps detectors based on deep learning architectures. Despite the advancement

ofthe state-of-the-art in the context of objects detection, methods suffer in recognis-

ing small polyps, which are the most importantto detect since are the one appearing

at the beginning of thelesion progression.

We point out that organizing the training of a polyp detector in a hierarchical way

in order to consider variabilities related to the visual content of the colonoscopy im-

ages, as well as the one related to the size of polyps, help to improve the detection

performances by reducing the false negatives (i.e, the number of lesions not detected)

especially for small size lesions (i.e., the most important to detect especially in early

stage of the colon cancer). To perform our study, we have collected and labelled a

novel real large-scale dataset which is at least twenty times larger than the datasets

currently available in literature. To demonstrate that a hierarchical organization

of the training procedure can help to improve the results of an object detector, we
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have used the popular YOLOv3 detector [52, 7] as baseline.

Experiments point out that, considering the proposed hierarchical organization

of training, polyps can be detected with a per-polyp precision (recall) of 99.46%

(92.03%) and a per-frame precision (recall) of 95.06% (66.95%).

4.1 Methods

A standard way to proceed in building a polyp detector is to choose a deep learning

architecture and train it on a labeled dataset to regress the bounding box coordinates

related to the polyps belonging to the image under consideration. Considering

that the tissues surrounding polyps (i.e., normal mucosa) have a huge variability

in appearance making difficult the detection of polyps especially when very small

and between folds, as first variant we considered to fine-tune the polyp detector after

partitioning the dataset with respect to visual content. In the first stage a detector

D is trained on the overall training set until convergence. After this first training,

the backbone of the detector can be used as method to extract feature by removing

the last layers of the network dedicated to the regression of the bounding box. In this

way, all the training samples can been represented with a feature vectors containing

information about the visual content. This new input space can be clustered to

obtain K modalities and considering the original image samples belonging to each

modality the detector D can be fine-tuned to obtain K new detectors D1, ..., DK

specialised on each modality. This procedure of training is hence composed by a

hierarchy of one level.

Another hierarchical way to specialise the detector is to consider the known size

of the polyps belonging to the training set. Also in this case, the samples of the
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training set can be partitioned in groups containing small, medium and large polyps.

This can be done by simply asking an expert to choose two threshold which define

the three different size. Hence, a second hierarchy with one level can be obtained

considering the detector D trained on the overall dataset and specialising it by fine-

tuning with respect to the three groups. This procedure will give three new detectors

Ds, Dm, Dl.

The third hierarchical way we have considered to fine-tune the object detector

is the one in which both modalities visual content and size of polyps are exploited.

To this aim after training a detector D we have performed a clustering on the

obtained visual features to obtain K groups. Each group of samples belonging to

each modality have been further partitioned considering the dimension of polyps.

Hence this procedure produce K ∗ 3 detectors D1,s, D1,m, D1,l,..., DK,s, DK,m, DK,l

in a two level hierarchy.

In sum, starting from a detector D trained on the overall dataset, we have

considered three possible hierarchical variants:

1. a one level hierarchy where the detector D is trained on the overal dataset and

then fine-tuned considering different appearance modalities;

2. a one level hierarchy where the detector D is further fine-tuned considering

the dimension of polyps;

3. a two level hierarchy where the detector D is fine-tuned considering both

appearance and size variabilities.

To perform inference after fine-tuning with one of the considered hierarchies,

a new pattern is feed to each specialised network and the results are combined to

obtain the final detection (i.e., the bounding box of all networks are considered).
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Figure 4.1: Training phase for the two level hierarchy.

Figures 4.1 and 4.2 illustrate the two level hierarchy considered in our experi-

ments for training and test phases. As baseline detector D we have used the popular

YOLOv3 [7], whereas the K-means clustering has been employed to built the modal-

ities related to the features extracted considering visual content. Among the value of

K which have been considered, we report results obtained with K = 3 because have

obtained the best performances. The three groups corresponding to the modal-

ity related to the size of polyps have been produced considering the feedback of

colonoscopy experts.
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Table 4.1: Cross-Dataset evaluation comparison.

Train Set Test Set Prec Rec F1

CVC-612 CVC-612 83.22 59.90 69.66
CVC-12k CVC-612 92.62 66.67 77.53

Our Dataset CVC-612 99.35 74.40 85.08

CVC-612 CVC-12k 71.78 27.51 39.77
CVC-12k CVC-12k 86.64 31.50 46.21

Our Dataset CVC-12k 94.46 74.76 83.46

CVC-612 Our Dataset 21.16 02.99 05.24
CVC-12k Our Dataset 52.93 15.82 24.36

Our Dataset Our Dataset 95.02 64.53 76.86

4.2 Experimental Settings and Results

One of the main problem in assessing the performances of polyp detection framework

is the lack of publicly available and representative dataset to perform experiments.

The most popular dataset available is the CVC-12k [41, 42]. It is composed by only

11,954 images with ground truth masks related to only 18 different videos (i.e., 18

patients). Most important, images of this dataset are very redundant (more 10K

images from only 18 videos) and have small resolution (384x288 pixels), which means

that some important features that could be useful during training to set parameters

of a deep learning based detector to distinguish polyps tissues from normal mucosa

could have been destroyed in the resizing. Other dataset in literature in this context,

such as CVC-356 and CVC-612 [27] are much smaller than CVC-12k and have lesions

which are clearly visible and mostly of them are centered in the frames. In all the

previous mentioned datasets there is low variability in terms of polyps type (i.e.,

flat vs others) and few polyps between folds.

