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Abstract

Digital Forensics, and in a specific way Multimedia Forensics, has grown significantly

in the last years. Digital Forensics is defined as the branch of Forensic Science which

scientifically analyzes a digital evidence in order to obtain information about it. The

Digital 2021 Global Overview Report 1 published in January 2021 certifies that the

world’s population has reached the number of 7.83 billion. The 66.6% (i.e. 5.22

billion) use a mobile phone, the 59.5% (i.e. 4.66 billion) use internet and the 53.6%

(i.e. 4.2 billion) are social media users. The same report declares that from 2015 to

2020 the daily time spent with social media increased of 34 minutes (it was 1 hours

and 51 minutes in 2015) and that it’s destined to rise. In the described scenario

the number of shared images, video and audio (or Multimedia) contents become

difficult to manage. The described numbers and types of digital evidences have led

to the birth of several fields of Digital Forensics, faced from different communities:

Multimedia Security, Computer Forensics and Signal Processing. Image Forensics

has the goal to obtain information about the most popular digital evidence: images.

Developing new algorithms for forensic purposes was the main focus of my Ph.D..

In this thesis some advanced methods will be presented about two specific tasks:

the first one is related to the Camera Model Identification (CMI) with the goal to

identify the quantization table employed during the first JPEG compression; the

second one exploits the image as the digitization of a real paper sheet in order to

extract a unique fingerprint. Both the tasks produced relevant methods, widely

compared with state-of-the-art to demonstrate their scientific goodness.

1https://wearesocial.com/blog/2021/01/digital-2021-the-latest-insights-into-the-state-of-
digital
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Chapter 1

The Forensic Science

The Forensic Science (FS) is the application of scientific methods and techniques to

matters under investigation by a court of law. The fields of FS are various: Forensic

Archaeology, Forensic Pathology, Forensic Geology, Forensic Odontology, Forensic

Toxicology, Criminalistics, and Digital Forensics (including Multimedia Forensics).

Each of these fields exploits the related scientific methods in order to obtain useful

information during an investigation or to be presented in a court.

My Ph.D. was focused in particular on Image Forensics, a specific branch of

DF that have the goal to analyze the most common digital evidence: the image.

In particular, in the following chapters, the image will be exploited and treated in

two different ways: in the Chapter 2 the traces leave inside it by the compression

phase will be analyzed in order to reconstruct the image history and to recognize

the parameters employed during the compression, while in Chapter 3 the image

will be exploited as a digital representation of a real paper sheet in order extract a

fingerprint from it.

1.1 Digital Forensics

The spread of social networks, with more than 1 billion of images posted every

day, has exponentially expanded the problems related to the employing of fake

media, that often causes serious repercussions on people’s lives, political problems

and misinformation. Digital Forensics (DF) was born to oppose this type of issues,

obtaining information about the media under analysis and reconstructing its history.
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The first notion of DF dates back to 1970s, when in the Federal Rules (US) the

importance of digital evidence was discussed. The real digital forensics investiga-

tions started in the last part of 1980s, when federal agents began to analyze the

digital evidence found inside computers. Non-standardized methods were employed

until the 2000s when the importance of these type of evidences was understood by

researchers, agents and lawyers; the first research groups in Forensic Science started

around 2000 and 2001. A brief overview of the history of Forensic Science can be

found in Figure 1.1.

In front of a digital evidence, in general content analysis is the main task. A

definition given by a related FBI working group to assess the role of Forensics im-

age/video analysis is: “Forensics Image (Video) analysis is the application of IM-

AGE SCIENCE and DOMAIN EXPERTISE to interpret the content of an image

or the image itself in legal matters”.

Digital Forensic Science was defined for the first time in 2001 at the first Digi-

tal Forensics Research Workshop (DFRWS): “The use of scientifically derived and

proven methods toward the preservation, collection, validation, identification, analy-

sis, interpretation, documentation and presentation of digital evidence derived from

digital sources for the purpose of facilitating or furthering the reconstruction of

events found to be criminal, or helping to anticipate unauthorized actions shown

to be disruptive to planned operations”.

Digital Forensics and its branch of Multimedia Forensics have evolved over time

with the birth of specific areas. The main areas of Multimedia Forensics are clas-

sified based on their signal type: image, audio and video forensics. In addition to

the history reconstruction Multimedia Forensics has the objectives to interpret and

analyze the content, to identify the source, to assess integrity and authenticity and

also to enhance the media under analysis. Big data and the increasing of digital

evidences has opened great challenges for forensic researchers in all the fields, many

of which are still open. In the context of image authentication, for example, the

European Network of Forensic Science Institutes (ENFSI) has only recently defined

the best practices for this task which are constantly updated over the time; the issue

derives from the continuous development of increasingly sophisticated manipulation

tools and it needs a general agreement to define the evidence analysis standard for

this specific task.
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Figure 1.1: Brief overview of the history of Forensic Science.

In this Ph.D. thesis, I will mainly focus on Image Forensics. Images are the most

common type of evidence; methods able to obtain information about the history of

them will be analyzed and presented. Every image contains traces about the process
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that has generated it or edited it, then the objective is to find those traces and use

them to reconstruct the process from the original source to the evidence.

1.2 Image Forensics

The use of images has always represented the most immediate and understandable

way to communicate. Since the beginning of the third millennium the rapid diffusion

of smartphones allowed any person to own a device which permits the acquisition of

visual data. In addiction to that, the availability of editing tools and the possibility

to share these visual contents with anyone has made images the most widespread

but at the same time the most counterfeited media. Forensics Science has the goal

to exploit evidences to facilitate the reconstruction of criminal events. Today, the

ability to access this large number of digital evidences represents a great opportunity

but, at the same time, a great challenge, deriving from the difficulty to validate an

evidence: phenomenon like Deepfake (i.e.fake images generated with the help of

artificial intelligence) are the enemies to beat.

The reconstruction of the image’s history [1] is an open task from about thirty

years but, the recent exponential usage of images required more and more advanced

methods. Today, as described in Fig. 1.2, a typical image lifecycle concerns the

following steps (in most cases):

1. Acquisition of the image through a digital camera

2. Editing of the image

3. Upload of the image to a Social Network

Every step includes a number of actions that, in many cases, could be analyzed

in order to reconstruct the image history or more generally, to extract information

usable in court. Many methods able to obtain image’s history information have

been proposed in the years and their first classification is based on the source. The

”active” methods add some information in the source image so that it is possible to

analyze the information added previously to understand possible editing of the im-

age. Example of active methods are based on trustworthy cameras [2], watermarking

[3] or crypted digital signature. The ”passive” methods are based instead, on a blind
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analysis of the evidence without any a-priori knowledge; in these methods the traces

left during the image generation phases, from acquisition to editing, are analyzed.

It is easy to understand that passive methods have an higher level of complexity. In

addition, the number of evidences without previously added information represents

the most of the digital evidences in digital investigations.

In the following sections three important steps of image’s lifecycle will be ana-

lyzed and described; furthermore, in order to understand how the investigation on

the image is conducted the most advanced methods will be showed and compared.

1.2.1 Acquisition

Fig. 1.3 describes the step of acquisition. This phase could be performed through

different devices, but in general the steps of in-camera processing shown in Fig. 1.3

are constant: the image is firstly captured, the undesired light spectrum is minimized

through the use of optical filters and the remaining light is focused by the lenses on

the sensor. Before reaching the sensor the light is often filtered by the Color Filter

Array (CFA) that extract the red-green-blue (RGB) components and select the right

light to employ for the components inside the sensor. The output of the sensor is

then interpolated in order to obtain a digital color for each pixel through a so-

called demosaicing process. The raw digital image in output go through an internal

camera process of enhancement which includes color balancing and contrast and

gamma correction and finally the compression is performed.

The aforementioned process could leave traces in every step, that in most cases,

cannot be perceived by human eyes. The manufacturing process of the lens creates

an optical system which is almost unique due to the inperfections on lighting focus;

this small lens distortion produces types of aberration that in some cases could be

analyzed for forensics purposes; Johnson and Farid in [4] for example exploit lateral

chromatic aberration for tampering detection. The CFA represents also a traces

leaver: each sensor element captures light inside certain wavelenghts range, intro-

ducing a pattern that, if perturbed as part of a manipulation, it appears anomalous.

Popescu and Farid [5] in 2005 analyzed the periodic correlation of CFA patterns with

a linear model to distinguish natural images from artificial ones. In Fourier domain

the natural images present a periodic strong peak, which is absent in the artificial

ones. Ferrara et al. in [6] analyzed the same problem with Bayesian framework in
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REAL SCENE DIGITAL IMAGE
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2. EDITING
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DIGITAL IMAGE EDITED IMAGE

EDITED IMAGE UPLOADED IMAGE

Figure 1.2: A typical image lifecycle.
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REAL SCENE HARDWARE
OPTICAL FILTERS LENS COLOR FILTER ARRAY SENSOR

COLOR INTERPOLATION

SOFTWARE
ENHANCEMENTCOMPRESSION

DIGITAL IMAGE

Figure 1.3: Technical image lifecycle.

order to obtain a tampering probability map. Another possible artifact introduced

in the acquisition phase is due to the small deviations of the sensor that produce a

specific pattern noise called photo-response non-uniformity (PRNU), as explained

in [7]. Each image acquired by the same camera contains traces left by the PRNU,

now considered as a camera fingerprint because it remains generally stable in cam-

era’s lifetime. PRNU is exploited for both Camera Source Identification (CSI) and

Tampering Detection because being a fingerprint of the camera, it recognizes the

camera itself but also any variations in the fingerprint. PRNU-based forgery detec-

tion was proposed in [8] for the first time through a comparison between camera

PRNU (obtained before) and the PRNU of target image. Successive PRNU-based

works focused on improving the PRNU estimation model ([9, 10]).

Camera design choices could be employed as model local features for Camera

Model Identification (CMI); when cameras of the same model share properties of

both hardware and software, then it is possible to extract local descriptors to build

a statistical model and discriminate device types [11].
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1.2.2 Compression

Although the compression step is a part of acquisition (Fig. 1.3) it must be deeply

analized because it represents the most obvious source of traces. Lossy image com-

pression is the most common, due to the allowed space saving, which is also the

reason why the first compression is usually performed inside the camera. JPEG

(Joint Photographic Experts Group) [12] is the most popular and employed com-

pression alghoritm, just imagine that almost all social networks perform a JPEG

compression during image upload (deep details about the pipeline of JPEG com-

pression will be shown in Chapter 2). JPEG compression is performed on three

basic steps:

• division in 8×8 blocks and transition from spatial domain to frequency domain,

through the use of Discrete Cosine Transform (DCT)

• quantization of 8×8 blocks in frequency domain through a quantization matrix

• coding of the data

The exploitation of compression artifacts, mostly on JPEG, represents the bigger

area of proposed methods for forensic purposes. Some of them are available in spatial

domain like the methods based on the exploitation of the block artifact grid (BAG):

the authors of [13, 14], for example, exploited the discontinuities along the block

boundaries of JPEG compressed images in order to identify the compression history,

also with low level of compression. Bruna et al. in [15] instead, propose a new

method to detect cropped images by analyzing the blocking artifacts produced by a

previous JPEG compression. Another line of research is based on the analysis of data

in the frequency domain. Luo et al. in [16], observing the integral of DCT coefficient

histograms, detect previous JPEG compression; in [17] and [18] the authors analyzed

the statistical distribution of DCT coefficients comparing them with the Benford law

[19], obtaining information about the introduction of compression artifacts; in [20]

H. Farid detects manipulated areas through the so-called JPEG ghosts when two

JPEG compressions with the same quality factor were performed.

In order to recover information about the acquisition device [21, 22, 23] the

forensic analysis of JPEG images specializes to several different tasks. One of them

is the Double Quantization Detection (DQD) which has the objective to detect if an
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image has been JPEG compressed at least twice in order to obtain information about

the authenticity of the image or about possible tampering. The Forensic community

has been spending a lot of effort on DQD, facing the problem in different scenarios.

The first classification is about aligned and not-aligned JPEG double compression:

the aligned DQD applies the second compression on the same blocks while in the

not-aligned DQD the grid of 8×8 block is offset with respect to the first compression.

Among the aligned DQD methods some are based on natural distribution of

first digit (Benford law) as [24], other on DCT application variant [25] and other

on periodicity of DCT histograms [26]. The analysis of DQD moved often the

research to the tampering detection [27, 28]. Among not-aligned DQD in [29] the

blocking artifacts are investigated again with the use of a classifier while [30, 31]

employ a simple treshold detector. Some methods manage to locate both aligned

and not-aligned DQD: in [32] the authors proposed the detection combining features

of spatial and frequency domain while in [33] Bianchi and Piva proposed a statistical

model able to individuate the tampering regions in both the aligned and not-aligned

scenarios. This task, also with the research of multiple compressions was treated

both in a forensics and a counterforensics point of view ([34, 35]).

Recently, machine learning (ML) and deep learning (DL) based methods have

revolutionized this task, individuating the right features to employ directly from

the data. ML and DL based approaches [36, 37] reach good performances also in

presence of difficult scenarios with respect to statistical approaches, but as it often

happens, the models produced suffer heavily of overfitting.

In a digital forensics investigation, the DQD is often followed by the First Quan-

tization Estimation FQE, which in some cases is carried out together [38]. FQE has

the goal to estimate the matrix employed in the first JPEG compression in order to

obtain information about the camera model. The FQE task was the main task of

this thesis, for this reason, it will be deeply explored in chapter 2.

1.2.3 Editing and upload

The manipulation of an image often produces traces, also related to re-compression.

Basic transformations like rotation, scaling, blurring applied to an image could im-

prove its quality or in maliciously change its semantic content. Some methods focus

on the anomalies of the transformations [39, 40] in order to detect a manipulation.
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Figure 1.4: Example of copy move detection. From left to right: original image, image
after copy move and detection.

Other type of image editing are executed with a malicious intent; copy-move and its

derivatives (cut and paste, copy and paste) belong to this class. Copy-move consists

in copying a part of an image and past it in another position in order to hide or du-

plicate content. The copy-move detection (figure 1.4) is the more difficult tampering

detection because, being the copied part from the same image, some components

are compatible with others and then the forensics methods based on incompatibility

are useless; efficient solutions for this type of tampering are based on keypoints [41]

or dense-field [42] matching.

Machine learning and deep learning based methods have taken over [43, 44]. The

possibility to obtain the best suitable features in an automatic way to discriminate

and localize a tampering made previous techniques obsolete. At the same time,

antiforensics attacks exploited the potential of machine learning to improve the

tampering techniques, hiding the traces used by detection methods and making the

task increasingly complicated to deal with.

In the last described scenario, a phenomenon to underline is the so-called Deep-

fake. They can be defined as fake images generated with the help of deep learning

tools like autoencoders (AE) or generative adversarial networks (GAN). Naturally,

deepfake could be employed for malicious purposes making the recognition of an

original source more difficult. An overview on Media forensics with particular fo-

cus on Deepfakes has been proposed in [45]. Several State of the art approaches

demonstrated that Deepfake images contain a pattern left by generative models

(through convolution layers) that characterizes that specific deep neural architec-

ture [46, 47, 48]. To capture this trace, Guarnera et al.[46, 47] used the Expectation-

Maximization Algorithm obtaining features able to distinguish real images from
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Deepfake ones. Giudice et al.[48] demonstrated that the so-called GAN Specific Fre-

quencies (GSF), a pattern that characterize several GAN engines can be extracted

through the DCT. Jain et al. [49] proposed a framework composed by three levels

able to solve several classification tasks: Original Vs Altered (first level); Retouched

Vs GAN generated (second level); image classifications created by four GAN engines

(third level).

An important phase of image lifecycle has become the Social Network upload;

every social platform defines its upload rules, that in time could change. Although

in most cases that phase is a composition of others (crop, resizing, compression)

conducting a specific analysis for the upload phase can be useful. Some works in

the literature strictly analyze this phase [50] building an engine for the image’s

reconstruction history and detecting not only the compression parameters but also

identifying the Social Network.
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Chapter 2

First Quantization Estimation

2.1 Introduction

As explained in chapter 1, if a previously JPEG compression in the image under

analysis has been detected the following step is the so-called First Quantization

Estimation (FQE). It has the goal to estimate the parameters of the previous com-

pression and in particular the quantization matrix employed. The knowledge of the

matrix permits to obtain information about the camera model for forensic purposes.

In this chapter the most relevant methods of the state-of-the-art will be present,

in order to understand how the FQE task was faced over the years. Subsequently,

three different methods will be presented (in the aligned and not scaled scenario)

and compared with the aforementioned methods; the presented methods overcome

the results w.r.t. the state-of-the-art ones and moreover they achieve surprising re-

sults working with images compressed with both standard and custom quantization

matrices which represents a relevant property in this research field.

2.1.1 JPEG

The predominant use of JPEG compression and the importance of Social Networks

as a source of trial evidence has led forensic research to focus on the analysis of im-

ages compressed with this format. In order to understand how the forensic analysis

is carried out on JPEG images, the compression and decompression phases of the

algorithm will be described below. The primary goal of compression is to reduce the

data size. Many formats simply encode the data (by reducing the size) allowing to

go back to the original image exactly as it was before compression; this type of com-

pression is called lossless. JPEG is a lossy compression (with loss of information):
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the amount of information lost during compression is delegated directly to whoever

performs the compression. In fact, JPEG uses mechanisms by which it is possible

to decide how much information to lose at the expense of the quality of the image

itself. Figure 2.1a shows the compression phase.

The image, initially on the RGB color space with values in the range [0,255],

is switched to the YCrCb color space in the range [-128,127]; this step is done

because the small variations of light are perceived more by the human eye and

for the same reason in the next step a sub-sampling of the color channels is done.

