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Chapter 1

Introduction

The research field of Computable Set Theory was born in the 1970’s when Jacob
T. Schwartz launched a long-term project to combine computer science and set
theory. Since the end of the nineteenth century, set theory profoundly changed
the language of mathematics due to the naturalness, conciseness and short of
builtin semantics of any of its axiomatic version, leading to the mathematics we
know today. The amenability of set theory does not end with those listed above,
despite its compact axiomatic it permits a fruitful basis from speculations of
deep issues, giving easy access to notions such as counting, finiteness, infinitness,
etc.

In the 70’s computer science was in its infancy so it was natural to combine
it with such a useful theory. At an early stage this project was centered on
the issue of software prototyping, and the first achievement was a programming
language, called SETL [SDDS86], which proved ideal for software prototyping,
but also for developing sophisticated algorithms.

The goals inside Computable Set theory shifted, after this initial stage, towards
more theoretic goals rooted in the fields of logic and computability. Set-theoretic
languages consist in unquantified formulae comprising variables, that will be
interpreted as sets, and operations and predicates between sets. Every set-
theoretic language is identified by the predicates and operators it comprises,
and can be seen as sub-languages, or fragments, of a more generalized set theory
comprising all possible operators and predicates. A foundational quest spawned
naturally inside the field of Computable Set theory, namely the quest of studying
the decidability of all the fragments of Set theory in order to find the boundaries
between the decidable and undecidable.

This study generated a large plethora of works, [CFO89, COP01, SCO11, CU18]
to cite a few, all of which revolved around one particular sub-language of set
theory called Multi-Level Syllogistic, MLS for short, which comprises the opera-
tions and predicates that are considered a common core of Set theory, operations
like set union and predicates as x belongs to y. MLS will also have a central
role inside this dissertation. Such quest revealed to be of much interest not
only for the decidability results themselves but also for new useful tools, such
as formative process, that where developed to solve the decidability problem for
some fragments of Set theory.
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The study of decidability inside set theory allowed the creation of an automated
proof verifier, written in the SETL programming language, called ÆtnaNova
[SCO11], that certifies the correctness of theorems by finding appropriate sat-
isfiable set-theoretic formulae, thus heavily relying on the decidability of the
language comprising those formulae. The decidability problem of MLS, the
simpler fragment studied at this point, was proven to be decidable in [FOS80]
and NP-complete in [COP90], meaning that establishing the satisfiability of a
MLS-formulae it is not an easy task and can require a huge amount of time,
slowing down the performance of any tool that needs to solve such problem,
like ÆtnaNova.

Recently a new quest similar to that of finding the boundaries between decidable
and undecidable fragments arose in the field of Computable Set theory. The new
goal is to study all the sub-fragments of MLS in order to find small sub-languages
endowed with a deterministic polynomial time decision procedure. In order to
make the study of the over two thousand fragments of MLS feasible, two new
tools, of existential expressibility and O(f)-expressibility, were developed. Also,
we splitted this study between the two main sub-languages of MLS, namely
BST and MST. These results can be found in recent works, [CDMO21, CMO20,
CDDMO20, CMO21, CDDM21], and are the main focus of this dissertation.

This dissertation is organized as follows. In this introduction we will present the
languageMLS and its syntax and semantics. Then we show that the decidability
problem for MLS belongs to the class of Nondeterministic Polynomial problems.
In Chapter 2 we present the two tools of existential expressibility and O(f)-
expressibility alongside some main expressibility results. Later, in Chapters 3,
4, and 5 we present the complete complexity taxonomy of MLS, showing the
boundaries between NP-complete and polynomial fragments. Specifically, first
we present the taxonomy for BST and MST then we combine such results into
the taxonomy of MLS. In Chapter 6 we show that MLS is a convex theory.
Hence, we can to combine its polynomial fragments outside set theory without
disrupting polynomiality. Finally, in the conclusions, we sum up all the result
presented and highlight some possible future research paths.

1.1 Multi-Level Syllogistic

Multi-Level Syllogistic, MLS for short, is the focus of most of the results in the
field of Computable Set theory. In this section we will present the syntax and
semantics of it, alongside with the definition of the decision problem for MLS
and its fragments.

1.1.1 Syntax of MLS

Here we present the symbols and the structure comprising the syntax of MLS.

The symbols of MLS are:
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• infinitely many set variables x, y, z, . . .;

• the constant symbol ‘∅’;

• the set operator symbols ·‘ ∪ ’·, ·‘ ∩ ’·, and ·‘ \ ’·;

• the set predicate symbols ·‘ ⊆ ’·, ·‘ = ’·, and ·‘ ∈ ’·;

• the logical connective symbols ‘¬’·, ·‘ ∧ ’·, ·‘ ∨ ’·, ·‘ −→ ’·, and ·‘←→ ’·.

The collection of MLS-terms is the smallest set of expressions such that:

• all the set variables and the constant ∅ are MLS-terms;

• if s and t are MLS-terms, so are s ∪ t, s ∩ t, and s \ t.

MLS-atoms have the forms

s ⊆ t, s = t, s ∈ t,

where s and t are MLS-terms. Finally MLS-formulae are propositional combi-
nation of MLS-atoms by means of the logical connective present in the theory.
MLS-literals are MLS-atoms and their negations.

Example 1.1. Some examples of MLS-formulae are:

x ∈ (y ∪ z) \ w ∨ x = y ∪ w −→ z = y;

x ∪ y = z ∩ y ∧ y ∈ w \ x ∨ w \ x ∈ z ∩ y;
x ∩ y ∪ w ⊆ z ←→ x = y ∧ z \ w ∈ y.

Given any MLS-formula φ, we denote by Vars(φ) the collection of all the set
variables occurring inside φ. For instance,

Vars(x ∈ (y ∪ z) \ w ∨ x = y ∪ w −→ z = y) = {x, y, z, w}.

Definition 1.1 (Fragments of MLS). A fragment of MLS is any language whose
collection of symbols is a subset of the collection of symbols of MLS, and whose
formulae follow the same structure of MLS-formulae.

Notice that any formula of a fragment of MLS is also a formula of MLS.

To denote fragments, we use the name of their super-theory, MLS for instance,
alongside the collection of symbols used in the fragment, for exampleMLS(∪,=,∈)
is the fragment of MLS comprising only the set operator symbol ‘ ∪ ’ and the
set predicate · = · and · ∈ ·.

1.1.2 Semantics of MLS

The semantics of MLS are defined from set assignments in the most natural
way.

Definition 1.2. A set assignment is any map M from a collection V of set
variables (called the variables domain of M) into the universe V of all sets.
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The set domain of M is the set ∪M [V ] = ∪v∈VMv, and the rank of M is the
rank of its set domain, namely,

rk (M) := rk (∪M [V ]) .

In the above definition we used the universe of all sets V and the notion of rank,
we now take a slight detour to give the definition of those notions.

The von Neumann hierarchy of all sets

The von Neumann standard cumulative hierarchy is defined starting from the
empty set ∅ following transfinite recursion over the class On of all the ordinal
numbers in the following way:

V0 := ∅
Vα+1 := P(Vα)

Vλ :=
⋃︂
µ<λ

Vµ

V :=
⋃︂
µ∈On

Vµ;

where α and µ are ordinals, α+ 1 is the successor of α and λ is a limit ordinal.
We recall that P(S) := {T | T ⊆ S}.

The notion of rank is strictly bounded to the von Neumann hierarchy:

Definition 1.3. The rank of a set S ∈ V, denoted by rk (S), is the least ordinal
α such that S ∈ Vα+1.

We now resume to the semantics of MLS

Definition 1.4 (Interpretation of set operators). Let M be a set assignment and
V its variable domain. Let s, t be MLS-terms whose variables occurs in V . We
put recursively,

M∅ := ∅;
M(s ∪ t) :=Ms ∪Mt;

M(s ∩ t) :=Ms ∩Mt;

M(s \ t) :=Ms \Mt.

Notice that for each MLS-term s, Ms is a set in the von Neumann universe V .

Definition 1.5 (Interpretation of set predicate). For all MLS-terms s and t and
all set assignments M , such that Vars(s),Vars(t) ⊆ V , where V is the variable
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domain of M , we put:

M(s ⊆ t) :=

{︄
true if Ms ⊆Mt

false otherwise,
M(s = t) :=

{︄
true if Ms =Mt

false otherwise,

M(s ∈ t) :=

{︄
true if Ms ∈Mt

false otherwise.

Notice that applying a set assignment to any MLS-atom we obtain a truth value,
either true or false.

Definition 1.6 (Interpretation of propositional connective). For all set assign-
ment M whose variable domain is V , and all MLS-formulae Φ and Ψ such that
Vars(Φ),Vars(Ψ) ⊆ V , we put recursively

M(Φ ∧Ψ) :=MΦ ∧MΨ, M(Φ ∨Ψ) :=MΦ ∨MΨ,

M(Φ −→ Ψ) :=MΦ −→MΨ, M(Φ←→ Ψ) :=MΦ←→MΨ,

M(¬Φ) := ¬(MΦ).

Notice that likewise MLS-atoms, by applying a set assignment to a MLS-formula
we obtain a truth value.

Definition 1.7. A set assignment M is said to satisfy an MLS-formula Φ if
MΦ = true holds, in which case we also say that M is a model for Φ and
write M |= Φ. If ϕ has a model, we say that Φ is satisfiable; otherwise we
say it is unsatisfiable. If M ′ |= Φ for every set assignment M ′ defined over
Vars(Φ), we say that Φ is true and write |= Φ. Finally, two MLS-formulae Φ
and Ψ are said equisatisfiable if ϕ is satisfiable if and only if so is Ψ.

Example 1.2. The MLS-formulae of Example 1.1 are all satisfiable. For in-
stance, the formula

x ∪ y = z ∩ y ∧ y ∈ w \ x ∨ w \ x ∈ z ∩ y;

is satisfied by the set assignment

Mx =My = {∅}, Mz = {∅}, My = {∅, {∅}}.

1.2 Decidability of MLS

Having defined the syntax and semantics of MLS, we can prove that the decision
problem for MLS, and all its fragment, is solvable, (i.e., MLS is decidable).

First we need to define the decision problem for MLS.

Definition 1.8. Given any sub-language L of MLS, a satisfiability test for L is
any algorithm that given as input any L-formula φ returns true if φ is satisfiable,
otherwise returns false.
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Definition 1.9. Given any sub-language L of MLS, the decision problem (or
satisfiability problem) for L is the problem of establishing whether or not L
admits a satisfiability test.

Definition 1.10. If the decision problem for a fragment L of MLS belongs to the
class of NP-complete problems, we say that L is NP-complete. If a fragment L
of MLS admits a satisfiability test whose complexity is deterministic polynomial
with respect to the length of the input formula we say that L is polynomial.

Having defined the decision problem for MLS, we will now show that MLS is
decidable, more so NP-complete. Recall that to prove that a problem is NP-
complete, we need to prove that it belongs to both the classes of NP and NP-hard
problems.