Due to the above limitations, for the experiments of this paper we have created a

novel dataset twenty times larger than CVC-12k (i.e., > 200K images), with images
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Figure 4.2: Test phase for the two level hierarchy.

sampled and labelled by colonoscopy experts considering more than 180 videos. In

the considered dataset are represented more than 500 different polyps of different

type (e.g. flat vs raised polyps), size, positions in the image and also presenting

occlusions (polyps between folds).

To evaluate the quality of our dataset we have performed a cross-dataset polyp

detection evaluation. Specifically, we have partitioned randomly our dataset, as well

as the CVC-612 and CVC-12k datasets obtaining for each of them training (70%)

and test (30%) sets1. We have then trained YOLOv3 with the training set obtained

from one of the three considered datasets (e.g., CVC-12k) and we have tested it on

the test sets related to all the datasets (i.e, CVC-12k, CVC-612 and our dataset).

The results with respect to these nine cross-dataset experiments are reported in

1CVC-356 has been excluded by this test because it is too small.



Chapter 4. Hierarchical Fine Tuning and Clustering 43

Table 4.1 considering classic evaluation measures used in the field on per-frame de-

tection bases: prevision (Prec), recall (Rec), F1 score. The best results with respect

to each test set are reported in bold, whereas second best results are underlined.

It is clear that the proposed dataset is more challenging than CVC-12K (compare

precision and recall results obtained training with our dataset and testing on all the

other datasets) and that already training with our dataset, rather than CVC-12K,

and testing on CVC-12K it is possible to obtain an improvement on overall measures

with a big margin (more than 7% in precision and more than 40% on recall - see

rows five and six in Table 4.1). There is also a clear evidence that an appropriate

and realistic dataset can help to better train a deep learning based detector. Indeed,

in all cases, the best results are obtained training the considered baseline detector

with our dataset. Specifically, comparing with respect to the second best results

(i.e., the once obtained training with CVC-12K) there is an improvement of the

precision of about 7% on CVC-612 test set, of about 7% on the CVC-12K test set,

and of about 42% on our test set. Recall improves as well of about 8%, 43%, and

49% considering the CVC-612, CVC-12K and our test sets respectively. It is worth

noting that the performances improve with a considerable margin also with respect

to F1 score in all cases. For example, when the test set related to our dataset is

considered in the experiments, there is an improvement of more than 50% for the F1

score with respect to the second best. Taking into account this, we have continued

our experimentation only considering our dataset.

Each further experiment involving our dataset has been repeated three times

on three fixed randomly obtained partitions forming training and test sets. Ex-

periments have been evaluated with the aforementioned measures considering both

per-frame and per-polyp detection. Indeed, despite the per-frame measures consider



Chapter 4. Hierarchical Fine Tuning and Clustering 44

Table 4.2: Per-frame comparison.

Hierarchies Prec Rec F1

D 95.02 64.53 76.86
D1, ..., DK 93.75 65.83 77.34
Ds, Dm, Dl 95.06 66.95 78.56

D1,s, D1,m, D1,l, ..., DK,s, DK,m, DK,l 94.99 66.60 78.34

the detections on per-frame bases, per-polyps measures consider the case of polyps

which are detected at least in one frame of the colonoscopy. The per-polyp measures

are also important because in real clinical systems it is fundamental to perform the

detection of each polyp. This means that polyps have to be detected at least in one

frame in which they appear during a colonoscopy screening. This is very relevant

in clinical systems in order to notify polyps to the experts at least in one frame

where they appear in order they can perform a more accurate check. Differently,

the per-frame measure do not consider the case in which a polyp is missed in all the

frames of the colonoscopy.

The results of each experiment have been obtained by averaging the results over

the three partitions of the dataset. We have performed each training-test partition

such that the distribution over the size of the polyp is as similar in both training and

test. To do so, each training-test split has been obtained performing 100 random

split of our videos in two separate subset to guarantee that an image of a video

belong only to the training or the test set. Each of these 100 random training-

test split has been performed in order to obtain a training set with a number of

images of about 70% and a test set of about 30%. For each of the 100 random

training-test split we have computed the distribution of the size of the polyps for

both training and test sets and the histogram intersection between each of the two

obtained distributions and the distribution of the overall dataset. The intersection
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values have been summed and stored as similarity score for each random training-

test split of videos. The final training and test sets used for each experiments have

been hence obtained considering the random spit with the highest similarity score.

This splitting procedure was done to ensure that images of a video are considered

only for training or testing purpose and to be sure that both training and testing

sets contain high variability with respect to the size of the lesions. The results

obtained with the different hierarchical variants of the considered object detector

(see previous section) are reported in Table 4.2 and Table 4.3 considering per-frame

and per-polyps evaluation respectively.

Results on the per-frame basis point out that in all cases the hierarchies help

to improve the recall measure with respect to the baseline detector D, whereas

the precision has no significant drop. Also F1 measure is in favour of this. It is

worth noting that exploiting one or two level hierarchy an improvement is always

observed considering the per-polyps basis results. This means that the hierarchical

frameworks were able to detect polyps missed from the baseline detector D, and

this has an important clinical impact. In general results point out that the one layer

hierarchy considering size is to be preferred and that a combination of visual and

size modalities in a two layer hierarchy does not further improve the results. Last

but not least, a qualitative assessment of the polyps detected in the hierarchical

frameworks has pointed out that the recovered detections (which are missed in the

baseline) are related to small polyps, which usually are the one at the early stage of

the disease and very difficult to be detected.
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Table 4.3: Per-polyps comparison.