Subsequently, each of the image channels is divided into 8x8 blocks and the Discrete

Cosine Transform (DCT) is applied to each of them, which allows to pass from the

spatial to the frequency domain. The purpose of this step is to have the frequencies

ordered. The quantization phase is the part of the algorithm with the irreversible

loss of information. Each of the 8×8 blocks is divided by a quantization matrix and

the decimal values are rounded to integer values; generally it provides a stronger

quantization (or in many cases complete elimination) of the high frequencies and

a lower one on the low frequencies, due to the higher sensitivity of the human eye

towards the latter. This generates the first irreversible data loss, as it will no longer

be possible to go back to the original value. At this point, the quantized blocks are

organized (in zig-zag order) and encoded, creating the compressed file. Figure 2.1b

shows the decompression phase.

The compressed image is first decoded and the 8×8 blocks are de-quantized (i.e.

multiplied by the quantization matrix saved in the image metadata), reconstructing

the 8× 8 coefficients blocks in the frequency domain which, of course, will have dif-

ferent values from those preceding the quantization (quantization error). The 8× 8

blocks are then subjected to the Inverse Discrete Cosine Transform (IDCT) for the

transition to the spatial domain; this step generates two other errors: the decimal

values after the IDCT are rounded to integers (rounding error) and furthermore if

there are values outside the range [-128,127] these are clipped to the nearest limit

(truncation error). Finally, with the inverse subsampling and the switch of color

space from YCrCb to RGB we obtain the image display. As can be guessed, the

amount of information lost depends entirely on the quantization matrix employed:

an identity quantization matrix with value all equal to 1 has no loss of information,

but neither does it reduce space. The number of 8 × 8 quantization matrices is
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(a) JPEG compression

(b) JPEG decompression

Figure 2.1: JPEG compression (a) and decompression (b) with all steps.
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Figure 2.2: JPEG file at varying Quality Factors.

enormous but the JPEG working group has defined a formula to derive 100 stan-

dard tables with a quality level associated, defined as Quality Factor (QF). The

Quality Factor 100 identifies an identical matrix with values 1 which does not lose

information but which does not reduce space. The standard tables represent only

indications provided by the JPEG working group; many digital camera suppliers,

for example, define customized compression matrices, which, as we will see later,

is fundamental for forensic analysis. Figure 2.2 shows different views of the same

image compressed with different QF.

2.1.2 JPEG Notation

In this Section the notation employed in all the chapter is defined. Given a raw image

I, JPEG compression [51] can be defined as a function fQ such that I ′ = fQ(I), where

I ′ is the JPEG compressed image, Q is the quantization matrix (8 × 8) containing

the quantization factors qi ∈ N with i ∈ {1, 2, . . . , 64}. As first step, fQ(I) converts
I from the RGB to YCbCr color space, then divides the input image in 8 × 8

non-overlapping blocks applying also the integer DCT (Discrete Cosine Transform).

Finally, each 8× 8 block is divided, pixel by pixel, by Q, rounded and then encoded

by classic entropy based engine. In this thesis, only the luminance (i.e., Y channel)

will be exploited. Let’s define also I ′′ = fQ2(fQ1(I)) a JPEG double compressed
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image, with Q1 and Q2 denoting the quantization matrices employed for the first

and the second compression respectively.

In this thesis, I will refer to QF 1 as the standard quantization matrix associated

to a specific quality factor [51] and QFi to further specify the JPEG compression

(e.g. i = 1, 2, . . . ) in which the matrix was employed. We denote with hi the

empirical distributions built from the i-th DCT coefficients extracted from the 8×8

blocks of I ′′. Moreover, we define the k quantization factors, in zig-zag order, of Q1

as q11, q12, . . . , q1k, and as q1 and q2 the quantization factors employed in the first

and in the second compression respectively.

2.2 State of the art

JPEG is the most studied compression algorithm and the most investigated for

digital investigation purposes. When facing a JPEG image, the first problem that

could be addressed is the image history reconstruction. The estimation of the matrix

employed during the first compression is extremely useful in forensic investigations.

Several solutions have been proposed in the years by researchers.

The first approach on this topic was proposed by Fan and De Queiroz in [14]

where the authors don’t analyze specifically a JPEG image, but a bitmap that

has been previously JPEG compressed; they built a method that in the first part

determines if the image under analysis has been previously JPEG compressed and

then a maximum likelihood based step follows to individuate a compression signature

that describes the compression parameters.

Bianchi et al. ([28, 30, 33]) proposed the first robust technique for FQE. The

method applies a simple treshhold detector based on Maximum Likelihood to indi-

viduate the compression parameters and it is based on a single feature extracted by

the analysis on the DCT periodicity between the blocks; moreover the final approach

described allows to determinate the grid shift and then to work in the nonaligned

scenario.

1The notation QF = x referred to Photoshop custom matrices in the next sections is not the
standard meaning of quality factor as described before. Photoshop defined 12 different ’quality of
compression’ referred in this thesis as Photoshop QF .
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Li et al.in [52] presented a statistical analysis of JPEG noises (quantization and

rounding) during the JPEG compression cycle: the analysis proves that noise distri-

butions are not equal in different steps of compression and that they are dependent

on the parameters between two successive compression. The authors built a statis-

tical model based on this analysis demonstrating its goodness also in FQE task.

More researchers in the years analyzed the histograms of the quantized DCT

coefficients as features. Galvan et al. [53] analize them and their changes between

first and second compression JPEG compression when the second quantization step

is lower than the first one; moreover the authors in this work added a proper filter

strategy based on residual error removing which improves the results of the estima-

tion. A filter-based selection of DCT histograms strategy was exploited by Dalmia

and Okade in [54] and [55] where the authors investigated the impact of blocking

artifact through filtering in the nonaligned scenario of double JPEG compression;

this investigation with the analysis of residual noise is finally used to compare the

filtered histograms with an artificial second quantization matrix in order to estimate

the first quantization matrix. In [56], instead the authors analyze the relationship

between the first quantization step and the mean square error (MSE) among DCT

coefficient histogram bins to extract some candidates and estimate the parameters

of first compression. Another work based on the same feature is [57] later extended

in [58]: the authors proposed to estimate the quantization factors by finding, among

a set of possible candidates, the best matching with the created statistical model in

terms of minimal symmetrized Kullback-Leibler (KL) divergence.

The large amount of data and the possibility to analyze it suggested the authors

in the year to address the problem with modern Machine Learning (ML) approaches.

An initial tentative of estimation by exploiting neural networks was conducted by

Lukáš and Fridrich in [38], refined in [59] with error considerations similar to [53];

the authors of [38] transformed the problem of finding the closest histogram into a

classification issue, employing a neural network classifier. The introduction of Con-

volutional Neural Networks (CNNs) represented an additional step in facing this

task. CNNs have proven to be amazingly strong at spotting undetectable correla-

tions on data, however, due to the large number of involved parameters, they could

suffer from overfitting (i.e., the obtained model is not generalizable enough to repre-

sent the phenomenon under analysis); moreover, most deep learning solutions have
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been designed to work directly on input patches, which limits the usability of the

produced model to a very specific scenario. [60, 61, 62] have faced the FQE problem

through the use of CNNs, employing different architectures and features. Niu et

al. [63] and Tondi et al. [64] faced the problem as a regression one, training their

DenseNet architecture based network with a loss function that takes into account

both the accuracy and the MSE.

2.3 FQE through a JPEG simulation

In this section, an extensive simulation-based technique is proposed, in this section,

focusing on the deduction of the first quantization for a number of Discrete Cosine

Transform coefficients by exploiting local image statistics without using any a-priori

knowledge. This method is of significant importance for forensic purposes, as it

provides a reliable confidence value for the estimation. Experimental results w.r.t.

the state-of-the-art demonstrate the effectiveness of the proposed technique both in

terms of precision and overall reliability. The method and the extended version have

been published ([65, 66]).

Given a double compressed JPEG image I, the main purpose is to estimate the

first k quantization factors (zig-zag order) of the first quantization matrix, defined

as q1 = {q11, q12, ......, q1k}. Being I doubly compressed means that the only in-

formation available is that related to the second compression, which can be related

to standard JPEG Quantization tables or custom ones [67, 51]. The second quanti-

zation matrix Q2 is immediately available by accessing the JPEG file, a procedure

performed by using the LibJpeg C library 2 to extract the DCT coefficients of each

8 × 8 block (Dref ). No inverse DCT operation is done at this level, so as not to

introduce additional truncation errors. The set of DCT blocks obtained and their

respective coefficients (multiplied by Q2) are gathered to compute a histogram of the

distribution for each of the first k coefficients in zigzag order denoted by: href,k(Dref )

with k ∈ {1, 2, .., 64}.
In order to work with the actual contents of image I, it is decompressed with

2https://github.com/LuaDist/libjpeg

https://github.com/LuaDist/libjpeg
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Figure 2.3: A schematic representation of the proposed FQE method. The pipeline starts
with an Image I to suitably obtain a patch CI on which the simulation of the first com-
pression with n constant matrices Mi is performed. The results obtained after simulating
the first compression, are further compressed with known Q2 parameters and on the ob-
tained images the distribution of the DCT coefficients are computed as hn,k(Di,k). Each
histogram hn,k(Di,k) is then compared to a reference one computed on the original I by
means of χ2 distance. The most similar distribution for each element is chosen for the
FQE task.

common image readers (python Pillow library3) and a square patch CI , with di-

mensions d × d with d ∈ {64, 128, 256}, is cropped out from the center of I. CI is

then cropped once more, leaving out 4 pixels for each direction, obtaining its new

dimension r× r with r ∈ {56, 120, 248}. This is done in order to break the structure

of JPEG blocks and remove dangerous correlation noise. CI is then used as input to

simulate the double compression, performed with a number n > 0 of constant matri-

ces Mi with i ∈ {1, 2, .., n}. The value n (e.g., the worst case) is the largest possible

number to be estimated in the range {q11, q12, ......, q1k}: Under the assumption

that θ is the lowest quality factor of first compression, n will be the highest value

of the first k quantization factors of the quantization table related to the quality

factor θ. Having defined the parameter n the double compression simulation of CI

is organized (see Figure 2.3). We define Mi as a quantization matrix 8 × 8 with

each element equal to i and JPEG compress CI using them so as to generate C ′
I,i

3https://pillow.readthedocs.io/en/stable/

https://pillow.readthedocs.io/en/stable/
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(a) Standard QF = 55 (b) Standard QF = 98 (c) Photoshop QF = 5 (d) Photoshop QF = 12

Figure 2.4: Example of the standard quantization matrices of QF = 55 (a) and QF = 98
(b), and custom quantization matrix extracted from Photoshop of QF = 5 (c) and QF =
12 (d); Photoshop defines its custom table with quality factor in range [1,12].

with i ∈ {1, .., n}. A second compression can now be simulated by using the known

Q2 on each of the n C ′
I,i thus generating C ′′

I,i new compressed images. Each C ′′
I,i

represent a simulation of double compression with known first and second quanti-

zation parameters. At this point, for every C ′′
I,i, it is possible to extract the DCT

coefficients Di,k and in the same way as described before, a distribution for Di,k is

then computed and defined through the generation of hn,k(Di,k).

hn,k(Di,k) is a set of n distributions representing all the n simulations of double

compression. These simulated distributions hn,k(Di,k) are then compared one by one

with the real one href,k(Dref ) through χ2 distance:

χ2(x, y) =
m∑︂
i=1

(xi − yi)
2/(xi + yi) (2.1)

where x and y represent the distribution to compare.

Finally the actual estimation of q1, which is the main goal of the described

technique, can be done as follows:

q1k = argmink=1,..,nχ
2(hn,k(Di,k), href,k(Dref )) (2.2)

For sake of clarity, the pseudo-code of the process is reported in Algorithm 1.

The effectiveness of the proposed approach, was demonstrated through exper-

iments performed on the RAISE dataset [68], composed by 8156 high resolution

images in TIFF format (uncompressed). An example of a RAISE image is shown

in Figure 2.5a. For testing purposes, patches of different dimensions were extracted
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(a) Original RAISE image 4288× 2848

(b) Crop 256× 256 (c) Crop 128× 128 (d) Crop 64× 64

Figure 2.5: Example of a RAISE image and the cropping operation on it. The center usu-
ally contains the most informative part of the image, which is desirable for FQE methods.

from the original ones as shown in Figures 2.5b, 2.5c, 2.5d. The patches were ob-

tained by extracting an appropriate region from the central part of the original

images as the main focus of the observer is often directed to that point which con-

tains most of the information. A double-compressed JPEG image dataset was then

created from the TIFF cut images while the test was generated as a combination of

three parameters: crop size d ∈ {64, 128, 256}, first and second compression qual-

ity factor QF1 ∈ {50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 98} QF2 ∈ {80, 90}. Although

RAISE images have been cropped, the number of blocks b analyzed for each im-

age remains fairly representative: b ∈ {64, 256, 1024} blocks for d ∈ {64, 128, 256}
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Algorithm 1 FQE method through JPEG simulation.

1: Input: m-compressed image I
2: Output: qm−1 = {q1, q2, ......, qk}
3: Initialization : k, n
4: for j = 1 to k do
5: href,j(Dref ) : distribution of j-th DCT coefficient of I
6: end for
7: qm : known compression matrix of I
8: CI : r × r misaligned crop from I
9: for i = 1 to n do

10: C ′
I,i : compression of CI with constant matrix Mi

11: C ′′
I,i : compression of C ′

I,i with qm
12: Di : DCT coefficients of C ′′

I,i

13: for j = 1 to k do
14: hi,j(Di) : distribution of j-th coefficient of Di

15: end for
16: end for
17: for j = 1 to k do
18: qj : lower χ

2 distance between href,j(Dref ) and hi,j(Di) with i ∈ {1, 2, ..., n}
19: end for
20: return qm−1 = {q1, q2, ......, qk}

respectively.

All simulations were employed working on standard quantization tables con-

sidering only the luminance factor. To evaluate the generality of the proposed

strategy, Photoshop custom tables (Adobe Photoshop CC version 20.0.4) were also

employed. To be aware about the inherent consistency and availability of a cer-

tain amount of data, the range of the quantization factor in this case is QF1 ∈
{5, 6, 7, 8, 9, 10, 11, 12}. Figure 2.4 shows the employed tables by considering the

limit cases (low and high) in both cases (standard, custom). Unlike most state-of-

the-art methods, our statistical analysis is completely independent of the specific

quantization table because it considers the statistics of each coefficient.

Let’s define the actual dataset as Datasetd,QF1,QF2 which represents RAISE

center-cropped images of size d × d, compressed the first time with quality fac-

tor QF1, and the second time with quality factor QF2. In order to generate each

element of Datasetd,QF1,QF2 , all JPEG compressions were carried out directly on

TIFF images using the python image library Pillow.
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(a) QF2 = 80

(b) QF2 = 90

Figure 2.6: Average accuracy of the estimation for each DCT coefficient employing stan-
dard tables. (a) shows results with QF2 = 80. (b) shows results with QF2 = 90. The
comparison was done with Bianchi et al. [33] and Niu et al. [63].

2.3.1 Experimental results

The approach described before is the result of a set of experiments conducted on

images in Datasetd,QF1,QF2 obtained from the RAISE dataset. In particular the χ2

distance was chosen as the best, in terms of results produced, among a set of 12

different distances tested 4. Moreover, the L1 and the L2 normalizations did not

change the results obtained on tested data, thus data normalization was not included

into the proposed approach.

41. Chi squared (χ2), 2. Intersection, 3. Manhattan, 4. Braycurtis, 5. Cosine, 6. Correlation,
7. Euclidean, 8. Minkowski, 9. Chebyshev, 10. Canberra, 11. Hamming, 12. Jaccard
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QF1 QF2 = 80 QF2 = 90

Proposed [33] [53] [54] [63] Proposed [33] [53] [54] [63]

55 0.57 0.42 0.43 0.5 0.28 9 - - - - -
60 0.54 0.31 0.42 0.49 0.6 0.76 0.66 0.63 0.68 0.73
65 0.58 0.21 0.47 0.54 0.37 0.77 0.66 0.65 0.69 0.6
70 0.66 0.2 0.56 0.59 0.52 0.78 0.51 0.64 0.72 0.74
75 0.52 0.09 0.61 0.49 0.19 0.82 0.74 0.47 0.69 0.85
80 0.04 0 0 0 0.01 0.82 0.31 0.68 0.65 0.88
85 0.33 0.16 0 0 0.05 0.75 0.14 0.78 0.47 0.85
90 0.22 0.06 0 0 0.5 0.23 0 0 0 0.03
95 0.17 0.02 0.01 0.02 0.43 0.38 0.05 0.01 0 0.75
98 - - - - - 0.05 0.02 0.02 - 0.75

MEAN 0.40 0.16 0.28 0.29 0.33 0.63 0.32 0.46 0.49 0.69

Table 2.1: Accuracy obtained by proposed approach compared to Bianchi et al. [33],
Galvan et al.[53], Dalmia et al.[54] and Niu et al. [63] with different combinations of
QF1/QF2 and employing the corresponding standard tables.

The best pipeline among all tests, was employed for comparison against the

state-of-the-art and is described in Figure 2.3. Four approaches were considered for

comparisons: Bianchi et al. [33], that is a milestone among analytical methods;

Galvan et al. [53] and Dalmia et al. [54] which achieve state of the art results when

QF1 < QF2 and Niu et al. [63], which represents the state-of-the-art employing

CNNs and achieving the best results. It is worth noting that Niu et al. [63] uses

different trained neural models for each QF2 (80 and 90), while the proposed solution

works for any QF2 with the same technique.