The following is a simplified version of the proof that the decision problem for
theory MLSS belongs to the class NP adapted to MLS. The original proof can
be found in [Can13].

The first step we take is that to simplify our theory MLS. As we will see in
the next chapter with Corollary 2.2, any MLS formula can be reduced to an
equisatisfiable conjunction of literals of the following two types:

x = y \ z, x ∈ y, (1.1)

where x, y, and z are set variables.

For the rest of this section, by MLS-formula we will always mean conjunctions
of literals of types (1.1).

Now we derive some necessary (computable) conditions for the satisfiability of
any MLS-formula φ, and later we show that those conditions are also sufficient,
thereby proving the decidability of MLS.

Assume φ is a satisfiable MLS-formula and let M be one of its models. Let ∼M

be the equivalence relation over the set variables of φ defined as

x ∼M y ←→Mx =My.

Naturally, such equivalence relation partitions the collection Vars(φ) into equiv-
alence classes. For each of such equivalence classes, let us pick a∼M-representative,
and let φ′ be the formula obtained by replacing each set variable of φ with its
∼M-representative. Plainly M |= φ′ and also Mx ̸= My for any two distinct
variables x and y of φ′. Thus M is injective over V = Vars(φ′).

Let U =∪v∈VMv, and Σ be the Venn partition of U :

Σ := {∩E \∪(U \ E) | ∅ ≠ E ⊆ U} \ {∅}.
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It can easily be checked that this is the partition induced by the equivalence
relation on U :

s ∼Σ t←→ s ∈Mx ⇐⇒ t ∈Mx, for all set variables x ∈ V.

Observe that for any x ∈ V , each region σ ∈ Σ is either fully contained inMx or
disjoint from it. Therefore we can associate to each region σ a Boolean-valued
map πσ over V by putting

πσ(x) :=

{︄
true if σ ⊆Mx

false if σ ∩Mx = ∅.
(1.2)

Let Π be the collection of all such maps. The following property holds for all
the maps π ∈ Π:

π(x) ⇐⇒ π(y) ∧ ¬π(z) whenever x = y \ z appears in φ′. (1.3)

Moreover we say that any Boolean-valued map that satisfies the above condition
is a place for φ′.

Towards finding enough properties to guarantee the existence of a model for
φ′, we say that a collection of places Π′ for φ′ is ample if for any two variables
x, y ∈ Vars(φ′) there exists a place π′ ∈ Π′ such that π′(x) ̸= π′(y). Notice that
the collection of places Π defined above is ample. Indeed let x, y be two distinct
set variables in φ′. Then, as observed above, Mx ̸= My, so that there exists a
region σ ∈ Σ such that σ ⊆Mx if and only if σ ∩My = ∅, thus πσ(x) ̸= πσ(y).

It could be shown that the existence of an ample collection of places is sufficient
to prove the satisfiability for all the MLS-formulae involving no literals of type
x ∈ y. To take care of membership literals, we define the collection L of all the
set variables x that appear in a literal of type x ∈ y on the left-hand side of ∈.
We call such variables left-hand variables.

For each left-hand variable x, there exists at least one variable y such that
Mx ∈ My. Thus, there exists a unique region σx of Σ such that Mx ∈ σx. It
is immediate to check that the place πσx (or πx for short) satisfies the following
condition,

πx(y) = true if the literal x ∈ y belongs to φ′. (1.4)

We call any place π fulfilling the above property a place at x. Trivially some of
the places of Π are places at x for some left-hand variable x, while others are
not.

Finally, since well-founded set theory forbids membership cycles of the form,

s ∈ . . . ∈ s,

it is possible to sort the set variables inside Vars(φ′) to obtain a total order ≺
such that x ≺ y whenever Mx ∈ My. Then, for all left-hand x variables we
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have
if πx(y) = true then x ≺ y.

We call any order of variables satisfying the the latter property an acceptable
ordering.

The necessary properties just enumerated are also sufficient to guarantee the
existence of a model for φ, as proven in the next theorem.

Theorem 1.1. Let φ be an MLS-formula. Then φ is satisfiable if and only if
there exists an equivalence relation ∼ over the set variables of φ, such that by
letting φ′ be the MLS-formula obtained by replacing each set variable in φ with
its ∼-representative, the following conditions hold:

(i) φ′ admits an ample set π of places.

(ii) For each left-hand variable x of φ′ there exists a place πx at x in Π.
Moreover, there exists an order of Vars(φ′) such that πx(y) is false unless
x precedes y in that order, where x is any left-hand variable.

Proof. (Necessity). We have already proven that both conditions are necessary.

(Sufficiency). Suppose both condition holds. For each place π ∈ Π, we choose a
distinct singleton π such that the cardinality of its only member is larger than
m+ n, where m is the number of left-hand variables and n is the cardinality of
Π. We choose such singletons so that they are all pairwise disjoint. Define the
set assignment M for all v ∈ Vars(φ′) as follows,

Mv := {Mx | x ∈ L ∧ πx(v)} ∪∪{π | π ∈ Π ∧ π(v)}. (1.5)

First notice that each set Mv is well-founded thanks to condition (ii). In fact
to build each of such set, it is enough to follow the order defined in (ii).

By definition of M , we have that the cardinality of each Mv can not exceed
m+ n, while the cardinality of each of the sets π is greater then m+ n. Thus,
we have

{Mz | z ∈ L} ∩∪{π | π ∈ Π} = ∅,

and therefore

{Mz | z ∈ L ∧ πz(x)} ∩∪{π | π ∈ Π ∧ π(y)} = ∅, (1.6)

for every pair x, y in Vars(φ′).

Concerning literals of type x ∈ y, we have that x is a left-hand variable. Thus,
by (ii), there exists a place πx at x so that πx(y) = true, since x ∈ y appears
inside φ′. Therefore, by (1.5), Mx ∈ My. Thus by the generality of x ∈ y, M
models correctly all the literals of type x ∈ y of φ′.

Concerning literals of type x = y \ z, we first show that M is injective. Let x
and y be any two distinct set variables.

Since Π is ample, by condition (i) there must exists a place π′ such that one
between π′(x) and π′(y) is true while the other is false. Suppose for definiteness
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that π′(x) is true. Then π′(y) is false. Since the π’s are pairwise disjoint, we
must have:

π′ ⊆ ∪{π | π ∈ Π ∧ π(x)} \ ∪{π | π ∈ Π ∧ π(y)},

and since the only element of π′ has cardinality greater than m+ n, we have

π′ ⊆Mx \My.

Thus M is injective.

Finally let x = y\z be a literal of φ′. By the injectivity ofM , the disjointedness
of the sets π, and (1.6), we have

Mx = {Mv | v ∈ L ∧ πv(x)} ∪∪{π | π ∈ Π ∧ π(x)}
= {Mv | v ∈ L ∧ πv(y)∧ ≠ πv(z)} ∪∪{φ | π ∈ Π ∧ π(y)∧ ≠ π(z)}
= ({Mv| v ∈ L ∧ πv(y)} \ {Mv| v ∈ l ∧ πv(z)}) ∪∪ ({π| π ∈ Π ∧ π(y)} \ {π| π ∈ Π ∧ π(z)})
= ({Mv| v ∈ L ∧ πv(y)} ∪∪{π| π ∈ Π ∧ π(y)}) \ ({Mv| v ∈ L ∧ πv(z)} ∪∪{π| π ∈ Π ∧ π(z)})
=My \Mz.

By the generality of the literal x = y \ z, M models correctly all such literals
of φ′.

Summing up M |= φ′. Then by extending M to all the set variables x ∈
Vars(φ) \ Vars(φ′) in such a way that Mx is equal to the set assigned to its
∼-representative, we plainly have that M |= φ.

Theorem 1.1 readily implies the decidability of MLS. However, as for now, we can
only infer that solving the satisfiability problem for MLS takes nondeterministic
exponential time rather then nondeterministic polynomial time. This is due to
the size of the collection Π having no polynomial bound, in fact Π can have size
up to 2p, where p is the number of variables occurring in φ′. Luckily, we can
prove that we can constrain the size of Π to be linear in p.

Let φ′, V, L,M,Σ, and Π as before, so that, in particular, M is injective and Π
is the collection of all the places πσ for σ ∈ Σ.

Given Σ′ ⊆ Σ and V ′ ⊆ V , we say that Σ′ distinguishes V ′ if for each pair of
distinct variables x, y of V ′ there exists a region σ ∈ Σ′ that is contained in one
of the sets Mx, My and is disjoint from the other.

Lemma 1.2. Let Σ′ ⊆ Σ and V ′ ⊆ V . If Σ′ distinguishes V ′, then for each
x ∈ V there exists a σ ∈ Σ such that Σ′ ∪ {σ} distinguishes V ′ ∪ {x}.

Proof. Assume that V ′ does not distinguish V ′ ∪ {x}. Then there exists a
variable y ∈ V ′ such that for all σ′ ∈ Σ′ it is either σ′ ⊆Mx∩My or σ′∩ (Mx∪
My) = ∅. There must exist exactly one such y inside V ′, otherwise V ′ would
not distinguish V ′. Notice that since M is injective, Mx ̸= My. Hence there
must be a region σ ∈ Σ that is fully contained in exactly one between Mx and
My and is disjoint from the other. Therefore, it is trivial to show that Σ∪ {σ}
distinguishes V ′ ∪ {x}.
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Notice that the singleton {x}, where x is any variable of V , is vacuously distin-
guished by the empty partition, then by applying iteratively the latter lemma
we obtain a partition Σ′ of size p − 1 that distinguishes V . It can be easily
checked that any subset of Π that contains all the places πσ such that σ ∈ Σ′ is
ample, in particular

Π′ := {πσ | σ ∈ Σ′} ∪ {πx | x ∈ L},

whose cardinality is p+m− 1 (where m = |L|) is ample.

We can observe that Π can be used for Theorem 1.1. Thus condition condition
(i) can be checked in nondeterministic linear time. Since this is also the case
for checking condition (ii) end to find the equivalence ∼, we can conclude that:

Lemma 1.3. The decidability problem for MLS belongs to the class of NP prob-
lems.

In Chapters 3, 4, and 5, we provide several NP-hard fragments of MLS. NP-
hardness of a fragment is inherited by all of its extensions, likewise to prove
that the decision problem for a theory is in NP, it is enough to say the same for
all of its fragments. Therefore we can conclude

Lemma 1.4. The satisfiability problem for MLS is NP-complete.

1.2.1 Extensions of MLS

The decision problem of several extensions of MLS has been solved through-
out the years, whereas the same problem remains open for another extensions.
Here we list the decidable extensions of MLS, identifying each language by the
symbols it comprises.