Hierarchies Prec Rec F1

D 97.84 91.91 94.78
D1, ..., DK 98.40 92.96 95.60
Ds, Dm, Dl 99.46 92.03 95.60

D1,s, D1,m, D1,l, ..., DK,s, DK,m, DK,l 99.46 92.03 95.60

4.3 Discussion

This chapter considered the problem of polyps detection in colonoscopy images. The

main problem in this domain is the identification of polyps at their early stage, i.e.,

polyps with very small size. To improve the ability of a polyps detector we have

considered to look at the visual and size variabilities by performing a hierarchical

training procedure. The experiments on a novel real large dataset confirm that

a hierarchical framework can improve the results and more specifically can obtain

better performances on lesions of small size.
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Chapter 5

On the Exploitation of Temporal

Redundancy to Improve Polyp

Detection in Colonoscopy

In the previous study we proposed a model to detect a lesion in a static image,

namely no temporal information were considered in the decision process. Differently

on our previous work, here we explore the possibility to exploit temporal redundancy

to improve the detection performance. The challenge in detecting polyps is due to

the polyp’s morphology and size, and these fall into false-negative. Indeed, polyps

may exhibit high variability in shapes (e.g., depressed, flat, pedunculated, etc...).

Moreover, the water injected from the endoscope results in artifacts which impede

the detection, and the lubricating mucus causes light artifacts due its glossiness.

Our insight to improve the detector capability is to introduce a sort of attention

mechanism which exploits the previous detection to suggest our system to focus in a

specific region. This mechanism is based on the realistic assumption which adjacent

frames of a videos are similar, hence if a polyp is detected in a certain frame, it

could be found in the next one by searching around the same position.
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In a nutshell, we exploit temporal properties of video sequences to improve polyps

detection. This requires the use of colonoscopies video sequences obtained from real

scenarios and labeled by experts. Many works on polyp detection use state-of-art

datasets which are small and present low variability. Our contribution consists of

an attention mechanism realized with a binary mask which is fed to the detector

together with an RGB frame. The binary mask points out the last-known polyp’s

position in order to give a prior region to easily re-identify a polyp we have already

found in the previous frame (Fig. 5.1). Experiments, conducted using a modified

version of YOLOv3 [7] to take into account the attention mask, prove the validity

of the proposed approach which shows better Recall when the attention mechanism

is used. It is important to note that we conduct experiments on our dataset only,

since state-of-art ones do not include realistic video sequences, which are required to

successfully employ the proposed approach. Our dataset presents a high variability

in polyps texture and morphology, as well as in mucosa appearance. Even with deep-

learning techniques trained on a big dataset we notice that many polyps are hard

to detect. Indeed, using a standard detection approach, in which we only observe

the current frame, we get low Recall and high Precision. The reason is precisely

linked to the characteristics of the polyps, which cause confusion in detection and

fall into false negatives. To address this problem, we propose a mask-based attention

mechanism to ensure that the employed detector focuses on particular regions of the

image in order to reduce misdetection rate. In summary, we exploit an attention

mechanism for polyp detection based on temporal redundancy. We train the object

detector using the current frame and a binary mask which specifies the last known

position of the lesion to push the network focus on specific regions of the frame with

the aim of reducing false negative rate.
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Figure 5.1: Attention Mechanism. The procedure for creating input images of each video
sequence by the combination of the original frame (left) and Mask related to the previous
frame (right).

5.1 Methods

The goal of our method is to perform polyp detection by exploiting temporal redun-

dancy to take advantage of detection masks related to previous frames. Hence, we

train an object detector using the current frame together with the mask relating to

the position (with the coordinates of the bounding box enclosing the position of the

polyp in the frame) of the polyps in the previous frame when this last information

is available. We then exploit the coordinates of the bounding-box enclosing the po-

sition of the polyp in the previous frame.

Therefore, our contribution focuses on modelling an object detector which optimally

uses information about previous polyp’s position in a video sequence. It allows to

build a sort of lesion tracker which exploits the temporal properties of the lesion

during the whole screening process. In the next sections we detail the proposed at-

tention mechanism to train a network which may exploit previous detection results

through binary masks. Then, we provide a short description of YOLOv3, the CNN

architecture used as detector to validate our method. We also show results demon-

strating improved performance by attending to false negatives, which are caused by
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polyps that are located at the edges of the frame or confused with the probe light

or confused with the mucosa due to the very similar texture.

5.1.1 Attention Mechanism by Mask

Let be Fj the RGB j− th frame in a colonoscopy video and let be M(F ) a function

to assign a binary mask to the ground truth bounding box of the frame F in which

1 indicates a pixel inside a bounding box and 0 a pixel outside it. We propose to

train a detector by providing the input pair (Fj, M(Fj−1)) and the bounding box

annotation of the frame Fj (Fig. 5.2). We train the network by including knowledge

on the previous polyps’ position. Hence, the input is a H ×W × 4 tensor obtained

by merging an RGB image related to Fj and the mask M(Fj−1). In this paper we

employ YOLOv3 [7] as detector, and we change the first layer in order to input a

H ×W × 4 tensor in place of a standard RGB image. However, as many frames do

not present polyps (negative frames), they drive masks where each element in the

mask is 0. For the sake of readability we indicate such mask with the term 0̄.

To make the network robust, and able to deal even with frame preceded by a

negative one, we also train the network with all the pairs (Fj, 0̄). Hence, frames

which present polyps in their previous one, are fed in the network twice, the first

time with the proper mask and the second time with 0̄ mask.

Finally, we assume that the first frame of a sequence is always preceded by a

negative frame.