As regards implementations used for testing the above mentioned techniques:

the publicly available5 Matlab implementation was employed to replicate Bianchi et

al. [33]; code from the ICVGIP-2016.RAR archive available on Dr. Manish Okade’s

website6 was employed for testing Dalmia et al. [54]; models and implementation

available on Github7 were employed for tests on Niu at al. [63] and finally an

implementation from scratch was employed for results for Galvan et al. [53]

All tests were performed with k = 15 for comparison purpose but the method

could be easy generalized for any 0 ≤ k ≤ 64, even if the theoretical limit would

become increasingly lower. However, k = 15 is tipically employed in literature,

5http://lesc.det.unifi.it/en/node/187
6https://sites.google.com/site/manishokade/publications
7https://github.com/andreacos/CnnJpegPrimaryQuantizationEstimation
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QF1 QF2 = 80 QF2 = 90

Proposed [33] [53] [63] Proposed [33] [53] [63]

5 0.66 0.39 0.53 0.08 0.78 0.64 0.66 0.07
6 0.45 0.11 0.46 0.03 0.82 0.51 0.68 0.08
7 0.62 0.23 0.54 0.08 0.78 0.5 0.64 0.08
8 0.19 0.06 0.04 0.02 0.79 0.26 0.7 0.1
9 0.3 0.19 0 0.09 0.49 0.03 0.49 0.02
10 0.18 0.01 0 0.41 0.43 0.18 0 0.28
11 0.19 0.04 0.04 0.26 0.39 0.05 0.02 0.7
12 0.21 0.05 0.05 0.22 0.38 0.05 0.02 0.75

MEAN 0.35 0.14 0.2 0.15 0.61 0.28 0.4 0.26

Table 2.2: Accuracy obtained by proposed approach compared to Bianchi et al. [33],
Galvan et al.[53] and Niu et al. [63] employing the custom tables for first compression.
The column QF1 refers to Photoshop’s custom tables. In this test Dalmia et al. [54] was
not considered given their implementation explicitly asks for standard tables as input.

which is why we used the same for comparison purpose.

A first comparison was performed taking into account standard JPEG quanti-

zation tables for primary quantization: accuracy results are reported in Table 2.1.

Specifically, the standard tables related to the following quality factors were em-

ployed: QF1 ∈ {55, 60, 65, . . . , 95} with QF2 = 80 and QF1 ∈ {60, 65, . . . , 90} with

QF2 = 90. Thus, the two employed datasets were Dataset64,{55,60,65,70,75,80,85,90,95},80

and Dataset64,{60,65,70,75,80,85,90,95,95},90 respectively with a total of 73413 JPEG dou-

ble compressed images for each set. The proposed approach was employed with

n = 22 for tests on the first dataset and n = 19 on the second one.

Table 2.1 shows that the proposed approach outperforms all other methods while

there is an alternation in best results with Niu et al. [63]. Specifically the proposed

approach shows better results for lower QF1 and QF2 = 80.

The gap in results obtained compared to the state-of-the-art changes greatly

when considering custom tables, which are the most common in a real forensic

investigation scenario. Photoshop was employed in order to generate double com-

pressed images as described before, creating another dataset of 65256 JPEG double-

compressed images. Table 2.2 shows the results achieved. In this case, the proposed

method not only outperforms the state-of-the-art, but also confirms the same robust

behaviour obtained with tests on standard tables as shown in Figures 2.6-2.7: both
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(a) QF2 = 80

(b) QF2 = 90

Figure 2.7: Average accuracy of the estimation for each DCT coefficient employing custom
tables. (a) shows results obtained with QF2 = 80. (b) shows results obtained with
QF2 = 90. The comparison was done with Bianchi et al. [33] and Niu et al. [63].

trends are very similar for the proposed approach while other methods register a

decrease in their accuracy levels (axis y).

The patch size is indeed a relevant parameter. Figure 2.8 shows a trend already

demonstrated in the state-of-the-art in which, given the same QF conditions, the

accuracy obtained by any method depends almost proportionally on the patch size

of the input image, or rather, on the overall amount of information contained in it.

Giving the importance of the patch size, in terms of results, a comparison with Thai

et al. [58] was carried out. Thai et al. proposed a method with results demonstrated

on bigger images and patch sizes. In order to have a fair comparison, the same images

from the BOSSBase [69] dataset were considered, employing a patch size 512× 512
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(a) QF2 = 80

(b) QF2 = 90

Figure 2.8: Accuracy obtained by the proposed method at different patch size with QF2 =
80 (a) and QF2 = 90 (b). Standard tables were employed.

on a total of 10000 images. Thai et al. [58] estimate only the first 10 quantization

factors (zig-zag order) at specific conditions (no estimation is done when multiples

are involved). Thus, we employed the following parameters for testing: QF1 ∈
{60, 65, 70, 75, 80, 85}, QF2 = 90, which are the only QF combinations were Thai

et al. estimate all the first 10 factors, n = 19 and of course K = 10. The results

obtained from the proposed approach, in terms of the average accuracy across all

factors and all QF1, is 99.7%, which is the same as Thai et al. as reported in [70].

In order to prove the robustness of the proposed solution w.r.t. image con-

tents and acquisition conditions (e.g., different devices), further tests have been

performed. Specifically, three datasets have been considered: Dresden [71], UCID

[72] and BOSSBase [69]. Results reported in Tables 2.3,2.4 and 2.5, confirm the
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Figure 2.9: Overall scheme of the reliability index computation. As first, training images
are collected and taken as input from the proposed FQE algorithm. Then, r21 feature is
computed from the χ2 difference curves. Distributions of right and wrong estimations with
respect to the feature r21 can be derived considering also ground truth labels. Finally,
the reliability index curves are simply obtained by the ratio of the correct to the overall
estimations for a fixed range of r21. Given a test image, the reliability of the performed
predictions can be simply obtained from the the comparisons of features r21 values and
the reliability index curves generated from training images.

Images Size Patch size % QF1

QF2 60 65 70 75 80 85 90 95 100

1488 160X120

64X64 21,3% 90 0,96 0,96 0,94 0,93 0,91 0,75 0,21 0,33 0,30
64X64 21,3% 80 0,78 0,73 0,76 0,60 0,05 0,29 0,19 0,13 0,14
160X120 100% 90 0,99 0,99 0,99 0,99 0,99 0,97 0,44 0,32 0,32
160X120 100% 80 0,91 0,87 0,94 0,89 0,84 0,21 0,21 0,15 0,16

Table 2.3: Accuracy obtained by the proposed approach on Dresden [71] dataset with
different patch size and QF1/QF2. The % value represents the percentage of crop size
compared to the original size.
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Images Size Patch size % QF1

QF2 60 65 70 75 80 85 90 95 100

1334 512X384

64X64 2,1% 90 0,92 0,93 0,92 0,92 0,90 0,77 0,21 0,35 0,32
64X64 2,1% 80 0,74 0,72 0,76 0,61 0,04 0,32 0,21 0,14 0,14
128X128 8,3% 90 0,98 0,98 0,98 0,98 0,98 0,94 0,42 0,51 0,41
128X128 8,3% 80 0,91 0,92 0,93 0,87 0,14 0,58 0,36 0,24 0,23
256X256 33,3% 90 0,99 0,99 0,99 0,99 0,99 0,99 0,51 0,58 0,44
256X256 33,3% 80 0,97 0,97 0,98 0,97 0,28 0,78 0,42 0,36 0,33
512X384 100% 90 0,99 0,99 0,99 0,99 0,99 0,99 0,59 0,54 0,42
512X384 100% 80 0,98 0,98 0,99 0,98 0,40 0,83 0,38 0,40 0,34

Table 2.4: Accuracy obtained by the proposed approach on UCID [72] dataset with differ-
ent patch size and QF1/QF2. The % value represents the percentage of crop size compared
to the original size.

Images Size Patch size % QF1

QF2 60 65 70 75 80 85 90 95 100

10000 512X512
512X512 100% 90 0,99 0,99 0,99 0,99 0,99 0,99 0,66 0,47 0,37
512X512 100% 80 0,96 0,96 0,99 0,98 0,41 0,76 0,36 0,41 0,33

Table 2.5: Accuracy obtained by the proposed approach on BOSSBase [69] dataset with
different patch size and QF1/QF2. The % value represents the percentage of crop size
compared to the original size.

Low/Low Low/Mid Low/High Mid/Low Mid/Mid Mid/High High/Low High/Mid High/High
0,73 0,8378 0,93 0,5933 0,81 0,9322 0,2811 0,38 0,8189

Table 2.6: Accuracy of proposed approach using RAISE full-size images compressed with
custom table from Park et al. [73]
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Figure 2.10: χ2 distance curves examples: (a) curve with a strong minimum; (b) curve
containing several local minima with similar values; (c) nearly flat curve.

validity of the proposed method. The impact of the resolution/crop pair is evident

observing the results of a single dataset (Table 2.4), where for each increase in crop

size (incrementally) corresponds an improvement of accuracy. At the same time,

considering the crop from different datasets (64× 64 in Tables 2.1,2.3,2.4) the best

results are achieved in the crop taken from the lowest resolution dataset. A d × d

crop extracted from a high resolution image contains less information than the one

extracted from a smaller image, providing a flatter histogram that is difficult to

discriminate.

A final test regarding double compressed images has been performed in a much

more challenging scenario: a dataset of 500 full-size RAISE images was employed

for first and second compression by using custom tables collected by Park et al. [73].

The authors of [73] collected a dataset of JPEG quantization matrices employed in

real scenarios. The collection consists of 1170 different matrices: 1070 custom and

100 standard JPEG quantization tables. For this test, the parameter of the proposed

approach was n = 136 which is the maximum value of the first 15 coefficients among

the 1070 custom quantization tables in this context. Results obtained, in terms of

accuracy, are reported in Table 2.6 and definitively demonstrate the robustness of

the technique even in a wild scenario of non-standard tables.

FQE algorithms estimate the coefficients of the first quantization matrix without

providing any information about the related reliabilities. In the forensic domain, it

could be fundamental to measure such degree of uncertainty whenever it is available.

One of the contributions of this thesis is a statistically robust analysis conducted
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Figure 2.11: An example of ground truth values (a) and the related estimations (b) ob-
tained considering the proposed solution. In (c) is also reported a possible output where
the 7th and 10th coefficient (zig-zag order) are pointed-out considering two values augment-
ing the overall reliability of the estimation. Background colors in (b) and (c) represent the
reliability associated to the predictions. The red arrow indicates the wrong estimation.

on the amount of information contained in the images, that allowed to generate a

reliability index. To this aim the RAISE dataset [68], including 8156 high resolution

4356 × 3511 (W,H) mean size images together with the proposed FQE solution

are exploited. Specifically, for each source image we generated 73413 (N) crop-

center patches of size 64× 64 (W ′, H ′) compressed twice with different quantization

matrices. Moreover, from the analysis of the χ2 distance curves generated by the

double compression simulations, three classes have been clearly identified (see Figure

2.10): (i) curves with a strong minimum; (ii) curves containing several local minima

with similar values; (iii) nearly flat curves.

To detect the first type of curves, the only ones able to provide a reliable estima-

tion, a feature based on the ratio between the two lowest values of the aforementioned

curve has been designed (r21). A Curve with a strong minimum have r21 value close

to zero. On the contrary, curves containing local minima with similar values have

r21 values close to 1. To detect nearly flat curves, in our tests the differences with

respect to the median value have been computed and if more than 1/3 of them are

zero, the curve is considered nearly flat and the r21 is set to 1 (low reliability).

The overall pipeline designed to provide a reliability index to the performed

estimations is described in Figure 2.9. A set of training images, collected considering

the testing scenario (e.g., image resolution, crop size, employed Q2), is considered as

input of the proposed algorithm. Starting from the χ2 difference curves, r21 feature

is computed (one value per curve). These data, combined with ground truth labels,
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are then exploited to generate the distributions of right and wrong estimations

with respect to the feature r21. Finally, the reliability index curves (one per DCT

coefficient) are simply obtained by the ratio of the correct to the overall estimations

for a fixed range of r21. Considering then a test image, the reliability of the algorithm

predictions can be simply obtained computing the features r21 and comparing these

values with the reliability index curves previously generated from training images.

In Figure 2.11 an example of reliability indexes computed for the first 15 DCT

coefficients on a double compressed image with QF1 = 70 and QF2 = 90 is reported.

The predicted quantization factors are {10,7,7,8,7,6,10,8,8,5,11,10,10,11,14} whereas
ground truth labels are {10,7,7,8,7,6,10,8,8,8,11,10,10,11,14}. It is worth noting

that, although the proposed approach provide a wrong estimation of the quantization

factor related to the 10th DCT coefficient, the associated reliability index is pretty

low (i.e., 0.5). This value indicates that in the training dataset, only half of the

images with a similar r21 have been correctly estimated.

If the reliability index associated to the performed estimation does not satisfy

the requirement of a specific forensics scenario, that estimation can be discarded

or further analysis can be done. Specifically, the statistics about the reliability

of the estimation computed from training images, can be performed also consider-

ing not only the minimum of the χ2 distance curve, but taking into account the

two lowest values of the aforementioned curve. Considering previously described

example, and fixed a reliability of 0.9 (i.e., 90% of quantization factors correctly

estimated in the same scenario), the proposed solution provides the following esti-

mation: {10,7,7,8,7,6,[10,9],8,8,[5,8],11,10,10,11,14}, where suggesting the pairs [10,

9] and [5, 8] we obtain the increase of reliability to reach the fixed threshold.

Reliability of the estimation could support further analysis in the field refin-

ing existing methods especially when such information is used directly for image

ballistics purposes ([74], [75]).

2.3.2 Experiments with Multiple Compressions

The hypothesis that only one compression was performed before the last one could

be a strong limit. Thus, a method able to extract information about previous

quantization matrices, in a multiple compression scenario, may be a considerable

contribution. For this reason, the proposed approach was tested in a triple JPEG
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Figure 2.12: Overall accuracy of the proposed method on JPEG triple compressed images
when trying to estimate the Qm−1 quantization factors. First row identifies patch size
64× 64, 128× 128, 256× 256 and QF3 = 80 respectively [(a),(b),(c)], while second row is
related to the same patch sizes and QF3 = 90 [(d),(e),(f)

compression scenario, where the new goal was the estimation of the quantization

factors related to the second compression matrix. Figure 2.12 shows the accuracy

obtained employing different crop sizes (64 × 64, 128 × 128, 256 × 256) on all the

combinationsQF1/QF2/QF3 withQF1/QF2 ∈ {60, 65, 70, 75, 80, 85, 90, 95, 100} and
QF3 ∈ {80, 90} with the method that predicts the firsts 15 coefficients of QF2.

As shown in Figure 2.12, the method in general achieves satisfactory results.

Some limits are visible when the first compression is strong (low QF ) and the sec-

ond one has been performed with an high quality factor QF2 ∈ {90, 95, 100}. By

analyzing the results in these particular cases, it is worth noting that the method es-

timates QFm−2 instead of QFm−1 (wherem represents the compression step). Figure

2.13 shows the accuracies obtained in these last cases (QF2 ∈ {90, 95, 100}) consid-
ering as correct estimations the quantization factors related to Qm−1 (a), Qm−2 (b)
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Figure 2.13: Overall accuracy of the proposed method on JPEG triple compressed images
with high QF2 (90,95,98), patch size 256×256 and QF3 = 90, considering as ground truth
(i.e., correct estimations) the quantization factors related to QF2 (a), QF1 (b) and both
(c).

and both (c). Results shown in (c) demonstrate how the method is able to return

information about quantization factors (not only m − 1) even in this challenging

scenario. Starting from this phenomenon, in order to discriminate a predicted fac-

tor qk between Qm−2 and Qm−1, a simple test has been carried out on 100 triple

compressed images with QF1 = 65, QF2 = 95 and QF3 = 90. Starting from the

cropped image CI (see Section 2.3), we simulated, similarly to the case of double

compressions in the proposed approach, all the possible triple compressions taking

into account only two hypothesis (i.e., qk belongs to Q2 or Q1) and considering a

constant matrix built from qk as Q1 or Q2 respectively. Thus, the obtained simu-

lated distributions are compared with the real one through χ2 distance (2.4). In this

scenario, the proposed solution correctly estimated Q1 quantization factors with an

accuracy of 95.5%. Moreover, as a side effect of the triple compression also Q2 is

predicted with 76.6% accuracy.

The insights found for the triple compression experiments were confirmed on 4

times JPEG compressed images (Figure 2.14). Even in this scenario, if high QF

are employed in the third compression (e.g., 90, 95, 100) Q2 factors are actually

predicted in a similar way of what was described before. Besides, if both QF3 and

QF2 are high, Q1 elements could be estimated, confirming how the method in each

case obtains information about previous compressions.
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Figure 2.14: Accuracy of the proposed method on JPEG 4-compressed images employing
all the combinations QF1, QF2, QF3 ∈ {60, 65, 70, 75, 80, 85, 90, 95, 100} and QF4 = 90
considering QF3 as ground truth (a). Further analysis have been conducted with QF3 ∈
{90, 95, 100} (low accuracy regions): (b) and (c) show the results employing QF2 and QF1

as ground truth respectively.
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The proposed method estimates the strongest previous compression which is ba-

sically the behavior of most First Quantization Estimation (FQE) methods. For

this reason, a comparison was made with [63] on triple compressed images consider-

ing Qm−1 as correct estimation. Figure 2.15 reports the accuracy in the QF3 = 90

scenario showing how our method (left graph) maintains good result even in triple

compression while [63] has a significant performance drop compared to double com-

pression.