MLSS : ∪,∩, \,⊆,=,∈, {·} ([FOS80])

MLS∪ : ∪,∩, \,⊆,=,∈,∪(·) ([CFS87])

MLSS∩ : ∪,∩, \,⊆,=,∈, {·},∩(·) ([CC89])

MLSP : ∪,∩, \,⊆,=,∈,P(·) ([CSF85])

MLSSP : ∪,∩, \,⊆,=,∈, {·},P(·) ([Can91, CUO02])

MLSSPF : ∪,∩, \,⊆,=,∈, {·},P(·), F inite(·) ([CU14])

Not all the extensions of MLS are decidable however, for instance the theory
MLSuC+, comprising the symbols, ∪,∩, \,∈,⊆,∈,⊗,⊎, that is obtained from
MLS by adding the two atoms:

x⊗ y, x = ⊎(y),

where x and y are set variables, has an undecidable satisfiability problem. We
recall that s ⊗ t := {{a, b} | a ∈ s ∧ b ∈ t} is the collection of the unordered
pairs of the elements of s and t, while ⊎(T ) := {s | (∃!t)(t ∈ T ∧ s ∈ t)} is the
disjoint union of the elements of T .
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In this dissertation we will focus on MLS and its fragments, so remaining amply
inside the realm of the decidable. In fact, since all the fragments we will study
are sub-languages of MLS the same proof of decidability we presented early in
this chapter will also apply to them. Therefore, all the fragments we will study
not only are decidable, but their satisfiability problem also belongs to the class
of nondeterministic polynomial problems.
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Chapter 2

Existential expressibility and
O(f )-expressibility

In this chapter we present two reduction techniques that have been used as
powerful tools in the construction of the complete taxonomy of MLS fragments,
the main topic of this dissertations.

Most of the reduction we present are based on the notion of existential express-
ibility, which can be seen as a context-free expressibility in a sense that will be
declared soon.

Definition 2.1 (Existential expressibility). A formula ψ(x⃗) is existentially ex-
pressible in a theory T if there exists a T -formula Ψ( x⃗, z⃗ ) such that

|= ψ( x⃗ ) ←→ (∃z⃗ ) Ψ( x⃗, z⃗ ),

where x⃗ and z⃗ stand for tuples of set variables.

We also provide a more general notion of context-sensitive expressibility called
O(f)-expressibility. This second form of expressibility is strictly bound to its
complexity, hence the ”O(f)” in the name.

Definition 2.2 (O(f)-expressibility). Let T1 and T2 be any theories and f : N→
N be a given map. A collection C of formulae is said to be O(f)-expressible
from T1 into T2 if there exists a map

⟨φ( y⃗ ) , ψ( x⃗ ) ⟩ ↦→ Ξψφ( x⃗, y⃗, z⃗ ) (2.1)

from T1 × C into T2, where no variable in z⃗ occurs in either x⃗ or y⃗, such that
the following conditions are satisfied:

(a) the mapping (2.1) can be computed in O
(︁
f(|φ ∧ ψ|)

)︁
-time,

(b) if φ( y⃗ ) ∧ Ξψφ( x⃗, y⃗, z⃗ ) is satisfiable, so is φ( y⃗ ) ∧ ψ( x⃗ ),

(c) |=
(︁
φ( y⃗ ) ∧ ψ( x⃗ )

)︁
−→ (∃z⃗ )Ξψφ( x⃗, y⃗, z⃗ ).

It is quite evident that existential expressibility is a particular form of O(1)-
expressibility. In fact, if Ψ(x⃗, z⃗) is the formula that existentially expresses ψ(x⃗),
then the map ψ(x⃗) ↦→ Ψ(x⃗, z⃗) satisfies conditions (a)–(c).
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Example 2.1. As we will show below the atom x = y ∩ y is expressible in the
language MLS(\,=, ̸=) (which is the fragment of MLS that comprises only the
operator \ and the relations = and ̸=) due to the well-known equivalence

|= x = y ∩ z ←→ x = y \ (y \ z). (2.2)

Consider the following formula in the theory MLS(\,∩,=, ̸=):

φ := x = y \ w ∧ w ̸= y ∩ z ∧ x = z \ w.

Using existential expressibility, we can translate the formula φ into an equisat-
isfiable formula φ′ inside MLS(\,=, ̸=), where

φ′ := x = y \ w ∧ w ̸= x′ ∧ x′ = y \ x′′ ∧ x′′ = y \ z ∧ x = z \ w.

In this example, the collection of variables x⃗ is {x, y, z, w} and the collection z⃗
is {x′, x′′}.

2.1 Expressibility results

Existential expressibility can be easily used to reduce the satisfiability problem
of a theory to that of one of its fragments. Let T1 be a fragment of MLS
that admits a sub-language T2 such that every literal that is in T1 but not in
T2 is existentially expressible in T2. Then, following Definition 2.1, given any
formula φ1 of T1, we can replace any literal of that formula that is not in T2
with a T2-formula Ψ to obtain a formula φ2 of T2 that is equisatisfiable with φ1.

Existential expressibility enjoys a transitive property in the following sense.
Once we found that a certain formula ψ is existentially expressible inside a
theory T1, namely we found a T -formula Ψ1 such that

|= ψ(x⃗)←→ (∃z⃗)Ψ1(x⃗, z⃗),

then ψ will be also existential expressible in any theory T2 where Ψ is existen-
tially expressible. Indeed, in this case there exists a T2-formula Ψ2 such that

|= Ψ1(x⃗)←→ (∃z⃗)Ψ2(x⃗, z⃗).

Hence we obtain

|= ψ(x⃗)←→ (∃z⃗)Ψ1(x⃗, z⃗)←→ (∃z⃗, w⃗)Ψ2(x⃗, z⃗, w⃗).

Thus, by setting y⃗ = z⃗ ∪ w⃗ we have

|= ψ(x⃗)←→ (∃y⃗)Ψ2(x⃗, y⃗).

O(f)-expressibility can be used to reduce the satisfiability problem of a theory
to that of one of its sub-theories in the same fashion of existential expressibility.
The main difference in the use between existential and O(f)-expressibility is
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that while any existential expressibility result for a theory carries over to every
of its super-theory, the same is not true for O(f)-expressibility. However, if
a formula is O(f)-expressible in a theory T , then it is also O(f)-expressible
inside all the sub-theories of T obtained by reducing the theory by means of
existential expressibility.

In what follows, we will often refer to a theory called Boolean Set Theory, BST,
and its fragments. The theory BST will be studied in Chapter 3, where a
more precise definition of its syntax will be given. For what concerns us in this
chapter, it is enough to define BST as the theory obtained by removing the
membership relation ∈ from MLS.

Lemma 2.1. (a) x = y \ z is expressible in BST(∪,Disj,=);

(b) x = y ∪ z is expressible in BST(\,=);

(c) x = y ∩ z is expressible in BST(\,=);

(d) x = y is expressible in BST(⊆);

(e) x ⊆ y is expressible both in BST(∪,=) and in BST(∩,=);

(f) x ⊈ y is expressible both in BST(∪, ̸=) and in BST(∩, ̸=);

(g) x =∅ is expressible in BST(Disj);

(h) x ̸= ∅ is expressible in BST(⊆, ̸=), BST(=∅, ̸=), BST(¬Disj), and in
MLS(∈);

(i) Disj (x, y)1 is expressible in BST(∩,=∅);

(j) ¬Disj (x, y) is expressible both in BST(∩, ̸=∅) and BST(⊆, ̸=);

(k) x /∈ y is expressible in MLS(\,=,∈);

(l) x ̸= y is expressible in MLS(∪,∩,∈, /∈).

Proof. Most of the following proofs are trivial once the equivalence ∪ψ ←→ Ψ
is given, so that we will only linger on some of those proofs.

(a) |= x = y \ z ←→ (Disj (x, z) ∧ x ∪ z = y ∪ z).

First, let M |= x = y \ z. Then plainly Disj (Mx,Mz) and Mx ∪Mz =
My∪Mz hold. If conversely M |= Disj (x, z)∧x∪ z = y∪ z, we have that
if s ∈ My \Mz then, since My ⊆ My ∪Mz = Mx ∪Mz, s ∈ Mx, so
that My \Mz ⊆ Mx. Moreover, if s ∈ Mx then likewise s ∈ My ∪Mz,
and since Disj (Mx,Mz), then s ∈My \Mz, so that Mx =My \Mz.

(b) |= x = y ∪ z ←→ (x \ y = z \ z ∧ y \ x = x \ x).

First, let M |= x = y ∪ z. Then My \Mx = ∅ = MX \Mx, and also
Mx \My =Mz \My. If M |= x \ y = z \ y ∧ y \ x = x \ x we have that
My \Mx = ∅, and thus My ⊆ Mx. Let s ∈ Mx. Then, either s ∈ My,
so that s ∈ My ∪Mz, or s /∈ My so that s ∈ Mx \My = Mz \My ⊆

1Given two sets S, T the proposition ”S is disjoint from T”, Disj (S, T ), means that no
element of S belongs to T and vice-versa. Equivalently we can write S ∩ T = ∅
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My ∪Mz. Therefore Mx ⊆ My \Mz. If s ∈ My ∪Mz, we reason as
follows. If s ∈My, then we have s ∈Mx, otherwise if s ∈Mz \My then
s ∈Mx \My ⊆Mx. Hence, Mx =My ∪Mz.

(c) |= x = y ∩ z ←→ x = y \ (y \ z).

(d) |= x = y ←→ x ⊆ y ∧ y ⊆ x.

(e) |= x ⊆ y ←→ y = x ∪ y and |= x ⊆ y ←→ x = x ∩ y.

(f) |= x ⊈ y ←→ y ̸= x ∪ y and |= x ⊆ y ←→ x ̸= x ∩ y.

(g) |= x = ∅←→ Disj (x, x).

(h) We have that

• |= x ̸= ∅←→ (∃y, z)(y ⊆ x ∧ y ̸= x).

Let M |= x ̸= ∅. Then there exists an s ∈ Mx. Let My = ∅. Then
plainly My ⊆ Mx, and Mx ̸= My. If M |= y ⊆ x ∧ y ̸= x, then
there exists an s ∈Mx \My, so that Mx ̸= ∅.

• |= ̸= ∅←→ (∃y)y = ∅ ∧ x ̸= y.

• |= x ̸= ∅←→ ¬Disj (x, x).

• |= x ̸= ∅←→ (∃y)y ∈ x.

(i) Disj (x, y)←→ x ∩ y = ∅.

(j) We have that:

• ¬Disj (x, y)←→ x ∩ y ̸= ∅;

• |= ¬Disj (x, y) ←→ (∃z)(z ⊆ x ∧ z ⊆ y ∧ z ̸= ∅), (recall that by
(g) z ̸= ∅ is expressible in BST(⊆, ̸=)).

(k) |= x /∈ y ←→ (∃z)(x ∈ z ∧ z = z \ y.

If M |= x /∈ y, then putting Mz = {Mx} we have both Mx ∈ Mz and
Mz = Mz \My. Otherwise, if M |= z ∈ x ∧ z = z \ y, then Mx ∈ Mz
and Disj (Mz,My). Thus Mx /∈My.