5.1.2 The YOLOv3

In this work we choose YOLOv3 architecture as polyps detector, which is the third

version of YOLO [52]. It presents better backbone classifier with respect to the
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Figure 5.2: Construction of the input for the training. Given a frame Fj , it is combined
with the binary mask M(Fj−1). The same Fj is also combined with the mask 0̄ in order
to train the network even when no polyps occurs in the previous frame. The input data
of the object detector is a four-channel signal.

first generation and a higher average precision for small objects. The three different

scales for the object are obtained by downsampling the size of the input image by 32,

16, and 8, respectively. Also, YOLOv3 uses independent logistic classifiers for each

class instead of a regular softmax layer. This architecture has 53 convolutional layers

and the first one input layer accepts a 416× 416 image. Ground truth annotations

for an image are given in text form, by reporting a line for each object which include

the centre position (x, y) of the bounding box and its size (i.e, width and height).

The input image is expected to be an RGB images, namely a 416× 416× 3 tensor.

However, we change the input layer to make YOLOv3 able to accept 416× 416× 4

tensor, in which the new channel includes the binary attention mask. More details

can be found in 3.3.
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5.2 Experimental Settings

In this section, we evaluate polyp detection performance to prove the attention

mechanism effectively decreases the number of false negatives. Note that in the

considered application context false negative have to be reduced in order to reduce

the risk for the patient under consideration in the colonoscopy screening. The ex-

periments are conducted on our dataset made up entirely of real video sequences

and labeled by colonoscopy experts. For the performance evaluation, the dataset is

split into 70% for the train set and 30% for the test set. We remark our dataset

includes over 100 videos and exhibits a high variability in term of scale, illumination,

polyp’s shape and texture. Some frames do not present any lesion in order to train

the model under multiple scenarios.

5.2.1 Dataset

We used our dataset [43]. Our contribution is based on exploiting the information

of colonoscopy video sequences, which are nothing more than temporal frames.

The dataset has a high variability in terms of size of polyps (Fig. 5.4). Our idea is

not applicable with the datasets available in literature [27], [41], [42] as they often

have short sequences with a low frame-rate. On the other hand, our detector is used

to train on realistic sequences and can take advantage of the temporal information.

More details about our dataset is found in Section 2.4.
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Figure 5.3: Example of our video sequence.

Figure 5.4: Variability of the polyps and mucosa in the dataset.

5.2.2 Evaluation Metrics

Performances are evaluated by popular metrics: Precision (Prec), Recall (Rec) and

F1-score (F1) [81]. Specifically, correctly identified polyps are considered True Pos-

itives (TP). If no polyps are found on an image without a lesion, the result is

considered True Negative (TN). A False Positive (FP) occurs when a polyp is in-

correctly detected on a normal mucosa. Finally, a False Negative detection (FN)

occurs when a polyps which appears in a frame is not detected.

5.2.3 Experiments

The experiments are carried out taking into account different cases. We test our

approach on 30% of the dataset, whereas 70% of frames are used for training. The

split is performed such that all frames of a video belong to only one of the two (i.e.,
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training and test set do not contain frames of the same video). We consider the

following tests:

• Baseline test: to evaluate the performance of the model D trained with no

attention mask. Hence, the model is trained by input the RGB frame only, as

in a standard detector;

• Temporal test: to evaluate the performance achieved by training the model

DM which uses the attention mask. Detection of the DM model are combined

with the model D for the final detection.

The baseline test is useful for comparing a standard detection approach with respect

to the proposed framework. The second test highlights the benefits of the proposed

approach, in which detection result at frame j−1 is given as input fot the detection

at frame j. For the final detection, we combine the two different detectors, namely

the the one trained with RGB only (D) and the one trained with RGB and attention

mask (DM). Fig. 5.5 shows a flowchart which describes how the model D and DM

are combined: the input frame Fj is fed in the system for the inference, then we

check the mask related to the previous detection M̃(Fj−1). If no polyps are detected

in the previous frame, no attention mask is provided (M̃(Fj−1) = 0̄) and the RGB

frame Fj is fed in the standard detector D. Otherwise, if the system detects a polyps

in the previous frame Fj−1, we concatenate the binary mask M̃(Fj−1) and the RGB

frame Fj and input them to the model DM . The process is repeated over time

along the overall video sequences. This test is performed by using as attention mask

the detection result of previous steps. This means if the system results in a false

positive or a false negative, a tricky attention mask could be input in the next step.
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To check the performance with an oracle which know always the polyp’s position

at the previous step, we perform a third test in which the inferred masks M̃ are

replaced with the ground truth mask M . This test gives us the best performance

which our strategy could achieve.

D

DM

෩𝑀 𝐹𝑗−1 ≠ ത0?Input frame 𝐹𝑗

Yes

No
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Figure 5.5: Combination of the two detectors. The sample Fj is given to the system and
the attention mask M̃(Fj−1) is checked. If it is available (M̃(Fj−1) = 0̄), Fj and the
related mask are concatenated and input into the model DM . Else, if no attention mask
is available, only the frame Fj is fed to the standard model D.

5.3 Results

In this section we discuss experimental results achieved with the proposed frame-

work. In Table 5.1 we report a quantitative evaluation in term of Precision (Prec),

Recall (Rec) and F1-score (F1). The comparison between the standard detector (D)

and the proposed one (DM + D), exhibits a Recall improvement of 4.63%, which
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Table 5.1: Evaluation comparison

Detector Prec Rec F1

D 95.02 64.53 76.86
D + DM 95.54 69.16 80.21

D + DM with GT 93.60 87.67 90.53

means we decrease false negative rate. In few words, the proposed attention mech-

anism, which exploits temporal redundancy, reduces the misdetection of polyps.