Figure 2.15: Accuracy of our method (left) and [63] (right) on JPEG triple compressed
images employing all the combinations QF1, QF2 ∈ {60, 65, 70, 75, 80, 85, 90, 95, 100} and
QF3 = 90 considering QF2 as ground truth.

Recent works in literature demonstrate how different JPEG implementations

could employ various Discrete Cosine Transform and mathematical operators to per-

form floating-point to integer conversion of DCT coefficients [76]. In order to further

validate the proposed method, a cross JPEG implementation test was conducted

considering two different libraries (Pillow and libjpeg-turbo) and 2 DCT configura-

tions 8 to compress the input images and Pillow to simulate the double compression

described in the pipeline. The test was performed using the same 8156 RAISE im-

ages cropped 64×64 and double compressed by means of the aforementioned JPEG

implementations with QF1 = {60, 65, 70, 75, 80, 85, 90, 95} and QF2 = 90. Results

reported in Table 2.7 confirm the overall robustness of the proposed solution with

respect to different JPEG implementations.

8https://github.com/libjpeg-turbo/libjpeg-turbo/

https://github.com/libjpeg-turbo/libjpeg-turbo/
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60 65 70 75 80 85 90 95 MEAN
Pillow 0,76 0,77 0,78 0,82 0,82 0,75 0,23 0,38 0,66

libjpeg-turbo dct-int 0,76 0,76 0,77 0,80 0,80 0,74 0,23 0,38 0,66
libjpeg-turbo dct-float 0,75 0,75 0,76 0,80 0,80 0,72 0,23 0,39 0,65

Table 2.7: Accuracy obtained employing different JPEG implementations with QF2 = 90.
The columns (60,65,. . . ,95) represent the QF1.

2.4 FQE by a smart data exploitation

As discussed previously, most First Quantization Estimation methods in state of the

art employ directly images as input. This choice, especially in Machine Learning

methods, limits the usability of the built models to a specific patch size. Another

limit of CNN-based works is the use of the second quantization matrix; in almost

all cases the input for training phase has always data compressed with a standard

second quantization matrix, producing models that satisfy only this condition.

To overcome those design limits, an hybrid solution based on both statistical

analysis and machine learning was proposed (in the aligned scenario). The statis-

tical side of the solution is represented by the pre-processing analysis of the image

which exploit the statistical feature of the DCT distributions, while the machine

learning is applied to predict the quantization factors. The use of DCT histograms

as input (instead of the image), allows a patch size independence and an uncorre-

lated prediction from the input image quantization matrix. Moreover that choice

permits the final user to make prediction also in presence of custom quantization

matrices avoiding overfitting. In the following sections will be presented 2 different

solutions based on the same statisical pre-processing, but with different machine

learning methods in the prediction phase.

2.4.1 K-nearest neighbors (KNN) method

The technique involves the use of a proper dataset to compare against the query

image for FQE. The first version and its extension have been published ([77, 78]).

The first part is then the generation of this reference dataset. Starting from the

RAISE dataset [68] (8156 high-resolution uncompressed images) a 64 × 64 patch

was extracted from the center of the original one. Considering every possible couple

of constant matrix {Mi,Mj} (Figures 2.16a, 2.16b) with i, j ∈ {1, 2, . . . , q1max} as

first and second quantization matrix,a double compression of the 64× 64 image was
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a. Mi with i = 4 b. Mi with i = 22

c. Standard matrix QF = 90 d. Photoshop matrix QF = 5

Figure 2.16: Example of the constant matrix Mi with i = 4 (a) and i = 22 (b), standard
quantization matrix with QF = 90 (c) and custom quantization matrix extracted from
Photoshop with quality 5; Photoshop defines its custom table with quality factor in range
[1,12]. The red circle in (c) and (d) defines the maximum value of the matrix between the
first 15 coefficients.
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Figure 2.17: Percentages of custom matrices in Park’s dataset [73] with quantization
factors lower than 23 for the first 15 coefficients.

carried out. The choice of q1max = 22 has been done taking into account realistic

scenarios as detailed in the following. State-of-the-art often considered QF ≥ 55 as

the worst case to analyze for the task of FQE; considering that the best methods

reach to estimate the first k = 15 DCT coefficients, the value of 15-th quantization

factor of the matrix QF = 55 is 22. Moreover, considering the collection of matrices

employed in real-case-scenario described in Park et al. [73] it means considering the

81% of them (873 on 1070) (Fig. 2.17). Accordingly, 8156 × 22 × 22 = 3.947.504

double compressed images were generated, which represent the dataset that will be

employed to do the comparison with the query image. The employing of constant

matrices Mi as quantization matrices in double compression was done in order to

safely break the correlation with real quantization matrices (e.g., standard ones).

This way to compose the dataset comparison makes the approach generalizable w.r.t.

any JPEG double compressed image (in the aligned scenario).

The comparison between the reference dataset and the query image (JPEG dou-

ble compressed image) will be performed employing the DCT coefficient distributions

hi, with i ∈ 1, 2, ..., q1max. Hence, the first k = 15 distributions hi were calculated

for each double compressed image, and then clustered in sub-datasets labelled by

the couple {q1, q2} representing first and second quantization factor employed. The

usefulness of the Laplacian distribution (2.3) was described during the years ([79]);

for this reason the distributions hi of ACs coefficients were fitted by considering the
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following equation:

f(x) =
1

2β
exp

(︄
−|x− µ|

β

)︄
(2.3)

where β and µ are obtained through MLE (Maximum Likelihood Estimation)

closed form solution.

β values were employed for sub-datasets sorting of the AC distributions (hi with

i > 1), while the median value m to sort DC distributions h1. To sum up, the

reference dataset after sorting is composed as follows:

• DCdset: DC distributions split for every possible couple {q1, q2} sub-datasets

(sorted by m);

• ACdset: AC distributions split for every possible couple {q1, q2} sub-datasets

(sorted by β).

The organization of the data exploiting the model described in (2.3) permitted

the reduction of the computational time of the proposed solution, in fact β and m

will be employed to individuate the subdataset of the reference ones to select for

the comparison with the query image. It is easy to note that the performance of the

method depends on the size of the reference dataset: the bigger will be the amount of

data, the better will be the estimation. The overall dataset sizes in our experiments

have been selected accordingly with the results and the storage possibilities.

Given a double compressed image I ′′ as query, the estimation of the first k

quantization factors {q11, q12, . . . , q1k} of Q1 could be summarized as in Algorithm 2

and Figure 2.18.

The following steps describe the estimation of every q1i with i ∈ {1, 2, . . . , k}:

1. extract hi from I ′′ (employing LibJpeg C library 9).

9https://github.com/LuaDist/libjpeg

https://github.com/LuaDist/libjpeg


Chapter 2. First Quantization Estimation 41

Algorithm 2 FQE method through KNN

1: Input: double compressed image I ′′

2: Output: {q11, q12, . . . , q1k}
3: Initialization : k, q1max

4: for i = 1 to k do
5: hi : (empirical) distribution of i-th DCT coefficient
6: if (i = 1) then
7: D : DCdset

8: m : median value of hi

9: else
10: D : ACdset

11: β : β fitted on Laplacian hi

12: end if
13: q2i : quantization factor of Q2 for i-th DCT
14: for j = 1 to q1max do
15: Dj,q2i : sub-dataset (q1, q2) with q1 = j, q2 = q2i
16: Dj,q2i(m,β) : sub-range with most similar m,β
17: di,j : lower χ

2 distance between hi and Dj,q2i

18: end for
19: q1i : argmin{di,j}, j ∈ {1, 2, . . . , q1max}
20: end for
21: regularize({q11, q12, . . . , q1k})
22: return {q11, q12, . . . , q1k}

2. fit hi to the Laplacian distribution in order to extract β (if i > 1) or compute

the median value m (if i = 1).

3. use β (or m) to seek the most similar item in the reference dataset and then

to individuate the range of candidates inside it.

4. find the most similar distribution between the candidates.

Note that step 1 permits avoiding further errors (truncation and rounding) and

that the usage of β (if i > 1) and m (if i = 1) makes the time to individuate the

most similar distribution between the candidates constant.

The knowledge of Q2 and q2i allows to select only some sub-datasets. For each

sub-datset {qj,q2i} with j ∈ {1, 2, . . . , q1max} a range of elements Dj,q2i(m,β) is
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Figure 2.18: A schematic representation of the proposed FQE method. The pipeline starts
with a JPEG double compressed image. Each DCT histogram hi is then compared with
proper subdatasets computing χ2 distance. Most similar histogram for each element is
chosen for the FQE task.

selected through the similarity of β for ACdset and m for DCdset. The selected

elements were compared with hi using χ2 distance:

χ2(x, y) =
m∑︂
i=1

(xi − yi)
2/(xi + yi) (2.4)

where x and y are the distributions to compare. For each sub-dataset Dj,q2i

the lowest distance di,j is selected, obtaining q1max distances. The minimum dis-

tance individuates a sub-dataset, related to a specific q1 that represents the first

quantization factor to estimate for the current i.

The obtained distances di,j does not obtain always a strong minimum. Analyzing

those specific cases, it is possible to note that it happens when the histogram hi

does not contains enough information to discriminate among the q1i values to be

estimated. To overcome such limit an exploitation of the data related to neighboring

DCT coefficients has been considered. In particular, as reported often in the state-

of-the-art, the hypothesis that consecutive quantization factors in zig-zag order have

similar values has been exploited. Specifically, with k = 15 and taking into account
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Figure 2.19: Accuracy of the proposed approach w.r.t. the number of neighbors considered
for comparison.

three consecutive q1, 13 triplets (q1i−1, q1i, q1i+1, i = 2, . . . , 14) can be found.

A single triplet (q1i−1, q1i, q1i+1) can be then estimated through a cost function

in which all possible q1 combinations (i.e., 22 × 22 × 22 with q1max = 22) are

considered. The cost function C is designed as the weighted average of a data term

(Cdata) and a regularization term (Creg):

C = wCdata + (1− w)Creg (2.5)

where w ∈ [0, 1], Cdata is the normalized sum of the three distances di,j, and Creg

is the regularization term introduced to reduce the difference among neighboring

q1 values. Additional details related to the design of Creg will be presented during

method explanation.

Parameter setting

In order to find the right parameters for the method described in Section 2.4.1 a

validation dataset DV was employed, composed of 8156 64× 64, cropped at random

positions from the RAISE [68] dataset.

As previously described, given the second quantization factor q2 (from the meta-

data) the reference sub-datasets selected are q1max, in which a sort bym and β values

is carried out to reduce the computational complexity. The sorting allows to fix an
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Figure 2.20: Comparison between the modes of the accuracies obtained for different val-
ues of the regularization parameter w employing the three equations (2.6), (2.7), (2.8)
respectively.

exact number of distributions hi to be taken into account making the computational

time constant and not dependent on the dataset size. The right number of compar-

isons was chosen after tested sub-range of 50, 100, 250, 500, 1000, 2000 elements.

The results of Figure 2.19 show as the value of 1000 is a good trade-off between the

overall computational cost and the accuracy w.r.t. the full search solution.

Sometimes, the described histograms hi do not contain enough information, then

a regularization function was employed in order to cope with this problem. As

mentioned in Section 2.4.1, the proposed approach estimates triplets of nearest q1i

and performs a regularization based on 2.10. In order to choose the right Creg three

different functions have been analyzed:

Creg1 =
|ci − ci−1|+ |ci − ci+1|

2
(2.6)

Creg2 =
|ci − ci−1|+ |ci − ci+1|

2
√
ci

(2.7)

Creg3 =
|ci − ci−1|+ |ci − ci+1|

2ci
(2.8)

where ci−1, ci, ci+1 are consecutive quantization factors candidates in zig-zag

order. Every q1i is estimated multiple times: as example q13 is estimated in three

different triplets: (q11, q12, q13), (q12, q13, q14) and (q13, q14, q15). As reported in

Fig. 2.20 the modes of multiple estimations related to eq.2.6,2.7,2.8 were studied:
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the last (2.8) was chosen with w = 0.92.

Experimental Results

QF1 QF2 = 90
Our Our Reg. [33] [53] [54] [63] [64] [65]

55 0.76 0.77 0.53 0.52 0.45 0.00 0.00 0.62
60 0.82 0.82 0.53 0.56 0.47 0.64 0.53 0.66
65 0.79 0.81 0.54 0.57 0.49 0.54 0.81 0.68
70 0.85 0.85 0.43 0.57 0.51 0.66 0.66 0.70
75 0.83 0.85 0.41 0.63 0.53 0.77 0.93 0.75
80 0.81 0.83 0.29 0.61 0.45 0.81 0.67 0.75
85 0.78 0.85 0.14 0.74 0.36 0.81 0.88 0.72
90 0.30 0.24 0.00 0.00 0.00 0.02 0.02 0.23
95 0.44 0.52 0.11 0.00 0.00 0.78 0.68 0.40
98 0.49 0.57 0.00 0.00 0.00 0.76 0.91 0.41

MEAN 0.69 0.71 0.30 0.42 0.33 0.58 0.61 0.59
QF1 QF2 = 80

Our Our Reg. [33] [53] [54] [63] [64] [65]
55 0.55 0.58 0.36 0.37 0.37 0.24 0.52 0.49
60 0.55 0.60 0.27 0.37 0.38 0.50 0.31 0.47
65 0.68 0.65 0.19 0.41 0.43 0.31 0.38 0.52
70 0.67 0.75 0.19 0.50 0.49 0.50 0.70 0.66
75 0.48 0.56 0.07 0.56 0.45 0.15 0.58 0.47
80 0.12 0.11 0.00 0.00 0.00 0.00 0.04 0.04
85 0.28 0.34 0.19 0.00 0.00 0.04 0.14 0.31
90 0.16 0.19 0.06 0.00 0.00 0.48 0.37 0.21
95 0.27 0.30 0.00 0.00 0.00 0.95 0.37 0.19
98 0.42 0.42 0.01 0.00 0.00 0.21 0.48 0.19

MEAN 0.42 0.45 0.13 0.22 0.21 0.28 0.39 0.36

Table 2.8: Accuracies obtained by the proposed approach compared to Bianchi et al. [33],
Galvan et al. [53], Dalmia et al. [54], Niu et al. [63], Tondi et al. [64] and Battiato et al.
[65] with different combinations of QF1/QF2, considering standard quantization tables.
To note that Battiato et al. [65] is the method described in Section 2.3.

State-of-the-art showed abundantly as the difficulty to estimate a specific quan-

tization factor is related to its position: High frequencies are used to be quantizated

heavily and after certain values the recovered value after dequantization is always

zero (e.g., ’dead zone’ quantization). Although some state-of-the-art papers ana-

lyzed a lower value, the setting of k = 15 as the number of quantization factor to

estimate has became almost a standard for this task, and it was adopted also in this

approach.
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a. QF1 ∈ {55, 60, 65, 70, 75, 80, 85, 90, 95, 98}, QF2 = 90

b. QF1 ∈ {55, 60, 65, 70, 75, 80, 85, 90, 95, 98}, QF2 = 80

c. Q1 ∈ {5, 6, 7, 8, 9, 10, 11, 12}, QF2 = 90

d. Q1 ∈ {5, 6, 7, 8, 9, 10, 11, 12}, QF2 = 80

Figure 2.21: Accuracies of the same methods described in Table 2.8 and 2.9 at varying the
quantization factors q1i to be predicted. The values are averaged over all the QF1/Q1.
Comparisons have been done with Bianchi et al. [33], Galvan et al. [53], Niu et al.
[63],Tondi et al. [64] and Battiato et al. [65]. To note that Battiato et al. [65] is the
method described in Section 2.3.



Chapter 2. First Quantization Estimation 47

a. QF1 ∈ {55, 60, 65, 70, 75, 80, 85, 90, 95, 98}, QF2 = 90

b. QF1 ∈ {55, 60, 65, 70, 75, 80, 85, 90, 95, 98}, QF2 = 80

c. Q1 ∈ {5, 6, 7, 8, 9, 10, 11, 12}, QF2 = 90

d. Q1 ∈ {5, 6, 7, 8, 9, 10, 11, 12}, QF2 = 80

Figure 2.22: Accuracies of the proposed method at varying training/test patch size. The
values are averaged over all QF1/Q1.
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PS QF2 = 90
Our Our Reg. [33] [53] [63] [64] [65]

5 0.80 0.78 0.56 0.58 0.05 0.10 0.69
6 0.82 0.82 0.46 0.60 0.07 0.13 0.75
7 0.83 0.83 0.41 0.58 0.07 0.09 0.70
8 0.81 0.81 0.25 0.65 0.10 0.13 0.74
9 0.55 0.61 0.02 0.47 0.02 0.05 0.47
10 0.42 0.50 0.19 0.00 0.25 0.33 0.43
11 0.45 0.52 0.04 0.00 0.69 0.75 0.40
12 0.49 0.57 0.04 0.00 0.75 0.85 0.41

MEAN 0.64 0.68 0.25 0.36 0.25 0.30 0.58
PS QF2 = 80

Our Our Reg. [33] [53] [63] [64] [65]
5 0.65 0.68 0.26 0.46 0.07 0.08 0.57
6 0.42 0.54 0.05 0.41 0.02 0.06 0.42
7 0.62 0.68 0.15 0.48 0.08 0.10 0.56
8 0.19 0.22 0.03 0.03 0.01 0.04 0.18
9 0.26 0.28 0.19 0.00 0.07 0.13 0.28
10 0.15 0.20 0.00 0.00 0.40 0.16 0.17
11 0.37 0.38 0.01 0.00 0.24 0.38 0.23
12 0.42 0.42 0.01 0.00 0.21 0.44 0.26

MEAN 0.39 0.42 0.09 0.18 0.17 0.14 0.33

Table 2.9: Accuracies obtained by the proposed approach compared to Bianchi et al. [33],
Galvan et al. [53], Niu et al. [63], Tondi et al. [64] and Battiato et al. [65] employing
custom tables for first compression. The column PS refers to custom tables used by
Photoshop.