(l) |= x ̸= y ←→ (∃z)(z ∈ x ∪ y ∧ z /∈ x ∩ y).

We are ready to use the above results to reduce MLS to a smaller fragment.

Corollary 2.2. Every MLS-formula can be reduced to an equisatisfiable conjunc-
tion of atoms of types

x = y \ z, x ∈ y.

Proof. Without loss of generality we can consider justMLS-formulae in conjunc-
tive normal form, thus, we may assume that any formula will be a conjunction



2.1. Expressibility results 17

of atoms of types:

x = y ∪ z, x = y ∩ z, x = y \ z,
x =∅, x ⊆ y, x = y, Disj (x, y) , x ∈ y
x ̸=∅, x ⊈ y, x ̸= y, Disj (x, y) , x /∈ y.

By applying Lemma 2.1, we obtain a conjunction of atoms of types

x = y \ x, x = y, x ∈ y.

We can also get rid of the atoms of type x = y since

|= x = y ←→ (∃z)(x = y \ z ∧ z = z \ z).

Similarly we can also prove that

Corollary 2.3. Every BST-formula can be reduced to an equisatisfiable conjunc-
tion of atoms of types

x = y \ z, x ̸= y.

When a literal is not expressible in a given theory, we may check if it is O(f)-
expressible, for some function f .

Lemma 2.4. Any satisfiable MLS(∪,∩,=, ̸=,∈, /∈)-formula φ admits a model M
such that

Mx ̸= ∅,

for all x ∈ Vars(φ).

Proof. Let M ′ be a model for φ and let α be a rank such that

rk (M ′x) < α,

for all x ∈ Vars(φ).

Let σ be any set of rank α, S be the collection of all the sets of rank strictly
smaller than α, and V be the von Neumann universe of all sets. Define the
function fσ : S ↦→ V as

fσ(s) := {fσ(t) | t ∈ s} ∪ {σ}.

First we prove that fσ is injective. We proceed by proving

fσ(s
′) = fσ(s

′′) −→ s′ = s′′

by induction over the rank of s′.
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First let rk (s′) = 0, then s′ = ∅. By definition fσ(∅) = {σ}. Notice that
for every nonempty set t ∈ S, rk (fσ(t)) > α + 1. In fact, let s ∈ t. Then
σ ∈ fσ(s) ∈ fσ(t), so that if fσ(s

′′) = fσ(s
′) = {σ} we must have s′′ = ∅ = s′.

Let rk (s′) > 0 and let t′ ∈ s′. We have that fσ(t
′) ∈ fσ(s

′) = fσ(s
′′). Hence

there exists a t′′ ∈ s′′ such that fσ(t
′) = fσ(t

′′). Plainly, rk (t′) < rk (s′). Thus,
by inductive hypothesis t′ = t′′, we have s′ ⊆ s′′. Analogously we can prove
s′′ ⊆ s′, so that s′ = s′′ holds.

Now define the set assignment M as

Mx := fσ(M
′x)

for all x ∈ Vars(φ).

By proving that for each term T of φ we haveMT = fσ(M
′T ), the injectiveness

of fσ directly yields that M |= φ.

We proceed by structural induction, first let T = x for some variable x of φ.
Then MT = fσ(M

′T ), by definition of M .

Now let T = T1 ∪ T2. Then, by inductive hypothesis, MT = MT ′ ∪MT ′′ =
fσ(M

′T ′) ∪ fσ(M ′T ′′), and plainly M ′T = M ′T ′ ∪ M ′T ′′. Let s ∈ fσ(M
′T ).

If s = σ, then s ∈ fσ(M
′T ′) ⊆ MT . Otherwise there must exist a t ∈ M ′T

such that s = fσ(t) ∈ fσ(M ′T ). Then plainly t ∈ M ′T ′ ∪M ′T ′′. W.l.o.g., let
t ∈ M ′T ′. Thus, s ∈ fσ(M

′T ′) ⊆ MT and therefore fσ(M
′T ) ⊆ MT . Now

let s ∈ MT = fσ(M
′T ′) ∪ fσ(M ′T ′′). W.l.o.g. let s ∈ fσ(M ′T ′). Then either

s = σ or there exists a t ∈ M ′T ′ such that s = fσ(t). If s = σ, then plainly
s ∈ fσ(M ′T ), otherwise t ∈ M ′T and s ∈ fσ(M ′T ). Hence, MT ⊆ fσ(M

′T ).
Summing up, Mt = fσ(M

′T ).

Finally, let T = T ′ ∩ T ′′. Then, by inductive hypothesis MT = MT ′ ∩MT ′′ =
fσ(M

′T ′)∩fσ(M ′T ′′), and plainlyM ′T =M ′T ′∩M ′T ′′. Let s ∈MT . Then s ∈
fσ(M

′T ′)∩ sσ(M ′T ′′). If s = σ, then plainly s ∈ fσ(M ′T ), otherwise since fσ is
injective there exists a t ∈M ′T ′∩M ′T ′′ such that s = fσ(t). Hence s ∈ fσ(M ′T ).
Let now s ∈ fσ(M ′T ). Then if s = σ plainly s ∈ fσ(M ′T ′) ∩ fσ(M ′T ′′) = MT .
Otherwise there exists a t ∈M ′T such that s = fσ(t). Hence t ∈M ′T ′ ∩M ′T ′′,
so that s ∈ fσ(M ′T ′) ∩ fσ(M ′T ′′) =Mt. Therefore MT = fσ(M

′T ).

Plainly σ ∈Mx, for all x ∈ Vars(φ), hence our thesis follows.

Lemma 2.5. The literal x =∅ is not existentially expressible in MLS(∪,∩,=, ̸=,∈, /∈).

Proof. By way contradiction, assume there exists aMLS(∪,∩,=, ̸=,∈, /∈)-formula
Ψ involving x and such that

|= x = ∅←→ Ψ.

Plainly x = ∅ is satisfiable, thus also Ψ is satisfiable. Then, by Lemma 2.4,
there exists a model M for Ψ such that Mv ̸= ∅, for all v ∈ Vars(Ψ). In
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particular, Mx ̸= ∅. Hence,

M ̸|= x = ∅←→ Ψ,

a contradiction.

Corollary 2.6. The literal x = y\z is not existential expressible in MLS(∪,∩,=, ̸=,∈, /∈).

Proof. This is a direct consequence of Lemmas 2.5 and 2.1(g).

As a consequence of Lemma 2.5, the literal x = ∅ is not expressible inside all
the fragments of MLS(∪,∩,=, ̸=,∈, /∈). However, we can prove that x = ∅ is
O(n)-expressible inside both BST(∪,=, ̸=) and BST(∩,=, ̸=).

Lemma 2.7. The literal x =∅ is O(n)-expressible in BST(∪,=, ̸=).

Proof. Let φ be any BST(∪,=, ̸=)-formula, and consider the map

⟨x = ∅ , φ ⟩ ↦→
⋀︂

v∈Vars(φ)

x ⊆ v. (2.3)

We prove that the map (2.3) satisfies (a), (b), and (c).

Concerning (a), to compute the map we just need to scan the formula φ and
add the literal x ⊆ v to the conjunction

⋀︁
x ⊆ v for each variable in φ. Letting

n be the length of the formula φ, the map (2.3) can be computed in O(n)-time.

Concerning (b), let M |= φ ∧
⋀︁
v∈Vars(φ) x ⊆ v. Let us put

M ′v :=Mv \Mx,

for all v ∈ Vars(φ) ∪ {x}.

Plainly M ′x = ∅. Let ℓ be any literal of φ. Then ℓ is either of the form

∪L =∪R or ∪L ̸=∪R.
If ℓ :=∪L =∪R, we have that

∪M ′L = (∪ML) \Mx

= (∪MR) \Mx

=∪M ′R.

If ℓ := ∪L ̸= ∪R, we have that Mx ⊆ ∪ML ∩ ∩MR, and ∪ML ̸= ∪MR.
W.l.o.g., let s ∈ ∪ML\∪MR. Then s /∈Mx and therefore s ∈ (∪ML\Mx)\
(∪MR \Mx), that is s ∈ ∪M ′L \ ∪M ′R.

Therefore we have M ′ |= φ ∧ x = ∅.

Finally, concerning (c), let M |= φ ∧ x = ∅. Then plainly Mx = ∅ ⊆ My, for
each variable v ∈ Vars(φ),. Thus M |= φ ∧

⋀︁
v∈Vars(φ) x ⊆ v.
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Analogously, we can also prove that:

Lemma 2.8. The literal x =∅ is O(n)-expressible in BST(∩,=, ̸=).

In the next section we will provide a more complex example ofO(f)-expressibility.
Specifically, we will show that all the formulae in the language MLSS are O(n2)-
expressible in the an extension of BST called BST+, where the theory MLSS is
a super-theory of MLS obtained by also allowing atoms of type x = {y}.

2.2 An example ofO(f )-expressibility: MLSS isO(n2)-
expressible in BST+

By applying Corollary 2.2, we obtain that MLSS is the collection of all the
conjunctions of atoms of types

x = y \ z, x ∈ y, x = {y}.

Notice, however, that the equivalence

|= x ∈ y ←→ (∃z)z = {x} ∧ z ⊆ y

holds.

Thus, using existential expressibility, we can further simplify MLSS to the col-
lection of all the conjunctions of atoms of types

x = y \ z, x = {y}.

We shall also be interested in the extension BST+ of the theory BST.

Definition 2.3. The theory BST+ consists of all the propositional combinations
(resulting from unrestrained use of the logical connectives ‘ ∧ ’, ‘ ∨ ’, ‘ −→
’, ‘←→ ’, and ‘¬’) of atomic formulae of type x = y \ z.

It is not hard to check that the satisfiability problem for BST+ can be reduced
to the satisfiability problem for BST in nondeterministic polynomial time, and
therefore it is NP-complete.

Here we show that atoms of type z = {x} are not existentially expressible in
BST+, whereas any conjunction of such atoms turns out to be O(n2)-expressible
from BST into BST+. The following proof is an extension of the proof that liter-
als of type x ∈ y are O(n2)-expressible inside BST+ presented in [CDDMO20].

2.2.1 Existential inexpressibility of z = {x} in BST+

If singletons atoms of the form z = {x} were existentially expressible in BST+,
membership atoms x ∈ y would also be expressible; in fact, as stated before,
such atoms are existential expressible in presence of atoms of singleton atoms
inside BST.

Lemma 2.9. |= x ∈ y ←→ (∃z)(z = {x}∧z ⊆ y) , if x, y, z are distinct variables.
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Proof. IfM |= z = {x}∧z ⊆ y holds, thenM |= x ∈ y, sinceMx ∈Mz ⊆My .

Conversely, ifM |= x ∈ y holds, let us extendM by puttingMz := {Mx}; then
Mx ∈My yieldsM |= z = {x}∧z ⊆ y, so thatM |= (∃z)(z = {x}∧z ⊆ y) .