In addition, the proposed approach achieves a sligth improvement even on Precision

(+0.52%), which means it decreases the false positive rate (normal mucosa incor-

rectly identified as lesion). Of course, this led a raise of F1-score (+3.35%) as it

combines Recall and Precision.

Finally, we report results obtained in the ideal scenario in which the attention mask

is always correctly built. In this case the system always know the polyp’s position

in the previous frame and uses it the perform the detection at the current frame.

With this oracle the Recall improvement is reasonably higher (+23.14%). Despite

experiments were conducted with YOLOv3, it is possible to use any object detector

together with the proposed attention mechanism.

Different error analysis are carried out to verify the usefulness of our contribution

and to understand which frames can be recovered thanks the proposed strategy. The

analysis focuses on false negatives obtained from the experiments carried out on our

dataset with the base detector YOLOv3. Initially, video sequences with the highest

percentage of error are analyzed, and then we pay attention on the false negatives.

Specifically, we focus on the misdetection of the model D and we found that about

11% of false negative presented a true positive in the previous frame. This means

our method improves the Recall by mainly operating on such false negative frames,

which are recovered by exploiting the attention mask which comes from the polyps
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of the previous frame correctly detected.

5.4 Discussion

In this chapter, we have proposed a simple attention mechanism to be integrated

with an object detector to improve the performance of polyp detection. The main

idea is to exploit temporal redundancy and improve the detection by using previ-

ously detected polyps. Experimental results, conducted by using YOLOv3 detector,

confirm that the proposed approach we obtain an improvement of 4.63% in Recall,

by decreasing the misdetection. This approach can be used in a real context in

real-time colonoscopies since the temporal redundancy of the data is exploited.
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Chapter 6

Inpainting Based Data

Augmentationto Improve Polyp

Detection in Colonoscopy

In this chapter we present a further investigation to improve polyp detection per-

formance.

The need to have large, variable and well-labeled dataset led the researchers

in the field to develop data augmentation approach to perform a proper training

by avoiding both underfitting and overfitting. The most common and naive data

augmentation procedure for images, consists of applying different affine transforma-

tions to have the same frame rotated, scaled, translated, or flipped. However, this

kind of augmentation slightly affect the training performance since just introduces

a minor geometric variability of the point of a polyp. A proper synthetic data gen-

erator should mimic the original data samples by introducing a higher variability

and not just increasing the data samples numerosity. To this aim, deep learning

have recently been employed in synthetic image generation. Specifically, Generative

Adversarial Networks (GANs) [9] and conditional GANs [10] have been adopted to
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address the problem of smart augmentation approaches and, recently, many medical

imaging analyses and applications have been reported to successfully use GAN. Such

applications include medical image segmentation, classification, inpainting, and so

on. Also, for automatic polyps detection, recent literature works have adopted con-

ditional GANs by exploiting the mucosa and polyp edges to generate more realistic

synthetic images [82]. Inspired by such works, we address the problem of data aug-

mentation for colonoscopy dataset in order to train better detection models than

the ones obtained by only using the original annotated data.

However, differently from previous researches [82], we propose to exploit inpainting

to generate synthetic polyps images through a deep neural network [69]. Specifi-

cally, we exploit the original label masks and also the boundary between the polyps

and the healthy mucosa to train an augmentation network able to generate new

photorealistic lesions. Hence, we improve polyps detection performance by training

a detector with an augmented datasets obtained with the proposed augmentation

framework. We prove that the employed inpainting network allows to smartly aug-

ment the polyps images in order to guarantee an improvement in the detectors

performance thanks to a more effective training phase. In order to evaluate our

framework, we adopt different publicly available datasets and we also perform cross-

dataset evaluation by training the detector using datasets different from the ones

employed for testing. We also prove the validity of our proposal by evaluating it

using different state-of-art detectors.
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6.1 Proposed Method

We introduce the literature methods and data we employed in our proposal, i.e. the

inpainting network [69], the datasets and the detectors using for testing. Secondly,

we describe how we use the inpainting network for synthetic polyp images generation.

6.1.1 Edgeconnect for Data Generation

Nazeri et al. [69] propose a new approach for image inpainting, which includes an

edge generator followed by an image completion network (Fig. 6.1).

Their model is trained on the irregular mask dataset, while to test the model, they

test separately on the edge model, then the inpaint model, and finally the joint

model. The mask shape covers the entire region of the mask in the input image.

Although they point out, however, that the models can be merged with a joint

model, they also say that it is possible to train the parts separately and use them

that way. They propose such neural network for image editing purposes, such as

object removal and scene generation. To train the inpainting Network generator,

they generate the training labels (i.e., edge maps) using the Canny edge detector[83].

The sensitivity of the Canny edge detector is controlled by the standard deviation

of the Gaussian smoothing filter. For more details, view the Section 3.6.

6.1.2 Detectors

Here we report a short description of Faster R-CNN [73], RetinaNet[75] and the

EfficientDet[77] that we use as detectors to validate our contribution.

Faster R-CNN. This architecture is composed of two modules: a region proposal

network (RPN) to select candidate object regions and the detector Fast R-CNN
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Figure 6.1: EdgeConnect proposed by [69].

[84]. RPN acts as attention mechanism module which tells the Fast R-CNN where

to look. This network region proposal step is nearly cost-free and enables a unified,

deep-learning-based object detection system to run at near real-time frame rates.

Furthermore, the RPN improves region proposal quality, which drives a general

increasing in object detection accuracy. More details can be found in Section 3.7.