Chapter 2. First Quantization Estimation 49

The goodness of the method was demonstrated through the comparison with

different styles approaches: statistical analysis (mathods Bianchi et al. [33], Galvan

et al. [53], Dalmia et al. [54], Battiato et al. [65]) and Machine Learning based

methods (Niu et al. [63] and Tondi et al. [64]) were considered. For each one of

the methods the tests were done with the same datasets and employing the public

implementations provided by the authors.

4 dataset were generated to conduct the tests: a random (not centered) 64× 64

patch was cropped from every RAISE [68] and then compressed two times with the

following rules:

1. QF1 ∈ {55, 60, 65, 70, 75, 80, 85, 90, 95, 98}, QF2 = 90

2. QF1 ∈ {55, 60, 65, 70, 75, 80, 85, 90, 95, 98}, QF2 = 80

3. Q1 ∈ {5, 6, 7, 8, 9, 10, 11, 12}, QF2 = 90

4. Q1 ∈ {5, 6, 7, 8, 9, 10, 11, 12}, QF2 = 80

where Q1 ∈ {5, 6, 7, 8, 9, 10, 11, 12} of 3) and 4) are referred to Photoshop’s quan-

tization matrices (CC version 20.0.4). Dalmia et al. [54] make assumptions about

standard tables employed in the first compression in its implementations and so was

excluded in the tests with Photoshop’s custom tables (datasets 3 and 4). All the

other methods were tested with the 4 datasets described above as input.

Tables 2.8, 2.9 and Fig. 2.31 show the results: our approach outperforms state-of-

the-art methods in almost all scenarios (values close to 0 are due to the assumptions

of some methods, e.g., QF1 < QF2). It is important to note that Table 2.9, where

the custom quantization matrices were employed, demonstrates the absence of corre-

lation with a particular quantization table and that the regularization step improves

the results in almost all cases.

To further confirm the effectiveness of the proposed solution, additional exper-

iments at varying patch size have been performed. The same conditions of tests

already seen before, but with more informative patches have been considered. Specif-

ically, other three double compressed training (or reference) datasets from RAISE

with 128× 128, 256× 256, 512× 512 patches have been generated. In the same way

test datasets with each patch sizes (128×128, 256×256 and 512×512) with standard

and custom tables (Photoshop) for Q1 and QF2 ∈ {80, 90} have also been created.
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In Fig. 2.22 it is easy to understand the trend of the results: due to the higher

amount of information, bigger patches achieve higher accuracy in all the considered

scenarios. The correlation between informative content of an image and estimation

accuracy confirms the studies conducted in Section 2.3.

Method Test Dataset Low/Low Low/Mid Low/High Mid/Low Mid/Mid Mid/High High/Low High/Mid High/High Mean

Our
RAISE [68] 64× 64

0.25 0.47 0.79 0.17 0.32 0.82 0.27 0.31 0.70 0.46

Our Reg. 0.30 0.53 0.81 0.22 0.37 0.84 0.25 0.33 0.75 0.49

Our
UCID [72] 64× 64

0.33 0.63 0.93 0.20 0.39 0.90 0.15 0.21 0.66 0.49

Our Reg. 0.36 0.65 0.96 0.23 0.42 0.91 0.13 0.23 0.73 0.51

Our
RAISE [68] 128× 128

0.36 0.60 0.85 0.29 0.44 0.87 0.25 0.32 0.74 0.52

Our Reg. 0.41 0.55 0.88 0.34 0.48 0.89 0.25 0.38 0.79 0.55

Our
UCID [72] 128× 128

0.47 0.76 0.96 0.31 0.49 0.94 0.18 0.29 0.74 0.57

Our Reg 0.50 0.79 0.96 0.35 0.51 0.93 0.20 0.34 0.79 0.60

Our
RAISE [68] 256× 256

0.45 0.69 0.88 0.38 0.52 0.89 0.25 0.36 0.77 0.58

Our Reg. 0.49 0.73 0.90 0.40 0.55 0.90 0.30 0.45 0.82 0.62

Our
UCID [72] 256× 256

0.56 0.83 0.98 0.44 0.57 0.96 0.23 0.34 0.77 0.63

Our Reg. 0.60 0.85 0.97 0.48 0.60 0.96 0.28 0.43 0.82 0.67

Our
RAISE [68] 512× 512

0.50 0.74 0.91 0.44 0.57 0.91 0.26 0.38 0.77 0.61

Our Reg. 0.50 0.78 0.92 0.48 0.59 0.92 0.32 0.48 0.83 0.65

Our
UCID [72] Full size

0.63 0.86 0.98 0.51 0.62 0.96 0.27 0.39 0.80 0.66

Our Reg. 0.67 0.87 0.97 0.56 0.62 0.96 0.37 0.49 0.85 0.71

Table 2.10: Accuracies of the proposed approach for generalizing property demonstration
(Our Reg. denotes the regularized version). It is worth noting that, given a patch size
N ×N , the same dataset was employed as reference (i.e., RAISE N ×N) for both input
(i.e., RAISE N ×N , UCID N ×N).

Recently, Park et al. in [73] collected a dataset of JPEG quantization matrices

employed in real scenarios. The collection is made up of 1170 different quantiza-

tion matrices, including the 100 standard ones. In order to demonstrate a further

generalization capability the collection was exploited: as said before the reference

datasets created concern quantization matrix with q1max = 22. For this reason, after

the download of the collection, only the collection’s matrices with q1i ≤ q1max = 22

and i ∈ {1, 2, . . . , 15} (see Section 2.4.1) have been selected; moreover we sorted

them by the average of the first 15 quantization factors and then split into three

sets of 291 elements (Low, Mid, High). These sets of tables are then employed to

create 9 combinations of double compressions.

We carried out the tests employing four different patch sizes (64× 64, 128× 128,

256× 256, 512× 512) and selecting randomly the quantization matrices Q1 and Q2
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60 65 70 75 80 85 90 95 MEAN

Pillow 0,86 0,83 0,88 0,87 0,86 0,79 0,31 0,42 0,73

libjpeg-turbo 0,85 0,82 0,87 0,85 0,83 0,77 0,32 0,42 0,72

Table 2.11: Accuracy obtained employing different DCT implementations for JPEG com-
pression. It is worth noting that the different implementation are referred to the test
set; the reference dataset is the same employed in the previous tests (i.e., RAISE double
compressed images with DCT Pillow implementation).

to perform the double compression from the 291 available in the corresponding set

(Low, Mid, High). The results reported in Table 2.10 clearly show that the good

accuracies reached before are maintained also in this challenging scenario demon-

strating to achieve same results even when different datasets are employed (e.g.,

RAISE as reference and UCID as test dataset).

Once more, the results underline the importance of the content: the better results

with UCID [72] dataset are explainable with the greater quantity of information (the

DCT overall energy) inside it, in fact, a 256 × 256 patch extracted from a UCID

[72] image (512× 384) has a quantity of information greater than a 256× 256 patch

extracted from a RAISE [68] image (≈ 5000× 3000).

A final test was done for the proposed approach. Recently,the research commu-

nity is studying the effect of different Discrete Cosine Transform implementations in

the JPEG image generation [76]. In order to validate the proposed method, also in

presence of different JPEG implementations, was conducted a test employing Pillow

and libjpeg-turbo10 to compress two times the images. The test was done testing

a dataset composed by 2000 RAISE images cropped 64 × 64 and compressed two

times with the aforementioned JPEG implementations. Also in this test,the results

in Table 2.11 confirmed the overall robustness of the method also w.r.t different

DCT implementations.

Deepening

All the experiments performed previously were done considering a specific patch size

N × N for each scenario, where both reference and test sets have been generated

starting from patches of the same size. As demonstrated, bigger patch sizes, due to

the higher information content, provide better results (see Fig. 2.22 and Table 2.10).

10https://github.com/libjpeg-turbo/libjpeg-turbo/

https://github.com/libjpeg-turbo/libjpeg-turbo/
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a. Accuracy of RAISE 64× 64 test set. b. Accuracy of UCID 64× 64 test set.

c. Accuracy of RAISE 128× 128 test set. d. Accuracy of UCID 128× 128 test set.

e. Accuracy of RAISE 256× 256 test set. f. Accuracy of UCID 256× 256 test set.

g. Accuracy of RAISE 512× 512 test set. h. Accuracy of UCID 512× 512 test set.

Figure 2.23: Accuracy of tests conducted on different test sets grouped and sorted by
Laplacian β, shown on a logarithmic scale. It is worth noting that, given a patch size
N ×N , the same dataset was employed as reference (i.e., RAISE N ×N) for both input
(i.e., RAISE N ×N , UCID N ×N).
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The next step was to understand if it is possible to exploit information contained in

patches of different size with respect to the analyzed ones so that, a real application

could refer to a unique reference dataset. To do that cross patch size tests have been

conducted considering 8 datasets built from RAISE [68] and UCID [72]. In particular

for every couple of patch size 64 × 64, 128 × 128, 256 × 256, 512 × 512 a test was

conducted, employing for each one 1000 random images as query images, compressed

two times with QF1 ∈ {55, 60, 65, 70, 75, 80, 85, 90, 95, 98}, QF2 = 90. The generated

images have been the compared with the 4 reference datasets employed in previous

sections. Tables 2.12 and 2.13 demonstrate how training datasets built from higher

patch size work better almost always, due to the higher information content. To

understand how these improvements are related to the information content, the

accuracies of AC coefficient estimation in all the considered scenarios at varying β

(eq. (2.3)) was studied.

Test

Training
64 128 256 512

64 0.677 0.699 0.703 0.699

128 0.698 0.744 0.758 0.760

256 0.705 0.758 0.780 0.783

512 0.710 0.768 0.792 0.801

Table 2.12: Accuracies obtained for every couple test/training with RAISE as test dataset.

Although exploiting training datasets with bigger patch sizes always provides

better results (see Fig. 2.23), the gain in terms of accuracy is higher when low β

values are considered (i.e., lower informative patches). This behavior is more evident

in the experiments conducted on RAISE dataset (w.r.t. UCID) due to the different

resolution of the original images used to extract patches. AC distributions with low

β values have almost all bins close to zero and it is rather difficult to discriminate

among ones obtained with different first quantization factors. This is even worse

when a limited number of elements are used to build these histograms: histograms

generated from 64 × 64 and 512 × 512 patches have been obtained considering 64
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Test

Training
64 128 256 512

64 0.754 0.770 0.775 0.777

128 0.789 0.812 0.824 0.829

256 0.799 0.824 0.837 0.843

512 0.799 0.824 0.842 0.846

Table 2.13: Accuracies obtained for every couple test/training with UCID as test dataset.

and 4096 elements respectively. Higher patch sizes allow then, especially when the

information content is limited, to better discriminate similar distributions.

2.4.2 Convolution Neural Network (CNN) Method

The excellent results obtained in Section 2.4.1 (Battiato et al.[78]) exploiting a

simple k-nn (k = 1), suggested a further analysis of the method.

For each q2 ∈ {1, 2, . . . , q1max}, 2 reference datasets of empirical distributions

were built, the first related to AC and the second to DC, due to their composition

difference. q1max is the maximum value between the first k factors in zig-zag order in

the quantization matrices: considering as matrices the figures 2.16c and 2.16d, and

fixing k = 15, q1max values are 5 and 21 respectively (highlighted in the figures).

To sum up, 2 · q1max models allowed us to deal with double compressed images

with custom first and second compression matrices Q1 and Q2 whose quantization

factors are lower than or equal to q1max in the first k positions (zig-zag order).

This data organization allows us to switch from q1max
k possible combinations to

2 ·q1max; considering the parameters setting chosen in 2.4.1 (k = 15 and q1max = 22)

means that only 22 · 2 = 44 models have to be trained employing our strategy

instead of 2215. The described data organization strategy allows to deal with a large

number of double quantization parameters maintaining a feasible workload, in terms

of computational efforts.
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Figure 2.24: Parametric architecture representing the trained CNNs. The first layer rep-
resents the distribution of i-th DCT coefficient, compressed the second time with q2. The
input distribution is then reduced in hq2 bins. The following four layers are 2D convolu-
tions with a filter 1× 3, batch normalization and ReLu activation function. The last two
layers consist of a fully connected and a softmax layer with 22 elements.

Many state-of-the-art approaches based on machine learning train their models

considering datasets related to a specific second quantization matrix Q2, but in real

applications, it is very likely to find double compressed images with Q2 different than

the one used in those studies. This would force the investigator to build datasets

and to perform a training phase for each desired Q2. In this Section the data

organization described before was exploited to cope this problem, training CNNs

that employ DCT distributions hi obtained in the same way as previous section.

Also in the method that will be described, RAISE [68] was considered in training

phase. The choice derives from the desire to face a challenging condition: RAISE

is composed of 8156 high-resolution uncompressed images that were captured in

different scenes employing different cameras and the extraction of a 64 × 64 pixel

images from high resolution images permit us to obtain distributions with a low

level of information and then to train the network also in presence of critical cases.

The double compression phase was carried out extracting different d× d central

patches from raw images and compressing the images employing proper combina-

tions of constant matrices Mi (Fig. 2.16a, 2.16b) with i ∈ {1, 2, . . . , q1max}. In

our tests, the value of q1max was set to 22 whereas 4 different patch sizes with

d ∈ {64, 128, 256, 512} were considered. Hence, the final number of JPEG double

compressed images exploited to train the proposed solution was 8156×22×22×4 =
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15.790.016. Moreover, starting from a double compressed image, k = 15 DCT distri-

butions (1 DC and 14 AC) were extracted. Each distribution is then characterized

by 4 parameters: patch size d, first quantization factor q1, second quantization fac-

tor q2 and specific DCT position k. Finally, to better organize this huge amount

of data (i.e., 8156 × 22 × 22 × 4 × 15 ), all the distributions were clustered ac-

cording to the parameters d, q2 and DCT coefficient type (DC, AC) generating

4 × 22 × 2 = 176 different sets. In the method described in Section 2.4.1 ([78]) we

already demonstrated that a simple learning approach (k − nn with k = 1) could

obtain good results also with the variability of custom quantization matrices. Now,

with a deep learning technique, a considerable improvement of the overall accu-

racy is expected whilst maintaining robustness and generalization properties. The

following described method id currently under review to be published.

Given a double JPEG compressed image I ′′ the main aim of the proposed solution

is the estimation of the k first quantization factors employed in the first compression.

As already pointed out in Section 2.4.1, for each q2, two different DCT coefficient

types (DC or AC), have to be taken into account, due to their difference in terms

of statistical distribution. A DC-CNN and an AC-CNN for each possible value of

q2 ∈ {1, 2, . . . , q1max} were trained.

The CNN architecture is described in Fig. 2.24. For each q2 the input is the

normalized DCT histograms with hq2 =
⌈︁
1025/q2

⌉︁
bins. The size of the following

layers depends on hq2. Fig. 2.24 summarizes the neural network architecture layers:

they consist of 2D convolutions carried out with 1× 3 filters, a batch normalization

and a ReLu activation (blue layers), a fully connected layer (green) and the softmax

function with q1max = 22 values as output layer. In training phase a Stochastic

Gradient Descent (SGD) was employed as optimizer with starting learning rate

10−3 and momentum 9−1 and the categorical cross entropy was the loss function

employed during a 15-epochs training run with batches of 512 images. Moreover a

decay step on learning rate value was carried out, with the drop value described in

Eq. 2.9.

lre = lr0(d⌊(1+e)/ed⌋
r ) (2.9)

where e is the epoch, lre is the learning rate of epoch e, lr0 is the starting learning

rate, dr = 0.2 is the drop value and ed = 3 is the number of epochs for every drop.
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Figure 2.25: Empirical distribution of differences of consecutive quantization factors (zig-
zag order) built from standard and custom matrices collected in [73] with q1i ≤ q1max = 22
and i ∈ 1, 2, . . . , 15.

As explained in previous sections, often the quantity of information contained in

an input histogram could be not enough to estimate the related first quantization

factor. This lack of information could be due to a specific q1/q2 (e.g., multiples)

combination or an homogeneous region. To limit these issues, assumptions about

neighboring element values in the quantization matrix can be exploited, as done in

Section 2.4.1. In order to verify these assumptions empirically, an analysis on Park et

al. [73] dataset was done. Considering only the matrices with q1i ≤ q1max = 22 and

i ∈ 1, 2, . . . , 15, 919 tables (custom and standard) were selected and the empirical

distribution of differences between consecutive quantization factors in zig-zag order

were built. Fig. 2.25 shows how neighboring elements in the quantization matrices

(zig-zag order) are usually associated to similar values (i.e., their difference is close

to zero). Considering then a set of n consecutive first quantization factors to be
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Figure 2.26: An example of softmax output provided by the proposed CNN considering
an AC histogram obtained with q1 = 5 and q2 = 5.

estimated, a cost function C was designed as the weighted average of a data term

(Cdata) and a regularization term (Creg):

C = w · Cdata + (1− w) · Creg (2.10)

where w ∈ [0, 1], Cdata is a cost term related to the goodness of the estimation of

first quantization factors under analysis, and Creg is a regularization term that tries

to minimize differences among neighboring q1 values. In order to understand the

right number of consecutive elements to be considered an analysis of the softmax

outputs was performed. The information provided by the softmax output could be

exploited to extract a limited set of candidates of q1: softmax is a q1max elements

vector that describes the probabilities (they are all positives and sum to one) of every

possible q1. Fig. 2.26 shows a softmax output computed by the proposed CNN with

an histogram obtained from a double compressed 128× 128 patch with q1 = 5 and
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Figure 2.27: An example of q1 candidate selection from softmax output values provided
by the proposed CNN considering the same input of Fig. 2.26. Softmax outputs pi are
sorted in descending order, the cumulative sum is computed (in green) and compared
with a threshold th (in red). The first set of quantization factors whose cumulative sum
is higher than th are considered as candidates (1 and 5).

q2 = 5 (challenging scenario). The network estimated a wrong value (q1 = 1) but

the score associated to the right value q1 = 5 is similar with the estimated one:

the probability associated to the event q1 = 1 is 0.484 whereas the joint probability

related to q1 = 1 or q1 = 5 is 0.959. A set of first quantization factors can be then

selected to achieve a satisfactory probability.