In this section, we show that membership atoms x ∈ y are not existentially
expressible in BST+; therefore, by the lemma just seen, atoms z = {x} are
not existentially expressible in BST+ as well. Specifically, we prove that every
satisfiable BST+-formula Ψ admits a “flat” model M , namely a model that
guarantees

s ∈Mv −→ rk (s) = ρ,

for some positive rank ρ and for each variables v of Ψ. Consequently,Mx /∈My
for any x, y ∈ Vars(Ψ), and hence M ̸|= x ∈ y .

Definition 2.4. For every ordinal ρ ⩾ 1, a set assignment M over a collection
V of variables is said to be ρ-flat if all sets belonging to

⋃︁
{Mv : v ∈ V } have

rank ρ.

No membership atom x ∈ y is satisfied by any ρ-flat set assignment:

Lemma 2.10. Let M be a ρ-flat set assignment over a collection V of variables.
Then Mx /∈My, for any x, y ∈ V .

Proof. Because of the ρ-flatness ofM , for every x ∈ V either rk (Mx) = 0 (when
Mx = ∅) or rk (Mx) = ρ + 1 (when Mx ̸= ∅). Hence, in any case rk (Mx) ̸= ρ
(since ρ-flatness presupposes ρ ⩾ 1), and therefore Mx /∈

⋃︁
{My | y ∈ V }.

As proved in the next lemma, any satisfiable BST+-formula always admits a
ρ-flat model, for sufficiently large ρ.

Lemma 2.11. Every satisfiable formula φ of BST+ admits a ρ-flat set model,
for any ρ ⩾ |Vars(Φ)|+ 1.

Proof. Let φ be a satisfiable formula of BST+, and let M be a set model of φ.
Let ϕ+

M be the conjunction of all distinct atoms x = y \ z occurring in φ that
are satisfied by M . Likewise, let ϕ−

M be the conjunction of all distinct literals
x ̸= y \ z satisfied by M and such that x = y \ z occurs in φ. Finally, let

ϕM := ϕ+
M ∧ ϕ

−
M . (2.4)

Plainly, M satisfies ϕM by construction. Additionally, by propositional reason-
ing, every set model of ϕM satisfies our initial formula φ. Thus, it is enough to
show that the conjunction ϕM admits a ρ-flat set model for every ρ ⩾ n + 1,
where

n := |Vars(ϕM)| = |Vars(Φ)| .

We prove that ϕM admits a ρ-flat set model by contracting each nonempty
region RW of M of the form

RW :=
(︂⋂︂
{Mx | x ∈ W}

)︂
\
⋃︂
{My | y ∈ Vars(ϕM) \W},
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for ∅ ≠ W ⊆ Vars(ϕM), into a distinct singleton of rank ρ+1 (hence containing
a single member of rank ρ).

Since the map κ ↦→ 2κ − κ is strictly increasing for κ ⩾ 1, for every integer
ρ ⩾ n+ 1 we have ⃓⃓

V#
ρ

⃓⃓
= |Vρ+1| − |Vρ|
= 2|Vρ| − |Vρ|
⩾ 2|Vn+1| − |Vn+1|
= |Vn+2| − |Vn+1|

=
⃓⃓⃓
V#
n+1

⃓⃓⃓
⩾ 2n.

Hence, there exists an injective map ℑρ : P(Vars(ϕM))→ V#
ρ from the collec-

tion of the nonempty subsets of Vars(ϕM) into V#
ρ of the (hereditary finite) sets

of rank ρ.

Next, we define a set assignment M∗
ρ over Vars(ϕM) by putting

M∗
ρx := {ℑρ(W ) : x ∈ W ⊆ Vars(ϕM) ∧RW ̸= ∅}.

By construction, the assignment M∗
ρ is ρ-flat. In addition, it is not hard to

check that, for every ∅ ≠ W ⊆ Vars(ϕM), the region R∗
W of M∗ defined by

R∗
W :=

(︂⋂︂
{M∗

ρx : x ∈ W}
)︂
\
⋃︂
{M∗

ρy : y ∈ Vars(ϕM) \W}

is nonempty if and only if so is its corresponding region RW of M . Thus, M∗
ρ

satisfies ϕM .

We are now ready to prove that membership atoms x ∈ y—and hence, atoms
of the form z = {x}—are not existentially expressible in BST+.

Theorem 2.1. The atom x ∈ y is not existentially expressible in BST+.

Proof. By way of contradiction, assume the atom x ∈ y is existentially express-
ible in BST+. Thus there exists a BST+-formula ψ(x⃗, x, y) such that

|= x ∈ y ←→ (∃x⃗)ψ(x⃗, x, y).

Since x ∈ y is plainly satisfiable, so it is ψ(x⃗, x, y) for some x⃗. Thus, by
Lemma 2.11, it admits a ρ-flat model Mρ. Therefore we obtain

Mρ ̸|= x ∈ y ∧ ψ(x⃗, x, y),

a contradiction.
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2.2.2 O(n2)-expressibility in BST+ of singleton-atom conjunc-
tions

Conforming with Definition 2.2, we shall prove that any conjunction ψ( x⃗ ) of
atoms of the form x = {y} is O(n2)-expressible from BST into BST+ by ex-
hibiting a map

⟨φ( y⃗ ) , ψ( x⃗ ) ⟩ ↦→ Ξψφ( x⃗, y⃗, z⃗ )

that can be computed in quadratic time and such that conditions (b) and (c)
of Definition 2.2 are satisfied, where φ( y⃗ ) ranges over the collection of BST-
conjunctions and the variables in z⃗ are distinct from those in x⃗ and in y⃗.

Thus, let φ(y⃗) be any BST-conjunction and ψ(x⃗) be of the said form. For each
variable x ∈ Vars(φ∧ψ), we introduce a new distinct auxiliary variable x̃ (these
variables will enforce that x ∈ y only if x̃ ⊊ ỹ). Then we put:

Ξψφ :=
⋀︂

x={y} in ψ

x ⊈ y ∧

⋀︂
x={y} in ψ
x′={y′} in ψ

(︁
y = y′ ←→ x = x′

)︁
∧

⋀︂
x={y} in ψ
v∈Vars(φ∧ψ)

(︁
¬Disj (x, v,−→)x ⊆ v

)︁
∧

⋀︂
x={y} in ψ
v∈Vars(φ∧ψ)

(︁
¬Disj (x, v,−→) ỹ ⊊ ṽ

)︁
∧

⋀︂
x,y∈Vars(φ∧ψ)

(︁
x = y −→ x̃ = ỹ

)︁

(thus, the list z⃗ of variables in Definition 2.2 is the collection ˜︁x⃗ of all auxiliary
set variables x̃).

Plainly, Ξψφ is a BST+-formula—in fact, it is a conjunction of a rather sim-
ple form—, which satisfies the following proposition, implying condition (a) of
Definition 2.2:

Lemma 2.2. Ξψφ = Θ
(︁
|Vars(φ ∧ ψ)|2

)︁
.

The proof of this lemma is postponed to Sec. 2.2.1. In the next two subsections,
we shall prove that

• if φ( y⃗ ) ∧ Ξψφ( x⃗, y⃗,
˜︁x⃗ ) is satisfiable, then so is φ( y⃗ ) ∧ ψ( x⃗ ), and

• every model of φ( y⃗ )∧ψ( x⃗ ) can be extended into a model of Ξψφ( x⃗, y⃗,
˜︁x⃗ ),

thus showing that also conditions (b) and (c) of Definition 2.2 are fulfilled,
which proves that every singleton-atom conjunction is O(n2)-expressible from
BST into BST+.

Translation examples

Here we digress to provide a few examples illustrating how the conjunction Ξψφ
renders the formula φ ∧ ψ.
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Singletons are characterized by the fact they contain exactly one element, that
is why both ⋀︂

x={y} in ψ

x ⊈ y and
⋀︂

x={y} in ψ
v∈Vars(φ∧ψ)

(︁
¬Disj (x, v,−→)x ⊆ v

)︁

(the former of which entails x ̸= ∅) occur in our translation. Moreover the
singleton-atom x = {y} plainly implies y ∈ x, therefore the ordering relation
induced by ∈ must be preserved.2 This is the rationale for including, in our
translation, the constraints⋀︂

x={y} in ψ
v∈Vars(φ∧ψ)

(︁
¬Disj (x, v,−→) ỹ ⊊ ṽ

)︁
and

⋀︂
x,y∈Vars(φ∧ψ)

(︁
x = y −→ x̃ = ỹ

)︁
.

Example 2.2. The conjunction φ ∧ ψ, where

φ := a = b \ c and ψ := x = {y} ∧ y = {z} ∧ z = {x},

is plainly unsatisfiable because it implies the membership cycle x ∈ z ∈ y ∈ x.
To reflect this, Ξψφ encompasses the literals and implications

x ̸= ∅ ,
(︁
¬Disj (x, x,−→) ỹ ⊊ x̃

)︁
,

y ̸= ∅ ,
(︁
¬Disj (y, y,−→) z̃ ⊊ ỹ

)︁
,

z ̸= ∅ ,
(︁
¬Disj (z, z,−→) x̃ ⊊ z̃

)︁
,

showing that it is unsatisfiable due to the cycle x̃ ⊊ z̃ ⊊ ỹ ⊊ x̃.

Example 2.3. The conjunction φ ∧ ψ , where φ := y = x \ z and ψ := x =
{y} ∧ y = {z}, is not satisfiable; in fact any set assignment M satisfying this
formula is such that My = Mx \Mz , Mx = {My}, and My = {Mz}; thus
My =Mz, and hence My = {My}, a contradiction.

Our translation Ξψφ comprises:

y ̸= ∅ ∧ x ⊈ y ∧
(︁
¬Disj (x, y,−→)x ⊆ y

)︁
.

Any model M for φ ∧ Ξψφ is such that, My ⊆ Mx and My ̸= ∅ hold, so that
¬Disj (Mx,My); but then Mx ⊆My must hold, which conflicts with x ⊈ y .

As we will prove in Sec. 2.2.1, satisfiability carries over from φ ∧ ψ to φ ∧ Ξψφ.
Here is an interesting example of this:

Example 2.4. The conjunction φ ∧ ψ, where

φ := x = y \ y′ ∧ x = z \ z′, and ψ := z = {y},
2See, below, the beginning of Sec. 2.2.1.
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is satisfiable. In fact, φ ∧ ψ is plainly satisfied by every set assignment M over
Vars(φ ∧ ψ) of the form

Mx := ∅, My := s, Mz := {s}, My′ := s ∪ s′, Mz′ := {s} ∪ s′′, (2.5)

where s, s′, and s′′ are any well-founded sets.