RetinaNet. Another detector used to validate experiments is RetinaNet. It is a

one-stage object detection model that utilizes a focal loss function. RetinaNet im-

proves performance by additionally using the Feature Pyramid Network (FPN) [76]

for feature extraction. The backbone is responsible for computing a convolutional

feature map over an entire input image. The first subnet performs convolutional

object classification on the backbone’s output; the second subnet performs convo-

lutional bounding box regression. FPN concatenates feature maps from layers at
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different depths to improve detection at each scale. Another relevant aspect of this

model is the use of focal loss to solve the class imbalance problem, that is the im-

balance between background and foreground. Therefore, focal loss is introduced to

assign higher weights to difficult foreground objects and lower weights to the easy

background case. RetinaNet uses a dynamically scaled cross entropy loss where the

scaling factor decays to zero when confidence in the correct class increases. Intu-

itively, this scaling factor can automatically down-weight the contribution of easy

examples during training and rapidly led the model to focus on hard examples. More

details of architecture is reported in Section 3.8.

EfficientDet. EfficientDet is a type of object detection model that uses a variety

of backbone optimizations and tweaks, such as the bi-directional feature pyramid

network (BiFPN), which allows easy and fast multiscale features fusion. Moreover,

this model uses a compound scaling method that uniformly scales resolution, depth,

and width for all the backbones, features network, and box/class prediction networks

at the same time. EfficientDet detectors are single-shot detectors much like Single

Shot Detector (SSD) and RetinaNet. The proposed BiFPN serves as the feature

network which takes level 3–7 features P3, P4, P5, P6, P7 from the backbone network

and repeatedly applies top-down and bottom-up bidirectional features fusion. More

detailed information is given in the Section 3.9.

6.1.3 Datasets

The dataset used are the CVC-CLINIC or CVC-612 [27] and the CVC-ClinicVideoDB

or CVC-12k [28] dataset (Fig. 6.2). The CVC-CLINIC dataset includes 612 polyp

image frames with a pixel resolution of 388× 284 pixels in SD (standard definition).
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(a) (b)Figure 6.2: Four frame sequences from the CNC-CLINIC dataset (Left); Four frame se-
quences from the CVC-ClinicVideoDB dataset (Right).

The CVC-ClinicVideoDB video dataset comprises of 18 different SD videos of dif-

ferent polyps. In this dataset, 10025 frames out of 11954 frames contain a polyp,

and the size of the frames is 384 × 288. Each frame in the video databases comes

with a binary ground truth, in which each polyp is annotated by clinical experts.

Each positive video includes a unique polyp.

According to COCO format, the annotations (i.e., polyps bounding boxes) are de-

scribed in a single JSON file for the whole dataset. Object classes, just polyps in

our study, are listed separately in the categories tag and identified by an ID. More

details is given in Section 2.4.

6.1.4 Our Proposal

In our proposal, we use EdgeConnect to generate new images which depict synthetic

polyps, while in the original work [69] the authors use it to fill generic missing

regions and test it on standard datasets such as CelebA [85], Places2 [86] and Paris
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StreeView [87]. Although the original inpainting network is composed of two parts,

i.e. Edge model model and Inpaint model, in the present work we only train the

second one. Generally, the Edge model is used to complete the edge map in images

with missing parts to be inpainted. However, since we employ masks and edge maps

of real polyps even at inference time, original fully edge maps are always available

and we do not need to estimate such maps. Our idea is to train the Inpaint network

only by using polyp images and by providing, as missing part to be inpainted, the

area where a polyp is located. Hence, the Inpaint network learns to fill the missing

regions always with a polyp, which makes it a synthetic polyp images generator.

The CVC-CLINIC dataset is used for training the inpainting network in order to

build the proposed generator. The dataset is split into 80% for training, 10% for

validation, and 10% for test and geometric data augmentation is employed to reduce

overfitting in training phase. In particular, we apply horizontal and vertical flipping,

90◦, 180◦, and 270◦ rotation, 10% zoom-in. By combining all the transformations,

we get 15 altered frames from the original one. Then we have 7648 frames after

transformations for training, 1088 images for validation, and 1056 of test. To train

the Inpaint module of EdgeConnect we need to extract edge maps from input frames;

to this aim, we use Canny edge detector in accordance with [69]. It is applied with

a high threshold 100 and low threshold equal to 20. Then, all the image frames

are cropped to 256× 256 and black borders are removed. After the Inpaint module

of the EdgeConnect is properly trained, it can be used for inference, namely to

generate new polyps image. To this aim, the new inpainting model has to be input

with an RGB image, which presents a missing area located where a polyp has to be

generated, and its edge map. Even if not mandatory, our suggestion is to synthesize

new polyp images by using mask and edge of real polyps in order to get more realistic
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results.

6.2 Experimental Setting and Results

We evaluate the polyp detection performance by comparing the model trained with

and without the proposed augmentation strategy.

6.2.1 Inference on EdgeConnect

CVC-ClinicVideoDB dataset includes many empty frames. For the generation of

new frames with polyps we exploited the no-polyp frames. We selected those of

good quality, that is, those that visually are better and without e.g. blurred effect,

without water bubbles or without too much light reflected on the mucosa. From this

visual analysis we selected 500 frames with mucosa, which were then used as base

frames on which to generate polyps with our methodology. In order to increased

the variability and get more realist images, we generate the synthetic dataset by

randomly select the masks related to the polyp location from the validation and test

set of CVC-CLINIC, where it was previously applied the classic data augmentation.