This behavior can be then exploited: the softmax output could be used as a

reliability index of the estimation: for example, considering a threshold value of th =

0.9, one or multiple elements can be selected in the estimation of the quantization

matrix. Another way to exploit this amount of knowledge is to help reducing the

number of first quantization factors to be considered as candidates for the final

estimation. Fixed a threshold th in the range [0, 1], and denoted as pi the output
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provided by the softmax function with respect to the event q1 = i, the smallest

set of first quantization factors whose summation of related pi is higher than th

is selected. The quantization factors belonging to this set can be easily collected

sorting probabilities pi in decreasing order and computing the cumulative sum. For

instance, considering the softmax outputs depicted in Fig. 2.26 and th = 0.95 only

two q1 (1 and 5) are selected (see Fig. 2.27).

To better justify the design choices related to the regularization approach several

tests were performed. Specifically, four double compressed datasets obtained crop-

ping central patches with d ∈ {64, 128, 256, 512}, from 1000 images selected from

BOSSBASE collection [69] were built. This collection was considered in the param-

eter setting to limit the overfitting with respect to the dataset employed to train

the CNNs (i.e., RAISE [68]). To cope with real scenarios, double compression is

performed employing custom tables from [73] by considering only the matrices with

q1i ≤ q1max = 22 and i ∈ 1, 2, . . . , 15. Two different Cdata terms were considered:

Cdata1 = 1− 1

n

i+⌊n/2⌋∑︂
j=i−⌊n/2⌋

pj (2.11)

Cdata2 = − 1

n

i+⌊n/2⌋∑︂
j=i−⌊n/2⌋

log pj (2.12)

where i indicates the position (zig-zag order) of the DCT term under analysis, n

the number of considered neighbours and pj the probability (i.e., softmax output)

provided by the proposed CNN at position j related to q1j.

Moreover, two different Creg terms have been investigated:

Creg1 =
1

n− 1

i+⌊n/2⌋∑︂
j=i−⌊n/2⌋+1

|q1j − q1j−1| (2.13)

Creg2 =
2

n− 1

i+⌊n/2⌋∑︂
j=i−⌊n/2⌋+1

|q1j − q1j−1|
q1j + q1j−1

(2.14)

where q1i is the first quantization candidate at position i (zig-zag order) under

analysis.
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Figure 2.28: Average accuracy of the proposed regularization solution considering n = 3
neighbours and all the combinations of Cdata and Creg formulas.

Figure 2.29: Average accuracy computed considering Cdata2 and Creg1 (best combinations)
at varying n (i.e., number of neighbours). Note that w = 1 actually corresponds to results
achieved without employing any regularization.
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In Fig. 2.28 are reported the average accuracies obtained employing (2.10) con-

sidering all the possible combinations of Cdata ((2.11), (2.12)) and Creg ((2.13),

(2.14)) with n = 3. For each weighting factor w, the average accuracy is computed

taking into account the four aforementioned datasets (d ∈ 64, 128, 256, 512) and

the DCT coefficients. Best performances are obtained with Cdata2 and Creg1 used for

subsequent tests. An additional test was carried out with Cdata2 and Creg1 at varying

the number of neighbours n ∈ {3, 5, 7} and weighting factor w. Moreover, to make

results comparable with respect to different number of neighbours n, only positions

i = 4, . . . , 12 are considered in the parameter setting tests. Note that, although

the regularization strategy described considerably reduces the average number of

combinations, worst case scenario has to be avoided. To this aim, the maximum

number of allowed combinations per estimation was set to 106. As can be easily

seen from Fig. 2.29, n = 7 and w = 0.43 provide the best results.

As already pointed out previously, the proposed solution differently than previous

works in the field was specifically designed to work with a wide set of Q2 matrices.

For each q2, two CNNs related to DC and AC terms were trained by employing the

parametric architecture depicted in Fig. 2.24. Although the designed CNN, taking

as input DCT histograms, is not strictly limited to be used with a specific patch size,

the accuracy with respect to different input parameters was also evaluated. More

specifically, for each patch size d ∈ {64, 128, 256, 512}, 2 ·22 CNNs were trained with

empirical histograms from double compressed JPEG images. Each dataset, one per

patch size, was split into 80% training, 10% validation and 10% test and exploited

to train 4 sets of 2 · 22 CNNs. Each group of CNNs is then trained with histograms

obtained from input patches of the same size. It has to be noted that histograms

containing no information [77] have been removed and were not considered in our

tests. Results of the proposed CNNs at varying patch size and {q1, q2} combinations

are reported in Fig. 2.30 where average values are computed with respect to the

first 15 DCT coefficients. The obtained accuracies strictly depend on the amount of

information contained in the input histogram (higher at increasing patch size) and

on the combination of q1 and q2 values (e.g., multiples). It is worth noting that

the reported results were computed considering both training and test set related to

input patches of the same size. To further study the performance of the proposed

solution, additional tests were performed considering a scenario with a mismatch
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Test set

CNN trained

with 64× 64 128× 128 256× 256 512× 512

64× 64 0.44 0.43 0.41 0.38

128× 128 0.53 0.54 0.53 0.50

256× 256 0.57 0.62 0.63 0.62

512× 512 0.58 0.65 0.70 0.71

Table 2.14: Accuracies of the CNNs trained with a specific patch size with respect to all
the four generated test datasets (d ∈ {64, 128, 256, 512}). Average values were computed
with respect to q1 ∈ {1, 2, . . . , 22}, q2 ∈ {1, 2, . . . , 22} and the first 15 DCT terms. Each
test set is a subset (10%) of the related one described before built employing constant
matrices for first and second compressions and images from RAISE [68] collection.

Test set

CNN
ensemble2 ensemble4 ensemble8

64× 64 0.4447 0.4443 0.4434

128× 128 0.5425 0.5420 0.5411

256× 256 0.6302 0.6295 0.6282

512× 512 0.7070 0.7059 0.7046

Table 2.15: Accuracies of the CNN ensembles with respect to all the four generated
test datasets (d ∈ {64, 128, 256, 512}). Average values were computed with respect to
q1 ∈ {1, 2, . . . , 22}, q2 ∈ {1, 2, . . . , 22} and the first 15 DCT terms.
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Figure 2.30: Accuracies of the trained CNNs at varying patch size and q1, q2 combinations.
Average values were computed with respect to the first 15 DCT coefficients.

between train and test set patch size.

Table 2.14 shows the average accuracy, computed with respect to q1 ∈ {1, 2, . . . , 22},
q2 ∈ {1, 2, . . . , 22} and the first 15 DCT terms, achieved by each couple dataset/CNN.

As expected, it is evident that, for each dataset, the best result corresponds to the

CNN trained with images of the same size. Note that scenarios involving both stan-

dard and custom quantization matrices actually select a subset of the possible q1,

q2 combinations. Reported average accuracies are then not the same of the ones

shown in Section 2.4.2.

As already pointed out in previously, the proposed solution, taking as input DCT

histograms, does not strictly depend on a specific patch size. In order to improve

the overall effectiveness and usability of the method, a single set of networks can be

then trained with multiple patch sizes avoiding then the selection of a specific group
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of CNNs for each patch size. This improvement can be also really useful whenever

input patch size actually differs from the one employed to train the models (e.g.,

96× 96, 384× 512, etc.).

A novel dataset was then built by simply merging the collections employed before

with d ∈ {64, 128, 256, 512}. However, the data to be handled requires a large

amount of memory resources. In order to train the proposed method as the patch

size varies, while exploiting all available data, a solution based on ensemble of CNNs

was considered. Specifically, the merged dataset was split into 10 subdatasets, 8

employed for training, 1 for validation and 1 for test. Three CNN ensembles were

considered with the following strategy: ensemblem represents an ensemble of m

CNNs trained with 8/m training subdatasets m ∈ {2, 4, 8}. As reported in Tab. 2.15

all the proposed ensembles, differently than CNNs trained with fixed patch size,

achieve satisfactory accuracy in all the considered test sets d ∈ {64, 128, 256, 512}.
Although all the considered models achieve comparable accuracy (ensemble2 slightly

better than remaining ones), the solution with m = 2 does not increase considerably

the execution time with respect to the networks trained with a fixed patch size.

Experimental Results

The effectiveness of the proposed method was demonstrated through a series of

comparisons with state-of-the-art. All the experiments were run employing hard-

ware equipped with a GPU NVIDIA TESLA K80. For comparisons we selected

approaches belonging both statistical ([33, 53, 54, 65]) and machine learning based

methods ([63], [64]); the public implementations of the method provided by the

authors was employed to carry out the experiments. Moreover, to cope with real

scenarios, both standard and custom matrices have been also considered in our tests.

Tests described in the following were performed all with k = 15.

The aforementioned state-of-the-art solutions have been designed to work with

specific patch sizes, then to properly compare the proposed method with them, a

first series of tests was performed considering several scenarios involving 64 × 64

patches as input.

Specifically, 4 double compressed datasets were generated starting from random

64 × 64 patches cropped from RAISE collection [68] (one patch for each RAISE

image):
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a. QF1 ∈ {55, 60, 65, 70, 75, 80, 85, 90, 95, 98}, QF2 = 90

b. QF1 ∈ {55, 60, 65, 70, 75, 80, 85, 90, 95, 98}, QF2 = 80

c. Q1 ∈ {5, 6, 7, 8, 9, 10, 11, 12}, QF2 = 90

d. Q1 ∈ {5, 6, 7, 8, 9, 10, 11, 12}, QF2 = 80

Figure 2.31: Accuracies of the same methods described in Table 2.16 and 2.17 at varying
quantization factors q1i to be predicted. The values are averaged over all the QF1/Q1.
Comparisons have been done with Bianchi et al. [33], Galvan et al. [53], Dalmia et al.
[54], Niu et al. [63], Tondi et al. [64], Battiato et al. [65] (the method described in Section
2.3), and Battiato et al. [78] (the method described in Section 2.4.1). Dalmia et al. [54]
is present only in comparisons a and due to the assumptions about the standard matrices
of first compression in the provided implementation.
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QF1 QF2 = 90

Our Our reg. [78] [33] [53] [54] [63] [64] [65]

55 0.84 0.80 0.77 0.53 0.52 0.45 0.00 0.00 0.62
60 0.81 0.86 0.82 0.53 0.56 0.47 0.64 0.53 0.66
65 0.84 0.84 0.81 0.54 0.57 0.49 0.54 0.81 0.68
70 0.83 0.88 0.85 0.43 0.57 0.51 0.66 0.66 0.70
75 0.89 0.89 0.85 0.41 0.63 0.53 0.77 0.93 0.75
80 0.89 0.87 0.83 0.29 0.61 0.45 0.81 0.67 0.75
85 0.86 0.90 0.85 0.14 0.74 0.36 0.81 0.88 0.72
90 0.40 0.12 0.24 0.00 0.00 0.00 0.02 0.02 0.23
95 0.50 0.62 0.52 0.11 0.00 0.00 0.78 0.68 0.40
98 0.36 0.76 0.57 0.00 0.00 0.00 0.76 0.91 0.41

MEAN 0.72 0.75 0.71 0.30 0.42 0.33 0.58 0.61 0.59

QF1 QF2 = 80

55 0.76 0.61 0.58 0.36 0.37 0.37 0.24 0.52 0.49
60 0.66 0.65 0.60 0.27 0.37 0.38 0.50 0.31 0.47
65 0.67 0.71 0.65 0.19 0.41 0.43 0.31 0.38 0.52
70 0.72 0.82 0.75 0.19 0.50 0.49 0.50 0.70 0.66
75 0.67 0.65 0.56 0.07 0.56 0.45 0.15 0.58 0.47
80 0.13 0.05 0.11 0.00 0.00 0.00 0.00 0.04 0.04
85 0.56 0.53 0.34 0.19 0.00 0.00 0.04 0.14 0.31
90 0.34 0.40 0.19 0.06 0.00 0.00 0.48 0.37 0.21
95 0.11 0.35 0.30 0.00 0.00 0.00 0.95 0.37 0.19
98 0.09 0.43 0.42 0.01 0.00 0.00 0.21 0.48 0.19

MEAN 0.47 0.52 0.45 0.13 0.22 0.21 0.28 0.39 0.36

Table 2.16: Accuracies obtained by the proposed approach (with and without regulariza-
tion) compared to Bianchi et al. [33], Galvan et al. [53], Dalmia et al. [54], Niu et al. [63],
Tondi et al. [64], Battiato et al. [65] (the method described in Section 2.3) and Battiato et
al. [78] (the method described in Section 2.4.1) with different combinations of QF1/QF2,
considering standard quantization tables.
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PS QF2 = 90

Our Our reg. [78] [33] [53] [63] [64] [65]

5 0.86 0.84 0.78 0.56 0.58 0.05 0.10 0.69
6 0.91 0.88 0.82 0.46 0.60 0.07 0.13 0.75
7 0.86 0.85 0.83 0.41 0.58 0.07 0.09 0.70
8 0.86 0.86 0.81 0.25 0.65 0.10 0.13 0.74
9 0.67 0.76 0.61 0.02 0.47 0.02 0.05 0.47
10 0.60 0.72 0.50 0.19 0.00 0.25 0.33 0.43
11 0.40 0.69 0.52 0.04 0.00 0.69 0.75 0.40
12 0.36 0.76 0.57 0.04 0.00 0.75 0.85 0.41

MEAN 0.69 0.80 0.68 0.25 0.36 0.25 0.30 0.58

PS QF2 = 80

5 0.72 0.72 0.68 0.26 0.46 0.07 0.08 0.57
6 0.53 0.68 0.54 0.05 0.41 0.02 0.06 0.42
7 0.72 0.74 0.68 0.15 0.48 0.08 0.10 0.56
8 0.33 0.35 0.22 0.03 0.03 0.01 0.04 0.18
9 0.49 0.54 0.28 0.19 0.00 0.07 0.13 0.28
10 0.23 0.47 0.20 0.00 0.00 0.40 0.16 0.17
11 0.09 0.39 0.38 0.01 0.00 0.24 0.38 0.23
12 0.09 0.43 0.42 0.01 0.00 0.21 0.44 0.26

MEAN 0.40 0.54 0.42 0.09 0.18 0.17 0.14 0.33

Table 2.17: Accuracies obtained by the proposed approach (with and without regulariza-
tion) compared to Bianchi et al. [33], Galvan et al. [53], Niu et al. [63], Tondi et al. [64],
Battiato et al. [65] and Battiato et al. [78] employing custom tables for first compression.
The column PS refers to the quality (and then custom tables) used by Photoshop.
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1. QF1 ∈ {55, 60, 65, 70, 75, 80, 85, 90, 95, 98}, QF2 = 90

2. QF1 ∈ {55, 60, 65, 70, 75, 80, 85, 90, 95, 98}, QF2 = 80

3. Q1 ∈ {5, 6, 7, 8, 9, 10, 11, 12}, QF2 = 90

4. Q1 ∈ {5, 6, 7, 8, 9, 10, 11, 12}, QF2 = 80

where Q1 ∈ {5, 6, 7, 8, 9, 10, 11, 12} of 3) and 4) are referred to Photoshop’s quan-

tization matrices (version 20.0.4).

First and second dataset are related to the estimation of a classical scenario in-

volving only standard quantization matrices in the first compression whereas, the

last two employing also Photoshop’s quantization tables, can be considered a more

challenging test to verify the robustness of the considered methods with respect to

real conditions. Dalmia et al. [54] has not been taken into account in the com-

parisons involving dataset 3) and 4) due to the assumptions about the standard

matrices of first compression in the provided implementation.

Table 2.16 and Figures 2.31a, 2.31b demonstrate the robustness of the method

in the scenario of standard quantization matrices, outperforming state-of-the-art

solutions in almost all combinations. Same results are reported in Table 2.17 and

Figures 2.31c, 2.31d which demonstrate an high degree of robustness with respect

to custom quantization tables.

To further demonstrate the robustness of the proposed solution an additional

test was performed. As reported in [73], analysing JPEG images downloaded from

Internet, custom quantization tables are often employed in the compression pipeline.