It can easily be checked that, for every set assignment M of the form (2.5), the
extension M+ of M over the auxiliary variables ṽ, for v ∈ Vars(φ ∧ ψ) and
where

M+ṽ :=

{︄
s ∪ {s} if s ∈Mv

∅ otherwise,

satisfies Ξψφ, so that M |= (∃ x̃, ỹ, z̃, ỹ′, z̃′)Ξψφ holds. Thus, to show that condition

(c) of Definition 2.2 is satisfied, namely that |=
(︁
φ ∧ ψ

)︁
−→ (∃ x̃, ỹ, z̃, ỹ′, z̃′)Ξψφ

holds, it is enough to check that the conjunction φ ∧ ψ is satisfied by set as-
signments of the form (2.5) only. Let then M be any model for φ ∧ ψ. Since
Mx ⊆Mz and Mz = {My}, either Mx = ∅ or Mx = {My} holds. The latter
case can be readily ruled out, for in view ofMx ⊆My it would followMy ∈My,
which is untenable in the realm of well-founded sets. Thus, Mx = ∅ must hold.
Letting s := My—so that Mz = {s}—, since My ⊆ My′ and Mz ⊆ Mz′, we
have My′ = s ∪ s′ and Mz′ = {s} ∪ s′′, for some sets s′ and s′′, and therefore
M has the form (2.5).

2.2.3 If φ ∧ Ξψφ is satisfiable, then so is φ ∧ ψ

In order to convert a modelM (0) of φ∧Ξψφ into a model of φ∧ψ, we can assume

that M (0) is ρ-flat over Vars(φ ∧ Ξψφ) for some integer ρ >
⃓⃓
Vars(φ ∧ Ξψφ)

⃓⃓
: on

the one hand, Lemma 2.11 enables us to do so; on the other hand, Lemma 2.10
tells us that such an M (0) does not model any of the atoms x = {y} in ψ. For
i = 1, . . . ,m (where m is a suitable integer, 0 ⩽ m ⩽ |{atoms in ψ}|), we will
lift M (i−1) into a model M (i) of φ ∧ Ξψφ such that the atoms in ψ modeled by

M (i−1) remain true in M (i), while at least one conjunct xi = {yi} of ψ, false
in M (i−1), becomes true in M (i). This iterative process will end as soon as all
atoms in ψ are true; actually, if ψi is the conjunction of those atoms in ψ which
M (i) makes true for the first time, ψ1 ∧ · · · ∧ψm will coincide with ψ—up to an
atom rearrangement.

In our set up, each ψi must hence comprise at least a conjunct xi = {yi} of ψ
not appearing in any ψj with j < i. The selection of xi = {yi} will shape the
transformation of M (i−1) into M (i) and will be based on the criterion that the
atom in question be minimal, in ψ (deprived of all atoms in ψ1 ∧ · · · ∧ ψi−1), in

regard to the ordering ≺M(0)
induced on the conjuncts of ψ as specified below:

Definition 2.5. Given a model M of φ ∧ Ξψφ, we put ℓ
.≺M ℓ′ for all atoms

ℓ := x={y} and ℓ′ := x′={y′} in ψ such that ¬Disj (Mx,My′) holds. Then, for all
conjuncts ℓ and ℓ′ in ψ, we put ℓ ≺M ℓ′ provided that

ℓ = ℓ0
.≺M ℓ1

.≺M · · · .≺M ℓn = ℓ′,
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for some ℓ0, ℓ1, . . . , ℓn in ψ with n ⩾ 1.

This definition enforces that

Lemma 2.3. The relation ≺M is a strict partial order.

Proof. Plainly, ≺M is a transitive relation; it will hence suffice to prove that
there is no cycle ℓ0 ≺M · · · ≺M ℓn = ℓ0. Assuming, by way of contradiction,
that such a cycle exists, there would be atoms ℓ′0, ℓ

′
1, . . . , ℓ

′
m in ψ such that

ℓ′0
.≺M ℓ′1

.≺M · · · .≺M ℓ′m−1

.≺M ℓ′m = ℓ′0,

where ℓ′i has the form xi={yi} for i = 0, 1, . . . ,m. Then, we would have

¬Disj (Mx0,My1, ,) . . . ,¬Disj (Mxm−1,My0, ) .

Since M |= Ξψφ, then in particular

M |=
⋀︂

x={y} in ψ
v∈Vars(φ∧ψ)

(︁
¬Disj (x, v,−→) ỹ ⊊ ṽ

)︁
,

and therefore
Mỹ0 ⊊Mỹ1 ⊊ · · · ⊊Mỹm−1 ⊊Mỹ0 ,

thus yielding the contradiction Mỹ0 ⊊Mỹ0.

The aciclicity of ≺M entails its reflexivity, whence the claim follows.

Let M be a set assignment over the variables of φ ∧ Ξψφ, and x = {y} be any
atom in ψ such that

∀v ∈ Vars(φ ∧ ψ)
(︁
My /∈Mv

)︁
. (2.6)

We define the set assignment Mx,y by putting, for all v ∈ Vars(φ ∧ ψ):

Mx,yv :=

{︄
Mv if Disj (Mx,Mv, ) ,(︁
Mv \Mx

)︁
⊎ {My} otherwise,

(2.7)

and
Mx,yṽ :=Mṽ . (2.8)

(As usual, ⊎ denotes disjoint set union.)

It turns out that the set assignments Mx,y and M model the very same literals
of type u ⊆ v and Disj (u, v), with u, v ∈ Vars(φ ∧ ψ). This is proved in the
next two lemmas.

Lemma 2.4. Let x = {y} be an atom in ψ and M be a model of φ∧Ξψφ satisfying
condition (2.6); thenMu ⊆Mv ←→Mx,yu ⊆Mx,yv , for all u, v ∈ Vars(φ∧ψ).



2.2. An example of O(f)-expressibility: MLSS is O(n2)-expressible in BST+27

Proof. Plainly Mu ⊆ Mv −→ Mx,yu ⊆ Mx,yv. To get the converse, suppose
that Mx,yu ⊆ Mx,yv and s ∈ Mu : we must prove that s ∈ Mv. On the one
hand, if s /∈Mx then s ∈Mu \Mx ⊆Mx,yu ⊆Mx,yv and s ̸=My hold, entail-
ing s ∈Mv. On the other hand, if s ∈Mx holds, then ¬Disj (Mx,Mu) follows
from s ∈ Mx ∩Mu, and therefore My ∈ Mx,yu ⊆ Mx,yv and ¬Disj (Mx,Mv)
hold. Since M |= Ξψφ, we then have Mx ⊆ Mv, and thus s ∈ Mv again, as
sought.

Lemma 2.5. Let x = {y} be an atom in ψ and M be a model of φ∧Ξψφ satisfying
(2.6); then Disj (Mu,Mv)←→Disj (Mx,yu,Mx,yv) holds for all u, v ∈ Vars(φ ∧
ψ).

Proof. Plainly ¬Disj (Mu,Mv) −→ ¬Disj (Mx,yu,Mx,yv). To get the converse,
suppose that s ∈Mx,yu∩Mx,yv : we must prove thatMu∩Mv ̸= ∅ . If s ̸=My,
then s ∈Mu\Mx and s ∈Mv \Mx; so we are done. Otherwise, Mx intersects
both ofMu andMv; but then, sinceM |= Ξψφ, we get ∅ ≠Mx ⊆Mu∩Mv.

Lemma 2.6. Let x = {y} be an atom in ψ and M be a model of φ∧Ξψφ satisfying
(2.6). Then Mx,y |= φ ∧ Ξψφ ∧ x = {y} and Mx,yy =My, so that Mx,yx ̸=Mx.

Proof. To prove that Mx,y |= φ, we will get Mx,y |= ϕ from M |= ϕ for each
conjunct ϕ of φ.

Consider first a conjunct u = v\w of φ. By Lemmas 2.4 and 2.5,Mx,yu ⊆Mx,yv\
Mx,yw follows from Mu = Mv \Mw. Supposing then that s ∈ Mx,yv \Mx,yw,
we must prove that s ∈ Mx,yu. In fact, either s ∈ Mv \Mx or s = My and
Mx∩Mv ̸= ∅ holds: in the former case, from s /∈Mx,yw we get s /∈Mw, hence
s ∈ (Mv\Mw)\Mx =Mu\Mx ⊆Mx,yu, so that s ∈Mx,yu; in the latter case,
we getMx∩Mw = ∅ and henceMx∩Mu =Mx∩(Mv\Mw) =Mx∩Mv ̸= ∅,
and therefore again s ∈ Mx,yu. The inclusions Mx,yu ⊆ Mx,yv \ Mx,yw and
Mx,yu ⊇ Mx,yv \Mx,yw just shown sum up to Mx,yu = Mx,yv \Mx,yw; that is,
Mx,y |= u = v \ w .

Consider next a literal u ̸= v\w in φ. IfMu ⊈Mv\Mw then eitherMu ⊈Mv
or Mu ⊆ Mv ∧ Mu ∩ Mw ̸= ∅ holds; accordingly, by Lemmas 2.4 and 2.5,
Mx,yu ⊈Mx,yv\Mx,yw holds. On the other hand, ifMv\Mw ⊈Mu, then there
exists an s ∈Mv such that s /∈Mu ∪Mw. If s /∈Mx, then s ∈Mx,yv and s /∈
Mx,yu∪Mx,yw, hence s ∈Mx,yv \Mx,yw andMx,yu ⊉Mx,yv \Mx,yw; otherwise,
My ∈ Mx,yv follows from s ∈ Mx ∩Mv, whereas My /∈ Mx,yu ∪Mx,yw, else
either Mx ∩ Mu ̸= ∅ or Mx ∩ Mw ̸= ∅ would hold, entailing (due to the
fact that M models Ξψφ) the contradiction s ∈ Mx ⊆ Mu ∪ Mw; thus My
witnesses that Mx,yu ⊉ Mx,yv \ Mx,yw when s ∈ Mx. Summing up, we get
Mx,yu ̸=Mx,yv \Mx,yw in all cases; that is, Mx,y |= u ̸= v \ w .

Concerning the atom x = {y}, it follows from M |= Ξψφ that M |= x ⊈ y ∧
(︁
x ⊈

y −→ Disj (x, y)
)︁
, and hence M |= x ̸= ∅ ∧ Disj (x, y); therefore, Mx,yy = My

and Mx,yx = {My} = {Mx,yy} hold. That is, Mx,y |= x = {y}.
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What precedes suffices to prove that Mx,y |= φ ∧ x = {y}; since moreover
Mx,yṽ := Mṽ holds according to (2.8), Lemmas 2.4 and 2.5 also yield Mx,y |=
Ξψφ.

Corollary 2.12. Let M be a model of φ ∧ Ξψφ satisfying (2.6) for some atom
x = {y} in ψ, and ψ′ be the conjunction of all atoms x′ = {y′} in ψ satisfying
Mx,yx

′ ̸= Mx′. Then Mx,y |= ψ′. Also, x = {y} belongs to ψ′, Mx,yy = My,
and Mx,y |= x′ = x ∧ y′ = y for each x′ = {y′} in ψ.

Proof. When x′ = {y′} in ψ, from Mx,yx
′ ̸= Mx′ we get ¬Disj (Mx,Mx′).