These masks perfectly fit the shape of the polyp. For this reason, we decided to

use masks from another dataset such as the CVC-CLINIC rather than the CVC-

CLINICVideoDB because in the latter the masks have an ellipsoidal shape which

grossly fit the lesions. The mask can have any shape, can be in any position, and in

output we have a completely new frame.

For convenience, we refers the CVC-CLINICVideoDB dataset as CVCdb and the

CVC-CLINIC as CVC. Once the best no-polyp frames were selected from the CVCdb

dataset, these frames were cropped back to a size of 256×256. At the same time, the
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Validation Set and Test Set frames used in the CVC dataset were taken for training

the inpainting network, i.e. EdgeConnect. Of the latter, the relative mask and the

creation of an Edge Map are fundamental for this phase, but only relative to the

lesion. So the edge map, in this case, is all black, but with white edges corresponding

only to the lesion. Randomly, one of these masks is selected to attach to the RGB

image of the empty frame. Similarly, the edge map of the randomly selected polyp

and the mucosal edge map of the original RGB image are combined (Fig. 6.3).

In order to have more variability in generating polyps on combining masks and no-

polyp frames, we decide to distinguish between three kind of polyps in respect of

their size: small, medium and large. The threshold which characterize the three

size are the same used in [43]. This insight come from the observation that small

polyps are, not surprisingly, more difficult to detect. Hence we prefer to generate

more synthetic images with small polyps, specifically, 80% of small polyps images

and 20% of medium polyps images.

6.2.2 Detection Evaluation Metrics

For a proper evaluation of the detector performance with and without data augmen-

tation we employ metrics which are designed on average precision (AP) and average

recall (AR). AP is a metric which depends on the area under the Precision versus

Recall. It summarizes the precision-recall trade-off dictated by confidence levels of

the predicted bounding boxes [53].

AP =
∑︂
n

(Rn −Rn−1)Pn
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Figure 6.3: (a) We selected no-polyp frames from CVC-ClinicVideoDB and random rgb
(RGB supplier) from Validation Set and Test Set of CVC-CLINIC. (b) We combined no-
polyp RGB with the Mask of the selected RGB supplier. (c) We created the edge map
of the no-polyp RGB and the edge map of the RGB supplier. We used Canny. (d) We
combined the two edge maps from (c) to obtained the new edge map for inference (on the
left). We also obtained from (b) the new RGB frame for inference (on the right).

where Rn and Pn are the precision and recall at the math th threshold.

In order to measure detection performance we employ a similar form of the usual

AP, namely COCO’s AP@[.5:.95] which depends on multiple IOUs (Intersection over

union) and according to [88] it is a good trade-off to evaluate detection performance.

For the sake of clarity, we remind that an IOU of 0.5 can be interpreted as an

approximate identification of one of the detectable object, while an IOU of 1.0 is

equivalent to a perfect localization of the such object. For a more strict evaluation

concerning the likeness of the ground truth and detection bounding boxes, we use

the AP@.50; this means that the IOU threshold to distinguish between true positive

and false positive results is set to t = 0.5.

AR is an evaluation metric which measures the assertiveness of item detectors for

a given class. Unlike AP, the confidences of the detection is not taken into account
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when calculating AR. Specifically it evaluates all the recall values obtained for IOU

thresholds in the range [0.5, 0.95] in steps of 0.1 and then it averages them (i.e.,

COCO AR@[0.5, 0.95]).

We set the maximum number of possible objects detectable using COCO metrics

to evaluate as generic as possible and repeatable in other performances with other

datasets.

6.2.3 Experiments and Results

In order to prove the validity of our proposal we compare the performance achieved

with both, original dataset and the same dataset which has been augmented by using

the proposed method. This highlights the improvement our inpainting data augmen-

tation led. In summary, we have three kind of experiments: the first type consists

in training the detector with CVCDb dataset without any data augmentation; in

the second type of experiments we train the detector by using the same training

set and by adding synthetic polyp images generated with the proposed method; in

the third experiments type we further increase the training set by adding images

from a different dataset, namely CVC. Finally, all the experiments are performed

with three different detectors (i.e., Faster-RCNN, RetinaNet, EfficientDet) to prove

the performance improvements does not depend on the model architecture. All the

results are evaluated in term of AP@[0.5] and AR@[0.5:0.95]. An example of result

is shown in Fig. 6.4.

Experiments without data augmentation

These baseline experiments were performed by splitting the CVCDb dataset into

70% for the training Set and 30% for the test set. Results for the three detectors
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Original Empty Frame

(a) (b) (c)

n Generated samples of Data Augmentation

Figure 6.4: Example of results with our data augmentation contribution. The proposed
methodology consists of generating n samples (right) from an empty frame (left). Three
new frames (a), (b), (c) with polyps are noted in the example.

area reported in Table 6.1.

Experiments with proposed data augmentation

In this experiment we perform four tests with Faster-RCNN by adding 500, 1000,

4500 and 6000 generated polyps images. This allows us to show that higher is the

number of synthetic images included, higher is the improvements in term of both,

AP and AR. We observe and increase of 2.97% in AP and 0.7% in AR by augmenting

training set with just 500 generated images. Increasing the numerosity of generated

images shows a not surprising improvement until 9.98% in AP and 4.1% in AR for

6000 additional synthetic frames. This trend is clearly observable in in Table 6.2.
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Experiments with proposed data augmentation and additional dataset

Here we increase the data by considering another dataset (Fig. 6.5). Specifically, we

add the CVC data (i.e, 612 polyps images) to the training set we employed in the

previous experiments, i.e., 70% of CVCDb plus the generated frames. Our aim is to

increase training set variability, since the CVC images are different by the CVCDb

ones in term of illumination, scale and sharpness of depicted polyps. Moreover,

each CVC image is provided twice and in two forms: the original form, namely an

unaltered frame; synthetic form, where we replaced the original polyp by using the

proposed generator. Hence, we finally add to the previous training set, 612 original

polyps images and 612 synthetic ones.