Specifically, Park et al. in [73] collected 1170 quantization matrices (100 standard

and 1070 custom). This collection was exploited to carry out further tests: the

matrices with q1i ≤ q1max = 22 and i ∈ {1, 2, . . . , 15} were selected, sorted by

the average of the first 15 quantization factors and then split into three sets of 291

elements (Low, Mid, High). Due to the double compression, 9 different combinations

have been then considered. Moreover, to study the performance with respect to

patch size and also employed dataset, 8 different input datasets were created: 4

different patch sizes (64× 64, 128× 128, 256× 256, 512× 512) cropped from RAISE

[68] and UCID [72]. For each dataset, the quantization tables employed for double

compression were randomly selected from the 291 available in the corresponding

set (Low, Mid, High). It is worth to note that UCID dataset, due to the different
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Figure 2.32: Comparison between the proposed solution and Battiato et al. [78] consid-
ering custom tables from Park et al. [73] and patches from RAISE dataset at varying
d ∈ {64, 128, 256, 512}. L, M, and H represent respectively the sets of matrices Low, Mid
and High described before.
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Figure 2.33: Comparison between the proposed solution and Battiato et al. [78] con-
sidering custom tables from Park et al. [73] and patches from UCID dataset at varying
d ∈ {64, 128, 256, 512}. L, M, and H represent respectively the sets of matrices Low, Mid
and High described before.
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resolution of the original images used to extract patches vs. the collection employed

to train the CNNs (i.e., RAISE [68]), allow us to verify the robustness of the proposed

solution with respect to the variability of the dataset.

As can be seen from Figures 2.32 and 2.33 the proposed approach achieves satis-

factory accuracy even in this challenging scenario. In addition, the results are closely

related to the amount of information contained in the input histogram. A higher

accuracy is therefore obtained as the patch size increases and with UCID dataset

[72].

2.5 Summary

First Quantization Estimation (FQE) is an important task in forensic investigation

activities. In this chapter several methods able to estimate the first quantization

factors for JPEG double compressed images (in the aligned scenario) were described.

To note that all methods work in the aligned scenario and does not consider the

analysis of upload step related to the resizing of the image ([80]). Every method

added a contribution to the state-of-the-art demonstrating the effectiveness of each

one with the accuracy results. In particular, the last solution described (Section

2.4.2), represents an important improvement in terms of data organization. By

proper collecting and training a neural architecture through 1D-histograms of DCT

values (AC and DC terms) the proposed method exceeds the limits of classic neural

network solutions. Furthermore, the regularization strategy shown in Section 2.3

before and Section 2.4.1 after, demonstrate how, in the aligned scenario, the method

works better than other solutions for both custom and standard tables, becoming

a viable solution to be employed in real-case scenarios. Finally the good results

with different image sizes and the analysis conducted on their informative content

suggested new points of view. Future works will be devoted to further extend the

proposed solution to the non-aligned case and other forensics tasks such as tampering

detection/localization.
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Chapter 3

Document Identification

3.1 Introduction

Identification of printed materials is a critical and challenging issue from a security

perspective, especially when dealing with documents such as banknotes, tickets or

unique collector cards, which are suitable targets for ad hoc forgery. State-of-the-art

methods demand high-cost, specialized industrial equipment, while a cost-efficient,

fast and robust solution for document identification is a growing necessity in many

contexts. The production process for common paper sheets involves the use of wood

particles with successive application of other compounds. The inherently accidental

imperfections produced, make the sheet almost unique and under some conditions,

an authentic impression can be extracted. The massive demand in various contexts

for robust identification methods [81, 82, 83, 84, 85, 86], makes fingerprint extraction

from a sheet of paper an interesting and challenging research topic. Investigative

scenarios in the forensic field [87, 88], could gain various benefits from the availability

of such fingerprint.

In this chapter it will be presented a low-cost method for fingerprint extraction

from a paper sheet. The method is composed by an acquisition framework, which

defines the rules to digitize the paper support, and by a pipeline for fingerprint

extraction, based on the Local Binary Pattern in the first version and on its variants

in the extended version. The tests carried out, compared with the state-of-the-art

demonstrate the goodness of the approach, also in presence of challenging scenario

as the damage of the paper sheet.
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3.2 State of the art

The identification of a document for legal purposes, could be done through the use

of different techniques [87]. Although many of them are based on marks previously

introduced in the analized material (e.g., watermarking) in the general scenario it is

not present; for this reason the researcher moved their interest in techniques based

on the fingerprints left on the surface of the paper without any specific embedding

requirement. Most of the proposed techniques over the years require expensive

industrial devices [89, 90]. The requirement to create a robust fingerprint extraction

technique is the existence of low-cost physically unclonable functions (PUFs) which

permit to obtain an intrinsic random physical feature. This feature, to be useful,

must be able to return a unique response for the same request. The response must be

unpredictable, even for an attacker with physical access to the object, by operating

as a sort of random function. The paper surface presents an inherently unique

structure, as it consists of overlapping and inter-twisted wood fibers. Hence, the

imperfections of a paper sheet caused by the manufacturing process can be exploited

to create a sheet’s fingerprint. It has been proven that is extremely unlikely that two

document surfaces created with the same raw materials will be identical, although

they will present some similarities. This fingerprint makes forgery unfeasible, given

that it is unique and virtually impossible to modify.

Buchanan et al. [91] proposed for the first time in 2005 the use of a fingerprinting

technique for document identification; in their work the authors employed laser

irradiation from four different angles and acquired the reflected energy to create

a fingerprint. In [92] the authors proposed an improvement of [91] exploiting the

correlation between the acquired energy signals. The Laser Surface Authentication

(LSA) was introduced and employed for surface identification for the fist time by

Cowburn in [93] and [94]. Clarkson et al. [95] extracted a feature vector from

a collection of representative subsections and employing a Voronoi distribution to

build the fingerprint. They do not extract a feature vector from a single region of the

document, but they compute the feature vector from a collection of representative

subsections, patches, of the document.

Samsul et al. [89] proposed a fingerprint extraction method, which exploits CCD

sensors and laser speckle, to employ the visible pattern of bright and dark spots

generated by interference of two or more light beams with different phases. A
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similar approach has been proposed by Sharma et al. [90]. In contrast to [89], they

employed a microscope to acquire the speckle pattern. In recent years, CNN-based

methods have achieved great performance in image recognition and classification,

but have high complexity and require GPUs to perform training.

The aforementioned approaches work well for paper fingerprint extraction, but

they require industrial and specific equipment. Recently, this limitation was over-

come by the works of Toreini et al. [96] and Wong et al. [97]. In [97] the authors

proposed a strategy to extract paper surface imperfections by exploiting multiple

shots taken by a mobile camera under semi-controlled light conditions; subsequently,

they investigated selected candidates through ad hoc mathematical models for each

camera-captured image [98]. Unlike previous works, Toreini et al. [96] did not

detect surface imperfections, but captured the random arrangement of the wood

fibers within the paper sheet. To extract the paper pattern, they exploited a con-

sumer camera and a backlit surface. However, they printed a bounding box on the

analyzed paper to simplify the automatic texture registration. Since in real scenar-

ios this registration strategy is not applicable, a different acquisition framework is

needed. Based on the same filter of [96], Chen et al. in [99] exploited the micro-

scopic features of wood fibers to obtain similar patterns, using expensive equipment

based on double cameras. As already demonstrated in [100], the random disposi-

tion of wood fibers on paper sheets makes possible the construction of a fingerprint

virtually impossible to tamper with; hence, given the limits of the previous works

in terms of costs, acquisition constraints, and robustness, a novel fingerprint extrac-

tion strategy using specific low-cost image-acquisition equipment will be presented

in next section.

3.3 Printed Document Identification

In this section a new method for document identification is presented; it has been

published in both a preliminary [101] and extended version [102]. It proposes a

fingerprint extraction method not requiring expensive industrial equipment (e.g.,

laser, microscopes), but only cheaper devices such as an RGB camera, as it is based

on wood fiber translucent patterns. The method exploit the Local Binary Pattern
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(LBP), a local descriptor computed by comparing a pixel, called pivot, to its neigh-

bours in order to obtain a unique fingerprint. In the extendend version some variants

of LBP were employed in order to achieve better results. In this chapter we referred

to f-BP to indicate LBP and its variants. The main contributions of this method

can be summarized as follows:

1. a new fingerprint extraction method, based on f-BP variants, which outper-

forms existing approaches in the field;

2. an optimization of a f-BP fingerprint that employs block subdivision and Prin-

cipal Component Analysis (PCA);

3. a new public dataset that includes images acquired with both low-cost and

high-end devices, showing wood fiber patterns, which is the only one available

to the best of our knowledge;

3.3.1 Fingerprint Extraction Process

Lighting the surface to reveal the wood fibers is mandatory to successfully extract

the pseudo-random pattern that is unique for every sheet. Yet, such patterns must

be digitized and properly mathematically modeled to implement a robust document

identification system, which is the goal of this method. Given a certain physical

paper document di, the aim is to obtain a digital fingerprint Fi, namely a sequence

of K ordered values {f (1)
i , f

(2)
i , ..., f

(K)
i }, which is solely determined by correctly

processing the digital image si, which is the acquisition of the document di. The

overall proposed pipeline is summarized in Figure 3.1.
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𝑥𝑥𝑖𝑖𝑑𝑑𝑖𝑖 𝑠𝑠𝑖𝑖

𝑥𝑥𝑖𝑖 𝑃𝑃𝑗𝑗(xi)

.. .. .. .. ..

ℎ𝑗𝑗,𝑖𝑖

ℎ1,𝑖𝑖 ℎ2,𝑖𝑖 ℎ𝑗𝑗,𝑖𝑖

𝐹𝐹𝑖𝑖

Image acquisition and registration

Fingerprint extraction

Figure 3.1: Overall pipeline of the proposed framework. The first row describes the process
to acquire documents; the second row shows the fingerprint extraction process.

Document Digitization and Image Registration Considerations

The physical set of N documents D = {d1, d2, ...dN} was acquired using devices

capable of capturing the wood fiber pattern by exploiting the translucent properties

of the paper. Two different acquisition environments were employed to compare the

performance of low-end and high-end equipment. Details about devices and related

settings are provided in Section 3.3.2. The acquisition of a physical document di was

performed in a semi-constrained environment; specifically, the documents must be

roughly aligned with respect to the capturing device to ensure effective consequential

registration. For readability reasons, the set of digitized versions of documents

D = {d1, d2, ..., dN} can be defined as S = {s1, s2, ..., sN} .

To successfully analyze the wood fiber pattern of a document di, the related

digital image si must be registered. This step is critical as the paper fingerprint

strongly depends on spatial information; hence, one must ensure that if a given

document is acquired multiple times under the same setup, the system will process

exactly the same region of the paper surface. To this aim, reference points were

exploited (e.g., black bands in the acquired image) to rotate and properly crop si

(see Section 3.3.1 for more details). After registration, a W ×H sample from each
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document si was obtained, defined ad xi, and the related set X = {x1, x2, ..., xN}
was employed to build the fingerprint.

Extracting a Unique Fingerprint

The extraction of a unique fingerprint from a sample xi is the process that encodes

the texture information in a way that satisfies the following properties: (i) low com-

plexity; (ii) encoding capabilities; (iii) robustness with respect to the missing parts.

To this aim, the LBP descriptor and its variants [103] which have proven to fulfill

all the aforementioned parameters, are employed,. These descriptors provide high

capabilities in terms of discriminative power while maintaining low computational

complexity and working almost perfectly even in the presence of slight variations

on textures. In particular, LBP is a local descriptor that compares a pixel, called a

pivot, to its n neighbors along the circle defined by a certain radius r [104]. The use

of LBP for texture classification has grown in recent years, and a large set of LBP

variants has been proposed [103]. Thus, the so-called f -BP variant aims to improve

the accuracy and robustness for a specific task. The well-known local property makes

the f -BP a flexible descriptor even in the presence of small perturbations, which is

the fundamental requirement of the fingerprint we are looking for. Regardless of the

f -BP, after pattern extraction the final descriptor is obtained by counting the times

each pattern recurs, i.e., computing a histogram.

Histograms are compact and effective descriptors for a various number of tasks;

however, they completely discard spatial information. To deal with this problem, xi

is first divided in M non-overlapping p× p patches and the histogram is computed

separately for each patch Pj(xi) with j = {1, 2, .....,M}; hence the histogram hi,j

represents the histogram of the j-th patch of the sample xi. The relevance of spatial-

ity is easily understood: if the document has certain types of defects (e.g., missing

parts, tears, holes, noise), it is important that they do not affect the entire print, but

only a portion. Therefore, the choice of the patch size p and the hyperparameters

θf of the employed f -BP variant (e.g., the number of neighbors n and the radius

r) have performance consequences. The size T of the histogram depends on the

number of possible patterns the f -BP variant led. For example, employing classical

LBP with n = 8 and r = 1 the number of possible patterns, and the histogram size

T , is 256. Regarding the patch size p, large patches decrease the spatial information
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while small patches make the BP overly local and increase the complexity of the

obtained fingerprint.

The final fingerprint Fi for document di can be obtained by concatenating all

the histograms hj,i for j = 1, 2, ...,M :

Fi =
M⨁︂
j=1

hj,i (3.1)

The size K of Fi is K = M × T , as M patches are obtained from M histograms

of size T . The goal of this study is to test different f -BP variants and look for the

parameters {W,H, p, θf} which lead to the most robust fingerprint.

3.3.2 Datasets for Document Identification and Fingerprint

Testing

To evaluate the proposed approach and provide a great contribution to this research

field, a new dataset consisting of 200 sheets of A4 paper arranged in groups of 40

and divided into 5 non-overlapping classes, is introduced. Each class is defined by

two attributes: the manufacturer of the paper b ∈ {b1, b2, b3, b4} and the weight or

grammage (measured in g/m2) g ∈ {80, 160, 200}. Thus, the obtained classes are

the following: (b1, 80), (b2, 80), (b3, 80), (b4, 160), (b4, 200).

All the 200 documents inD were then acquired multiple times using two different

devices as described in Figure 3.2 and detailed in the next subsections.

Devices

To compare the performances achievable with high-end and low-end equipment, each

document is digitized using two different devices. For the high-end case the Video

Spectral Comparator 6000 (VSC) was employed while for the low-end one we used

the Backlight Imaging Tool (BIT): an inexpensive overhead projector combined with

a digital camera that we have meticulously designed.

The VSC consists of a main unit (Figure 3.2a) connected to a standard worksta-

tion. It provides several features and a number of different light sources to highlight

paper details not normally visible under standard conditions. Table 3.1 shows VSC

acquisition settings.
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(a) Video Spectral Comparator 6000 (b) Backlight Imaging Tool

Figure 3.2: Devices employed for acquisitions.

Light Longpass Mag Exposure Brightness

Transmitted VIS 2.18 Auto 60

Table 3.1: VSC Settings

The BIT consists of an overhead projector that is the lighting source and an

RGB camera hanging from the projector arm. The employed camera is a Nikon

D3300 equipped with a Nikon DX VR 15 mm–55 mm 1: 3.5–5.6 GII lens. Settings

details are listed in Table 3.2.

Dataset Acquisition

For the sake of clarity, the terms SV SC and SBIT will be employed for referring

to the digital acquisitions made by the VSC and the BIT respectively. The overall

acquisition pipeline of the dataset is depicted in Figure 3.1. As expected, SV SC and

SBIT show different contrast and sharpness.

SV SC consists of 200 documents acquired twice, for a total of 400 acquisitions

(Table 3.3). The result of a single acquisition is a bitmap image of 1292 × 978

pixels and 300 dot per inch (dpi), as reported in Figure 3.3a. SBIT consists of

200 documents acquired 8 times. However, under-powered light in the BIT does
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Acquisition Exp. Time Opening/ISO/VR Exp. Compensation White Balance

RAW + JPEG 1/25 F29/100/ON −5.0 Incandescence

Table 3.2: BIT Settings

not allow the extraction of the translucent pattern from paper with grammage 160

or 200. Thus, only the 120 documents with grammage 80 were considered for a

total of 960 acquisitions with a resolution of 6000× 4000 pixels and 300 dpi (Table

3.3). Figure 3.4a shows a raw acquisition, where the black bands, used for image

registration, are visible.

(a) Before registration (b) After registration

Figure 3.3: Document acquisition with VSC before registration (a) and after registration
(b).

Image Registration

The acquisition of black bands on the outside of the paper surface was intentionally

performed to discriminate selectively the pixels in the external area and to easily

obtain a set of registered images. All the raw images in SV SC and SBIT were

converted to grayscale. A luminance threshold is first used to find the upper left

corner (y0, y1) of the paper. Secondly, the image anchored in position (y0+u, y1+u)

is cropped, where u is the minimum offset to perform a cropping by excluding the

outer area. The value of u is variable: the larger the external area acquired is, the

greater its value will be. Images acquired by means of the VSC are cropped into
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(a) Before registration (b) After registration

Figure 3.4: Document acquisition with BIT before (a) and after registration (b).

patches of 400×400, while the ones acquired with the BIT are cropped into patches

of 5000 × 1000 pixels. Ultimately, we obtained XV SC , the set of 400 registered

samples from VSC, and XBIT , the set of 960 registered samples from BIT. Source

examples are shown in Figures 3.3b and 3.4b.

VSC BIT
CLASS ACQUISITIONS ACQUISITIONS

{e,80} 2 8
{f,80} 2 8
{u,80} 2 8
{m,160} 2 -
{m,200} 2 -

DEVICE IMG 10× 40 = 400 24× 40 = 960

Table 3.3: Dataset Table.

3.3.3 Experimental results

In order to thoroughly evaluate the proposed fingerprint extraction approach, the

analysis of the datasets described in 3.3.2 were performed in terms of recognition

tests. Since each document was acquired multiple times (i.e., twice for the VSC

and 8 times for the BIT), a fingerprint reference dataset was built to deal with the

recognition task; such reference datasets consist of only one sample per document

while the rest of the samples were used for querying it. A given document d with
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extracted fingerprint Fa will have a correct match with the closest element in the

reference dataset Fb, if both Fa and Fb “belong” to the document d; in other words,

a correct match occurs if sa and sb are different acquisitions of the same document.

The recognition test performances are measured using the well-known accuracy met-

ric defined as the rate of queries that obtain a correct match. The adopted similarity

measure for fingerprints was the Bhattacharyya distance [105], which is typically and

effectively employed for problems where probability distributions must be compared.