Therefore, since

M |=
⋀︂

x′′={y′′} in ψ
v∈Vars(φ∧ψ)

(︁
¬Disj (x′′, v) −→ x′′ ⊆ v

)︁
,

we obtain Mx = Mx′; and then, by (2.7), Mx,yx
′ = Mx,yx = {My}. From

Mx = Mx′ we also get My = My′, and thus My = Mx,yy = Mx,yy
′, whence

Mx,yx
′ = {Mx,yy

′}. The genericness of x′ = {y′} in ψ′ yields Mx,y |= ψ′.

Lemma 2.7. If φ ∧ Ξψφ is satisfiable, so is φ ∧ ψ .

Proof. Suppose that φ ∧ Ξψφ is satisfiable; then it has a ρ-flat model M (0) with

ρ >
⃓⃓
Vars(φ ∧ Ξψφ)

⃓⃓
⩾ |Vars(φ ∧ ψ)|, by Lemma 2.11. Belaboring the idea

sketched at the beginning of Sec. 2.2.1, we consider the ordering ≺M(0)
between

atoms of ψ as defined in Definition 2.5 and repeatedly perform the following
actions:

i. choose an atom ℓi := xi={yi} in ψ, minimal in regard to ≺M(0)
, that does

not appear in ψj for any j < i;

ii. define M (i) := M
(i−1)
xi,yi and let ψi be the collection of all atoms x′ = {y′}

in ψ such that M (i)x′ ̸=M (i−1)x′;

iii. finally, take m to be the value such that ψ1 ∧ · · · ∧ ψm = ψ.

We will prove by induction on i = 1, . . . ,m that:

1) Condition (2.6) holds when M = M (i−1) and y = yi . — Thus M (i) |=
φ∧Ξψφ ∧ψi holds, where xi = {yi} is a conjunct of ψi, by Lemma 2.6 and
Corollary 2.12.

2) M (i)y = M (k−1)yk and M (i)x = {M (k−1)yk} hold for 1 ⩽ k ⩽ i and for
every atom x = {y} in ψk . — Consequently M (i) |= ψ1 ∧ · · · ∧ ψi holds.

3) rk
(︁
M (i)v

)︁
∈ {0, . . . , i}∪{ρ+1, . . . , ρ+1+ i} holds for every v ∈ Vars(φ∧

ψ); therefore M (i)v /∈ V#
ρ , if we assume w.l.o.g. that ρ > m.

4) The inclusion M (i)v ⊆
{︁
M (i)y : x = {y} in ψ1 ∧ · · · ∧ ψi

}︁
⊎ V#

ρ holds for
each v ∈ Vars(φ ∧ ψ).
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Thus, by 1)–2),M (m) |= φ∧ψ will finally hold, settling the claim of this lemma.

Notice, in passing and in view of Lemma 2.5, that ℓ ≺M(i)
ℓ′ ←→ ℓ ≺M(i−1)≺ ℓ′

will also follow from our construction and induction hypotheses for all ℓ, ℓ′ ∈ ψ;
we will hence get (omitting the model’s superscript) ℓk′⊀Mℓk for 1 ⩽ k < k′ ⩽ m.

Case i = 1. Concerning 1), since M (0) is ρ-flat, by Lemma 2.10 condition (2.6)
holds when M = M (0) for each atom x = {y} in ψ, and in particular when
y = y1. The claim 2) readily follows from Corollary 2.12 in this case, as it also
does, for any i, when i = k .

To get 3), notice that M (1)v ⊆ M (0)v ∪ {M (0)y1} readily follows from the def-
inition of M (1); then, since M (0) is ρ-flat, rk

(︁
M (0)v

)︁
∈ {0, 1, ρ + 1, ρ + 2}. To

get 4), rely on the inclusion M (1)v ⊆ {M (0)y1} ∪ M (0)v just noticed, where
M (0)v ⊆ V#

ρ (due to ρ-flatness), M (0)y1 = M (1)y1 /∈ V#
ρ (by 2) and 3) already

proved for i = 1), and x1 = {y1} belongs to ψ1 (as noted under 1)).

Case i > 1. As regards 1), arguing by contradiction suppose that M (i−1)yi ∈
M (i−1)v holds for some v ∈ Vars(φ ∧ ψ). Since M (i−1)v ⊆

{︁
M (i−1)y : x =

{y} in ψ1∧· · ·∧ψi−1

}︁
⊎V#

ρ holds by the induction hypothesis 4) butM (i−1)yi ∈
V#
ρ is ruled out by 3), we get M (i−1)yi ∈ {M (i−1)y : x = {y} in ψ1 ∧ · · · ∧ψi−1

}︁
;

accordingly,M (i−1)yi =M (i−1)yj holds for some j < i, thanks to Corollary 2.12.
Through Lemma 2.4, our induction ensures that M (j) |= Ξψφ , M

(j) |= yi = yj,

M (j) |= xi = xj ↔ yi = yj, and thus M (j)xj =M (j)xi and M
(j)yj =M (j−1)yj ∈

M (j)xi. Since M
(j−1)yj /∈M (j−1)xi holds, by hypothesis 1), the literal xi = {yi}

must belong to ψj, which leads us to the sought contradiction.

As for 2), supposing the contrary, there should exist a k and a least h such
that k < h ⩽ i and that either M (h)y ̸= M (h−1)y or M (h)x ̸= {M (h−1)y}
holds for some literal x = {y} in ψk. In the former case, we should have

¬ Disj
(︁
M (h−1)xh,M

(h−1)yk
)︁
, which leads to the contradiction ℓh ≺M

(0)
ℓk.

Therefore, we must have M (h)y = M (h−1)y = M (k−1)yk and M (h)x ̸=
{M (k−1)yk} = M (h−1)x. This is untenable, though: in fact, by Corollary 2.12,
M (h)x ̸= M (h−1)x implies M (h)x = {M (h)y}, whence M (h)x = {M (k−1)yk} fol-
lows.

As regards 3), the construction of M (i) gives us M (i)v ⊆ M (i−1)v ∪ {M (i−1)yi}
where, by the induction hypothesis 3), either 0 ⩽ rk

(︁
M (i−1)w

)︁
< i or ρ + 1 ⩽

rk
(︁
M (i−1)w

)︁
⩽ ρ + i holds for each w in Vars(φ ∧ ψ), and in particular for w

in {v, xi}. We will have either 0 ⩽ rk
(︁
M (i)v

)︁
< i or ρ+ 1 ⩽ rk

(︁
M (i)v

)︁
⩽ ρ+ i

when M (i)v ⊆M (i−1)v ; the upper bounds i and ρ+ i must be increased by one
in case M (i−1)yi ∈M (i)v .
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Finally, concerning 4), we have that:

M (i)v ⊆ M (i−1)v ∪ {M (i−1)y1} (by definition of M (i))
⊆

{︁
M (i−1)y : x = {y} in ψ1 ∧ · · · ∧ ψi−1

}︁
⊎ V#

ρ ∪ {M (i−1)yi}
(by the induction hypothesis 4))

=
{︁
M (i)y : x = {y} in ψ1 ∧ · · · ∧ ψi−1

}︁
⊎ V#

ρ ∪ {M (i)yi}
(by the induction hypothesis 2))

=
{︁
M (i)y : x = {y} in ψ1 ∧ · · · ∧ ψi

}︁
⊎ V#

ρ

(since M (i) |= Ξψφ and by the induction hypothesis 3)).

2.2.4 Each model of φ ∧ ψ can be extended into a model of
φ ∧ Ξψφ

Let φ ∧ ψ be satisfiable and let M be a model of it. Consider the relation ≺
between set variables induced by membership according to the rules

(i) x ≺ y if Mx ∈My, and

(ii) if x ≺ y and y ≺ z then x ≺ z,

so that, plainly, ≺ is a strict ordering.

Extend M to the set variables ṽ by putting, for each of them:

Mṽ := {Mx : x ≺ v}.

To prove that M |= Ξψφ, first notice that Mx is a singleton for all x = {y} in ψ,
so that we have

M |=
⋀︂

x={y} in ψ
v∈Vars(φ∧ψ)

(︁
¬Disj (x, v,−→)x ⊆ v

)︁
.

Moreover M models all pair of atoms x = {y} and x′ = {y′} in ψ so that

M |=
⋀︂

x={y} in ψ

x ⊈ y

and
M |=

⋀︂
x={y} in ψ
x′={y′} in ψ

(︁
y = y′ ←→ x = x′

)︁
.

Concerning any of the implications

¬Disj (x, v,−→) ỹ ⊊ ṽ

with x = {y} in ψ and v ∈ Vars(φ ∧ ψ), assume that ¬Disj (Mx,Mv); then,
sinceMx = {My}, we have thatMy ∈Mv and hence y ≺ v, so that transitivity
and strictness of ≺ yield {My′ | y′ ≺ y} ⊊ {Mv′ | v′ ≺ v}; that is, Mỹ ⊊Mṽ.
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Finally, as for the implications

x = y −→ x̃ = ỹ

with x, y ∈ Vars(φ∧ ψ) , assume Mx =My. When v ≺ x, a tuple v1, . . . , vn of
set variables exists such that v = v1, Mvi ∈Mvi+1 holds for each i, and vn = x;
thus Mv = Mv1 ∈ · · · ∈ Mvn = Mx = My, and hence v ≺ y. Analogously
v ≺ x follows from v ≺ y. Thus {v | v ≺ x} = {v | v ≺ y}; that is, Mx̃ =Mỹ.

We have so extended a generic M such that M |= φ∧ψ into a model of φ∧Ξψφ;
therefore we get

|=
(︁
φ(y⃗) ∧ ψ(x⃗)

)︁
−→ (∃z⃗) Ξψφ(x⃗, y⃗, z⃗ ) .

Putting together Lemmas 2.2 and 2.7, and the conclusion just reached, we get:

Theorem 2.8. Membership conjunctions are O(n2)-expressible from BST into
BST+.

2.2.5 Design and analysis of the translation algorithm

In order to prove Lemma 2.2, we provide a detailed specification of the algorithm
that generates the formula Ξψφ out of the conjunction φ ∧ ψ.
1: Initialize Vars(φ ∧ ψ) as an empty list of set variables;

2: Initialize Ξψφ as an empty list of conjuncts;
3: for each set variable x that appears in φ do
4: add x to Vars(φ ∧ ψ);
5: for each conjunct x = {y} in ψ do
6: add x and y to Vars(φ ∧ ψ);
7: add x ⊈ y to Ξψφ;
8: for each conjunct x = {y} in ψ do
9: for each v ∈ Vars(φ ∧ ψ) do
10: add

(︁
¬Disj (x, v,−→)x ⊆ v

)︁
∧
(︁
¬Disj (x, v,−→) ỹ ⊊ ṽ

)︁
to Ξψφ;

11: for each pair x = {y}, x′ = {y′} of distinct conjuncts in ψ do

12: add
(︁
y = y′ ←→ x = x′

)︁
to Ξψφ;

13: for all x, y ∈ Vars(φ ∧ ψ) do
14: add (x = y −→ x̃ = ỹ) to Ξψφ.