Table 6.3 shows the better performance we achieved with this setup with Faster-

RCNN detector. We repeated the experiments with 1000, 4500 generated polyps

images and add frames from CVC in the two aforementioned forms. The comparison

with the baseline experiments (no augmentation) exhibits an improvement of 9.41%

and 1.6% for AP and AR respectively. Performances further improve with 4500

generated images (+11.97% for AP and +3.3% for AR).

6.2.4 Tests with different detectors

To demonstrate that the proposed method does not depend on the detector, the

previous three tests were performed but with only 1000 generated (in Table 6.4).

With the following configurations an improvement in AP (+7.3%) and AR (+1.1%)

is observed in the case of Faster R-CNN. While for RetinaNet an increase in AP

(+4.7%) and AR (+1.9%) is observed. In the case of EfficientDet, the experiment

with the addition of 1000 generated presents a (+6.7%) improvement for AP@.50,

while a (+2.6%) improvement for AR. With the addition of samples from the other
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Figure 6.5: Additional dataset for training detector. We increased the data by considering
the CVC dataset, in original form and synthetic form.

Table 6.1: Experiment without data augmentation.

Model AP@.50 AR@[.50:.95]
CVCDb 62.23 46.6

domain, there is also an increase of (+9.4%) for AP and (+1.6%) for AR. In the

case of RetinaNet, while for EfficientDet there is an increase of +5.8 for AP and

(+3.9) for AR. there is an improvement of (+8.1%) for AP, while a (+4%) for AR.

The increase that is reported in the last two lines of the table show that regardless

of the detector that is used, the methodology of data augmentation proposed in

this paper, records an improvement in the task of polyp detection, then increasing

the numerosity and at the same time the variability of the dataset, can help the

training phase of a detector and then record better performance. This experiment

was carried out with different detectors to show that whatever detector is used,

works better in detection.
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Table 6.2: Experiments with proposed data augmentation.

Model AP@.50 AR@[.50:.95]
CVCDb + 500 65.20 47.3
CVCDb + 1000 69.50 47.7
CVCDb + 4500 68.94 50.2
CVCDb + 6000 72.22 50.7

Table 6.3: Experiments with proposed data augmentation and additional dataset.

Model AP@.50 AR@[.50:.95]
CVCDb + CVC + 1000 71.27 47.7

CVCDb + CVC + CVC Synth + 1000 71.64 48.2
CVCDb + CVC + CVC Synth + 4500 74.20 49.9

Table 6.4: Evaluation comparison with different detectors

Model Faster R-CNN RetinaNet EfficientDet
- AP AR AP AR AP AR

CVCDb 62.2 46.6 62.5 38.1 56.1 46.2
CVCDb + 1000 69.5 47.7 67.2 40.0 62.8 48.8

CVCDb + CVC + CVC Synth + 1000 71.6 48.2 68.3 42.0 64.2 50.2

Figure 6.6: Barplot with trend of evaluation metrics.
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6.3 Discussion

In this chapter, we presented a data augmentation methodology to be performed

to generate a more numerous and variable dataset, useful for more robust train-

ing of any detector. This methodology exploits a known inpainting network, which

has been adapted to our colonoscopy case. The main idea is to perform this step

to improve the performance of polyp detection. The results obtained with Faster

R-CNN show that a greater improvement is obtained as we increase the number

of samples generated and integrate another data domain (Fig. 6.6). Experiments

conducted with RetinaNet and EfficientDet also confirm this contribution. There-

fore, this technique can be used with any other detector and having an even higher

number of samples than the ones we have presented, a better result can be obtained.
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Chapter 7

Conclusion and Future Works

In this work, we investigated the problem of automatic polyp detection in colono-

scopies. We built a strong background on the domain and deep learning methods

suitable to solve the problem addressed in this thesis. Through a domain analysis,

it was easy to understand that, despite having a large dataset with high variability,

there were several variables to consider in order to obtain a good result in polyp

detection, such as: the presence of water bubbles in the frames, little difference be-

tween mucosa and polyp depending on the texture, various artifacts in the frames

of colonoscopies. A first attempt to improve the performance in polyp detection

was to specialize a neural network with clustering of polyp features. Results showed

that such specialization with hierarchical fine-tuning can improve performance, but

many false negatives remain to be attended to. This evidence suggested that we

analyze these frames and introduce an attention mechanism within each video se-

quence. This proposed methodology resulted in better performance by lowering the

number of false negatives. After this satisfactory result, we shifted our attention to a

complete knowledge of the open-source datasets available from state-of-the-art. We

noticed the low availability of large datasets with wide data variability. Therefore,
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we considered the creation of a framework capable of performing data augmenta-

tion through inpainting on colonoscopic data. Such a framework may be helpful to

other researchers in this domain, who will be able to create larger and more realistic

datasets in order to train any detector. This will decrease the over-fitting of the

data when training any deep learning methodology.
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Chapter 8

Appendix A

8.1 Other Publications

In the following, it is reported a work published during my Ph.D. but not directly

related to this thesis.

International Conference:

• Pappalardo, G., Allegra, D., Stanco, F., & Battiato, S. (2019, September).

A new framework for studying tubes rearrangement strategies in surveillance

video synopsis. In 2019 IEEE international conference on image processing

(ICIP) (pp. 664-668). IEEE.
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