However, to better assess the effectiveness of the proposed fingerprint, four differ-

ent recognition experiments are performed as detailed in the following. First, the

original LBP was employed to compare the recognition accuracy on both datasets

(VSC and BIT) obtaining the demonstration of device invariance. Given this result,

a comparison was performed only on the BIT dataset employing LBP fingerprints

computed as in [101] vs. the three other LBP variants, i.e., LTP [106], SBP [107]

and CLBP [108]. Moreover, also the fingerprint robustness was investigated. To this

aim, a challenging scenario was created in which query samples were intentionally

altered by removing some pixels from the digital image to simulate physical damage

of the paper (e.g., tears, holes). An optimization in terms of footprint size was also

performed and tested by leveraging principal component analysis (PCA) [109].

Dataset Comparison

The validity of the LBP-based fingerprint extraction method has been demonstrated

starting from the work of Guarnera et al. [101], which is representative of the

state of the art. Table 3.4 shows the overall accuracy obtained in the recognition

tests performed on both datasets: 96.5% and 99.2% for VSC and BIT, respectively.

Although samples from different datasets have different patch sizes, the best for

both datasets was 100× 100. This is a reasonable trade-off to preserve local spatial

information. The accuracy on the BIT dataset is slightly higher than the accuracy

obtained on the VSC. This demonstrates that the robustness of the fingerprint does

not depend on the acquisition settings nor on the device.

Comparisons among LBP Variants

As introduced earlier, many variations of LBP have been proposed for texture anal-

ysis. Among them, LTP [106], SBP [107] and CLBP [108] were selected for the
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Dataset Patch Size
Number of

Radius LBP Type Accuracy
Neighbors

VSC 100 32 42 uniform 96.5%
BIT 100 24 12 default 99.2%

Table 3.4: Best configuration parameters and accuracy of recognition test in VSC and
BIT datasets.

experiments described below. In the previous section, the independence of the pro-

posed fingerprint from the acquisition device was demonstrated. Based on this

evidence, in future experiments, only the BIT dataset will be used, due to the larger

number of available samples .

The results in terms of accuracy are reported in Table 3.5 where CLBP and SBP

show an improvement in terms of performance vs. LBP, by achieving an accuracy of

99.7% and 99.4%, respectively. It is worth noting that LBP is the employed method

of [101] to extract the fingerprint, so the aforementioned results represent the over-

performance with respect to the state of the art. The LTP tends to perform better

than LBP when the texture presents regions that are uniform (i.e., low variance), as

described in the literature. It is worth noting that wood fiber models exhibit a high

variance, which explains the weaker results for this descriptor. As expected, SBP,

which is a generalization of the common binary pattern, obtains accuracy results of

(99.4%) which are somewhat better than LBP. At last, the best performance was

obtained by CLBP (99.7%) even if it delivers the largest fingerprint in terms of

histogram dimensions (number of bins).

LTP CLBP SBP
Accuracy 90.83% 99.7% 99.4%

Table 3.5: Recognition test accuracy of the test carried out in BIT dataset employing
LTP, SBP and CLBP.

Tests on Noisy Environment

The proposed method for fingerprint extraction has been tested under controlled

conditions to correctly assess what was expected to occur in real cases, i.e. when a

document has undergone some degree of alteration between the first and subsequent

fingerprint extraction. Hence, the original fingerprint of the document may be very
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different from the latter. There were two types of damage simulated on the paper

for this purpose: tears and stain. The “tear” simulates a loss of information starting

at one corner of a xi sheet sample by replacing this loss with black pixels, while the

“stain” introduces random black blocks on the sample to simulate holes or stains.

For both, the so-called degree represents the size of black area: the maximum degree

corresponds to about 75% of the full sample to be removed (see Figures 3.5 and

3.6). Given the aforementioned alterations, a new recognition test on the BIT

dataset was carried out, which includes 120 samples without any alterations on the

fingerprint database and other 960 samples with alterations that were used to query

the database. The results are reported in Figures 3.7 and 3.8 further proving the

robustness of the proposed fingerprint, particularly the CLBP-based fingerprint that

once again achieves the best performance.

(a) Degree 1. (b) Degree 11.

Figure 3.5: Examples of altered documents with simulations of tear damage; in particular
(a) represents the first degree of damage while (b) the last (e.g., 11).

(a) Degree 1. (b) Degree 11.

Figure 3.6: Examples of altered documents with simulations of stain damage; in particular
(a) represents the first degree of damage while (b) the last (e.g., 11).

Fingerprint Dimensions Optimization

For all the tests outlined in the previous sections, the pipeline described in Figure

3.1 has been used with the following settings: images were cropped into patches

of 100 × 100 pixels; number of neighbors for CLBP were n = 12 and radius was

r = 6. These settings increased the number of patches in the BIT dataset to 500

thus, a histogram of 8194 elements was computed for each patch. This results in a

fingerprint with a size of 500× 8194 = 4.097.000 elements whose storage occupancy
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Figure 3.7: Accuracy employing CLB and LBP VS degrees of tear alteration.

Figure 3.8: Accuracy employing CLB and LBP VS degrees of stain alteration.
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is about 8.3 MB. Since the fingerprint with the proposed method could be even

larger depending on parameters and since large fingerprints decrease efficiency, some

optimization strategies to reduce it have been investigated.

The simplest strategy to reduce the fingerprint size was to increase the patch

size p; however, this could not guarantee the same accuracy performance. Table

3.6 shows the results obtained using values greater than p while controlling the

fingerprint size. The outcome analysis showed that the setting with p = 200 exhibit

a similar performance to that of p = 100 (i.e., only a 0.4% of decrease in accuracy) by

reducing the size by 25%, from 4.097.000 to 1.024.250 elements, that can be stored

in 2.2 MB. However, as mentioned in previous sections, using larger patches does

not preserve the spatial information and actually shows a huge drop in accuracy

(e.g., 67.6% for p = 500).

Patch Size Number of Bin Accuracy Storage Occupancy (MB)
100 4.097.000 99.7% 8
200 1.024.250 99.3% 2.2
250 655.520 97.9% 1.5
500 163.880 67.6% 0.4

Table 3.6: Accuracy and size of CLBP fingerprints to vary of patch size.

In order to optimize the size of the fingerprint while avoiding a large loss in accu-

racy, we employed principal component analysis (PCA). As we know, PCA reduces

the size by projecting each data point onto only a few of the principal components

to obtain smaller data thus preserving most of the variance. In short, it reduces

the size by preserving most of the information, which better explains a certain phe-

nomenon. PCA is applied to each histogram hj,i previously obtained using CLPB.

Hence, such histograms are drastically reduced in terms of dimensions. First, for

testing purposes, all the 120 samples included in the fingerprint database are used

to fit the PCA model. By employing the well-known explained variance analysis,

we found that 95% of the information can be preserved using the first 32 principal

components (also known as features), despite the original 8194. However, PCA shift

the histograms into a geometric space where the Bhattacharyya distance becomes

less efficient. To handle this problem, the recognition test was performed by means

of the Euclidean distance. To verify the quality of reduction, the same recognition

tests, as described in the previous sections, were carried out with the now-reduced
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fingerprints, delivering an accuracy of 97.97% with only 16,000 elements while main-

taining the excellent performance of the not-reduced fingerprints case. It is worth

noting that the PCA model was built using all the samples of each of the 120 doc-

uments in BIT. This could generate a PCA model overfitted on the data. Thus,

a further test was performed using only the 50% of the dataset (60 documents) to

fit the PCA model, and we queried the reference dataset with the samples which

come from the remaining 50%. In this case, it was found that 95% of information

can be preserved using the first 40 principal components for each patch. Recogni-

tion tests confirmed the results obtained with the PCA model built on all the 120

documents (97.97% of accuracy). It is important to note that although in the fin-

gerprint comparison we also consider the missing parts when an alteration occurs,

this does not heavily affect the Bhattacharyya distance between two fingerprints.

On the contrary, the Euclidean distance is affected by this. In fact, the Euclidean

distance calculated between an unaltered fingerprint of a document and an altered

fingerprint of the same document exhibits extremely higher values, which impacts

on the accuracy performance. To overcome this latter problem, a custom Euclidean

distance was employed, where only a part of the fingerprint elements is considered

in distance computation. Specifically, the differences between each element of the

two fingerprints is computed and, subsequently, we sorted those differences by con-

sidering only a certain percentage of the lower ones. This percentage depends on the

dimensions of the missing part, but this information is known by the operator during

the identification phase, because in a real document the altered parts are visible.

Figures 3.9 a,b report the accuracy (vertical axis) when varying the percentage of

elements included in distance computation (horizontal axis). The obtained results

also suggest how to maintain a high accuracy according to the alteration degree.

For example, in an average scenario of damage (orange lines) the 50% of distance is

needed to maintain the accuracy over the 99%.

3.3.4 Fingerprint Robustness Analysis

The carried-out recognition tests started from the assumption that every query

fingerprint Fq could find a corresponding one Fx from the same document in the

database of previously extracted fingerprints. A real-world scenario might present

some differences: the query fingerprint Fq could not find a correspondent Fx and
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(a) Tear damage.

(b) Stain damage.

Figure 3.9: Accuracy variability of different percentiles on tear (a) and stain (b) damages.
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then the closest is meaningless (it is the closest but it is a fingerprint extracted from

another document). Hence, additional information is needed; given the distance ē

between two samples. To solve this problem, ē was analyzed in all the experiments

presented above; in particular, starting from the fingerprints extracted by the im-

ages acquired with BIT device (e.g., 960), the distances obtained in the simulated

damage-free tests using CLBP and LBP were analyzed, considering three types of

distances:

• ē0: distance obtained between Fq and Fx, both extracted from the same doc-

ument, when Fx is the closest fingerprint in the recognition test.

• ē1: distance obtained between Fq and Fx, both extracted from the same doc-

ument, when Fx is not the closest fingerprint in the recognition test.

• ēnull: distance obtained between Fq and Fx, extracted from different docu-

ments.

Given 840 different Fq, 120 distances have been computed for each of them. For

every Fq analyzed, two results were obtained:

• the closest fingerprint Fx is extracted from the same document of Fq, and then

the distance between them is classified as ē0 and the others 119 distances are

classified as ēnull.

• the closest fingerprint Fx is not extracted from the same document of Fq, and

then the distance between them is classified as ē1 and the others 119 distances

are classified as ēnull.

It is easy to figure out that the population of ēnull is much bigger than ē0 and

ē1, whose sum is exactly 840. Figures 3.10 a,b represent the plot of distances ē0, ē1,

ēnull in both tests (LBP and CLBP). The graphs were cut because the populations

are unbalanced and because the focus of the analysis is on the intersections of the

two curves. In these graphs, it is possible to detect two nearly entirely separated

Gaussians. The intersection between them (the tail of the green Gaussian, bounded

by the orange and blue lines) represents an area of uncertainty. It is worth noting

that the position of ē1 in both cases (LBP and CLBP) is within this area which

confirms the meaning of the distance: the smaller the distance with the closest
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print, the greater the chance that the prints are extracted from the same document.

The concept of low/big depends of course on the descriptor used; in the forensic

domain it is important to measure the degree of uncertainty whenever it is available.

The percentage of uncertainty zone z and the percentage r of ē0 inside it gives a

further degree of confidence and it is variable for each descriptor. Given a descriptor

the pair (z,r) can be employed to describe its robustness. CLBP has the ē0 range

between 0.286 and 0.338 and uncertainty zone between 0.331 and 0.338 and then

z = 13.46%, while r = 2.62% due to 22 ē0 inside uncertainty zone on 837 total;

LBP has z = 13.56% and r = 4.92%. Table 3.7 shows the analysis for each binary

pattern tested.

Descriptor z r

LBP 13.93 % 4.91 %

CLBP 13.32 % 2.62 %

SBP 15.72 % 3.13 %

LTP 91.38 % 91.05 %

Table 3.7: Percentage of uncertainty zone (z) and percentage of ē0 inside it (r) for each
analyzed descriptor.

In addition, a cross-dataset analysis has been performed to determine if there

was any correlation between input and descriptor efficiency. The textures with the

distance within z have been analyzed: CLBP has 22 distance out of 837 while LBP

41 out of 835. 13 are shared whereas others are near to z meaning that bad texture

(in terms of acquisition) will have a bad distances (close or within z), regardless of

the descriptor.

3.4 Summary

In this chapter, a novel approach for document identification was proposed. The

method employs variants of binary pattern descriptors (e.g., LBP, LTP, SBP, CLBP)

to obtain an appropriate fingerprint to uniquely recognize the input document, but

at the same time, be easily manageable. For this reason, an additional analysis
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(a) Tear damage.

(b) Stain damage.

Figure 3.10: Accuracy variability of different percentiles on tear (a) and stain (b) damages.
For both the plots x -axis represents the values of the distances obtained and y-axis the
number of occurrences. ēnull, ē0 and ē1 are represented by gray, green and red respectively.
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was conducted to optimize the fingerprint in terms of dimensions; it was based on

PCA which has confirmed almost the same accuracy, reducing the fingerprint size

to less than 1/100 of the original. To demonstrate the robustness of the method,

the dataset was expanded by including more noisy samples, demonstrating the value

of the proposed technique in real case scenarios and better results with respect to

the state of the art. At last, further analysis on the significance of distances was

conducted to generalize the recognition test.
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Chapter 4

Conclusion

The widespread of Social Networks and Instant Messaging Platforms permitted the

sharing of a huge number of media files and in particular images. At the same

time, the usability of digital media editing tools have increased the possibility of

malicious attacks on the shared media files bringing misinformation and creating

social problems in many cases. In this scenario the Forensic Science has grown

developing solutions able to cope with some of the aforementioned problems, even

if many of them are still open today. Moreover, some solutions are able to resolve

a specific problem: if the problem evolves or produce an anti-forensics solution the

previous solution is useless and therefore needs to be updated.

The discussion on the usage of the media inside the court is based on a main

problem: the authenticity of the evidence. Every type of evidence needs to be

authenticated to be employed in a process, but depending on the evidence, the

meaning of it could change. In the case of an image, it could be defined authentic

if the semantic meaning is equal with respect to the original (intact image). Hence

when an image becomes an investigation object some considerations about it could

be done: is it an intact image? If not, is it authentic? Is it possible to reconstruct

the history from the acquisition until now?

In order to answer to the previous questions some techniques were developed.

A first analysis involves metadata and compression type, and in particular JPEG

compression. Today, JPEG is the most widespread compression employed, and the

usage of it by the Social Network Platforms has increased its importance. Most of

the forensic analysis in fact, are aimed at this type of images.

First Quantization Estimation is one of the most faced task in JPEG analysis; its

first objective is to identify the camera model in order to make assumptions about
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the person who took the photo but, as demonstrated over the years FQE, is useful

often for tampering detection. FQE methods could be splitted in two main classes:

the methods based on statistical analysis and the more recent methods based on

Machine Learning. Both classes suffer of specific issues: the first does not permit

to overcome an accuracy limit due to the extracted feature type while the second

suffer of overfitting.

The generation of new methods for FQE was the main goal of this PhD thesis.

Preliminary studies were done on the JPEG pipeline, in order to understand what

type of feature gives the most important information about the image’s history.

The Discrete Cosine Transform was deeply analyzed in the first year of PhD; its

coefficients inside the image represent the feature with most presence of compression

traces, which we exploited also for JPEG Double Quantization Detection ([101]).

By exploiting and analyzing the overall DCT coefficients statistics, it is possible

to understand how they describe the transformations of JPEG compression but also

the correlation between them and the image content. In our first FQE approach

([65]) we employed this insight to build a method which uses the content (from the

input image) simulating opportunely the double compression; in this way, the DCT

content is similar to the real and from the simulated double compressions the most

similar is chosen to estimate the first quantization factor.

The recent widespread of Machine Learning has led researchers to exploit solu-

tions based on it. The power of this type of approach is the possibility to obtain the

right features based on the objective. Machine Learning based techniques for FQE

overcame previously methods but only in specific conditions, such as definite qual-

ity factor or exact input dimension. These limits have been analized and resolved

changing the input to train the CNN in last PhD works: we employed as train-

ing data the DCT coefficients distributions to overcome the size limit generating a

double compression strategy to simulate a huge number of quantization matrices.

The aforementioned strategy allowed us to provide two solutions which overcome

the state-of-the-art in the considered aligned scenarios: the first based on k-nearest

neighbors ([78]) and the second based on CNN (CNN-based Estimation of the First

Quantization Matrix from Double Com-pressed JPEG Images, to appear in MDPI

Journal of Visual Communication and Image Representation).

Algorithms that can extract a unique fingerprint of digital content have opened
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up new ways to fight crime. In some cases, the digital content could be an ap-

propriate digitization of a real object to authenticate. Moreover, the digitization

process could enhance some object’s feature, not visible in physical way. An other

research track of this PhD was the identification of printed documents: we exploited

some descriptors in order to generate a fingerprint from the physical features of the

documents. In particular, we exploited the random disposition of the wood fibers

that make up the paper sheet: throught the backlight of the physical document

this disposition become visible. In this way the method doesn’t bind the extraction

of the fingerprint to the printed surface of the document (repeatable) but to the

physical property of the paper sheet (unique). We studied different descriptors over

the three years, building approaches based on them ([101, 102]).

Future works in both the tracks has been scheduled. The method based on CNN

for First Quantization Estimation needs to be expanded in the nonaligned scenario;

in this case further analyses will be carried out, especially on the understanding of

the estimate of the grid shift between first and second compression. The method

for real document identification could be analyzed under other descriptors and con-

ditions.
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