Adding elements to Vars(φ ∧ ψ) and to Ξψφ will require constant time if these
are implemented as lists of set variables and conjuncts.

The for-loop at lines 3 and 4 can be performed in Θ(|φ|)-time, where |φ| is the
total length of the conjunction φ; similarly the for-loop from line 5 to line 7
can be performed in Θ(|ψ|)-time. The for-loop from line 8 to line 10 is iterated
Θ (|ψ × Vars(φ ∧ ψ)|) times, the for-loop at lines 11 and 12 is iterated Θ

(︁
|ψ|2

)︁
times, and the for-loop at lines 13 and 14 is iterated Θ

(︁
|Vars(φ ∧ ψ)|2

)︁
times.

The overall time complexity then is Θ
(︁
|φ ∧ ψ| + |ψ × Vars(φ ∧ ψ)| + |ψ|2 +

|Vars(φ ∧ ψ)|2
)︁
, and since |Vars(φ ∧ ψ)| = O

(︁
|φ ∧ ψ|

)︁
, we can say that Ξψφ

can be generated in O
(︁
|φ ∧ ψ|2

)︁
-time.
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Chapter 3

A complete complexity taxonomy for
Boolean Set Theory

Boolean Set Theory (BST) is one of the two main sub-languages of MLS, de-
fined as the fragment obtained by removing the membership relation symbol ∈
from MLS. As for MLS the decision problem for BST also belongs to the class of
NP-complete problems, as we will show in Section 3.1. Several of its fragments
however admits polynomial-time decision procedure (see Sections 3.2,3.3 and
3.3.4). A comprehensive study of the fragments of BST is not only of founda-
tional interest, finding the boundaries between NP-complete and deterministic
polynomial-time problems inside BST, but it is also of a practical interest, as
these results can be used to improve the performance of those systems that
require to solve the decision problem inside BST to operate, as for example the
automated proof verifier ÆtnaNova.

In this chapter we will present a complete complexity taxonomy of the frag-
ments of BST. Such taxonomy was first presented in [CDMO21]. It comprises
thousands of fragments, 2040 to be precise, 1278 whose satisfiability problem
is NP-complete (for short we call those fragments NP-complete fragments),
and the remaining 762 whose decision problem can be solved in deterministic
polynomial time (for short we call such fragments polynomial fragments). A
complete list of all the fragments would be overwhelming and difficult to read.
To remedy this problem we focus on the symmetric families of:

• minimal NP-complete fragments: these are the NP-complete fragments
whose sub-theories are polynomial, i.e., removing any symbol from them
results in a polynomial fragment of BST; and

• maximal polynomial fragments: these are the polynomial fragments whose
super-theories are NP-complete, i.e., by adding any symbol of BST to them
results in a NP-complete fragment of BST.

Such two families contain far less fragments and can easily be presented in a
single table (see Table 3.4), which plainly suffices as a tool to establish whether
a fragment is NP-complete or polynomial. In fact any fragment will be either
a sub-theory of a maximal polynomial fragment or a super-theory of a minimal
NP-complete fragment.
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Corollary 2.2 states that the language MLS can be reduced to the collection of
all conjunctions of atoms of the following two types:

x = y \ z, x ∈ y.

By applying the same reductions to BST, Corollary 2.3 allow us to reduce BST
to the collection of all the conjunctions of atoms of the two types:

x = y \ z, x ̸= y,

where x, y and z are set variables. Although this reduced version of BST is
quite useful to simplify otherwise long proofs (see Lemma 2.7 for instance), it
is detrimental for our study of a complete BST complexity taxonomy. In fact
we would have just 5 fragments of BST:

BST(\,=, ̸=), BST(\,=), BST(\, ̸=)

BST(=), BST( ̸=);

lacking most fragments, in particular most polynomial fragments such as BST(∪,=, ̸=).

We need to take a step backward and give, like we did for MLS, a broader
definition of the syntax of BST.

Syntax of BST

The symbols of the language BST are:

• infinitely many set variables x, y, z, . . .;

• the constant symbol ‘∅’;

• the set operator symbols ‘ \ ’, ‘ ∪ ’, ‘ ∩ ’;

• the set relation symbols ‘ ⊆ ’, ‘ = ’, ‘ =∅’, ‘Disj’;

• the logical connective symbols ‘ ∧ ’, ‘¬’.

Define BST-terms as the smallest set of expression such that:

• all the set variables and the constant ∅ are BST-terms;

• if s and t are BST-terms, so are s \ t, s ∪ t, and s ∩ t;

hence if s and t are BST-terms the possible BST-atoms are:

s ⊆ t, s = t, s = ∅, and Disj (s, t) .

BST-literals are simply atoms, A, and their negations, ¬A. Finally BST-
formulae are conjunctions of literals by means of the logical connective ‘ ∧ ’.

Usually we will forgo the symbol ‘¬’ and instead add the following relation
symbols:

‘ ⊈ ’, ‘ ̸= ’, ‘ ̸=∅’, ‘¬Disj’.

For example, we write s ̸= t in place of ¬(s = t).
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Remark 3.1. The name Boolean Set Theory is not incidental and its derived by
the three operators it comprises, ‘\’, ‘∪’, and ‘∩’. Those operators are known as
the Boolean set operators due to their likeness to the propositional connectives
‘ ∧ ¬’, ‘ ∨ ’, and ‘ ∧ ’.

Remark 3.2. Defining the symbol admitted inside BST, we purposedly left out
the logical connectives ‘ ∨ ’, ‘→ ’, and ‘↔ ’, the rationale behind this decision
lying on our goal of finding polynomial fragments. In fact, including any of
the aforementioned logical connectives inside a fragment we can prove its NP-
completeness regardless of the nature of the operator and propositional symbols
of the fragment.

The semantics for BST is defined exactly as for MLS therefore will not be dis-
cussed here.

In the above discussion we envisioned a study of a complete complexity tax-
onomy of the language BST and we proposed to store the result of such in-
vestigation into a table containing all the minimal NP-complete and maximal
polynomial fragments. Table 3.1 is an example of how the table will look, each
row represent a fragment and each column represent a symbol, if there is a ‘⋆’
inside a cell then the symbol represented by the column of the cell is present
inside the fragment represented by the row of that cell. The last column con-
tains the complexity of the fragment represented by each row. In Table 3.1 the
only line represents the fragment BST(\, ̸=), which is indeed NP-complete, as
we will show in Section 3.1.

∪ ∩ \ =∅ ̸=∅ Disj ¬Disj ⊆ ⊈ = ̸= Complexity

⋆ ⋆ NP-complete

Table 3.1: Early look at the table of containing the BST
taxonomy

In the following sections we will study the fragments of BST in order to fill up
the above table.

3.1 NP-Complete fragments of BST

In Chapter 1 we showed that the satisfiability problem for MLS belongs to the
NP complexity class, as well the satisfiability problem for BST and for all the
other fragments of MLS, in the same class. As anticipated, the satisfiability
problem for BST, and then by extensions for MLS, belongs also to the class
of NP-hard problems, pushing both problems in the class of the NP-complete
problems. In the following section we will finally prove this fact.

Here we prove the NP-completeness of four BST fragments: BST(\, ̸=), BST(∪,∩, ̸=),
BST(∪,∩,=∅, ̸=∅), and BST(∪,Disj,¬Disj,=), by reducing the problem 3SAT
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to their decision problem. Several other NP-complete fragments can be found
inside BST, most of them are extensions of other NP-complete fragments, i.e.,
they are not minimal NP-complete fragments, while other can be proved to be
NP-complete by slightly modifying the proof for one of the above fragments. In
particular we have:

• the NP-completeness of the fragments BST(\,⊆),BST(\,¬Disj), and BST(\, ̸=∅)
can be obtained much by the same technique used to reduce 3SAT to
BST(\, ̸=);

• the proof of the NP-completeness of the fragment BST(∪,∩,⊈) can be
achieved much by the same technique used to reduce 3SAT to BST(∪,∩, ̸=);

• the NP-completeness of fragments BST(∪,∩,Disj,¬Disj),BST(∪,∩,=∅,¬Disj)
and BST(∪,∩, ̸=∅,Disj) can be obtained by much the same technique used
to reduce 3SAT to BST(∪,∩,=∅, ̸=∅);

• finally the NP-completeness of BST(∪,=, ̸=∅,Disj) can be shown much by
the same approach used to reduce 3SAT to BST(∪,Disj,¬Disj,=).

Moreover we can also apply some expressibility results shown in Chapter 2 to
prove that:

• BST(∪,=,Disj,¬Disj) can be reduced in linear time

to BST(∪,⊆,Disj,¬Disj), by Lemma 2.1(e),

• BST(∪,=, ̸=∅,Disj) can be reduced in linear time

to BST(∪,=, ̸=,Disj), by Lemma 2.1(h),

to BST(∪,=,⊈,Disj), by Lemma 2.1(h),

to BST(∪,⊆, ̸=∅,Disj), by Lemma 2.1(e),

to BST(∪,⊆, ̸=,Disj), by Lemma 2.1(e)(h),

to BST(∪,⊆,⊈,Disj), by Lemma 2.1(e)(h).

Before moving on to the actual NP-hardness proofs, we give the definition of
the problem 3SAT, a well-known NP-complete problem.

Definition 3.1. The problem 3SAT is the problem of establishing whether or not
there exists a propositional evaluation v over the variables of any given 3SAT-
formula F , that makes the formula F true.

A 3SAT-formula F is any formula of the form:

F :=
m⋀︂
i=1

(Li1 ∨ Li2 ∨ Li3), (3.1)

where the Lij’s are propositional literals, therefore Lij is either a propositional
variable P or its negation ¬P .

A propositional valuation v is a map that assigns to any propositional variable
P a truth value, true or false.
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For simplicity of notation, we refer to each disjunction (Li1 ∨Li2 ∨Li3) in (3.1)
as Ci.

Before proceeding, we need one last technical lemma that is necessary for our
NP-hardness proofs.

At the beginning of this section we showed that any BST-formula can be reduced
to a conjunction of literals of types:

x = y \ z, or x ̸= y.

We will refer to literals of type x = y \ z as positive literals and to literals of
type x ̸= y as negative literals.

Lemma 3.3. If φ is a satisfiable BST-formula that comprises exactly one neg-
ative literal then φ admits a model M such that Mv ∈ {σ, ∅}, for some set
nonempty set σ and for all v ∈ Vars(φ).

Proof. Let M ′ be a model for φ, and let x′ ̸= y′ be the negative literal in φ,
so that plainly M ′x′ ̸= M ′y′. W.l.o.g., we may assume that M ′x′ ⊈ M ′y′, so
that there exists a set s in M ′x′ \M ′y′. Let us define the set assignment M by
putting

Mv :=

{︄
{s} if s ∈M ′v

∅ otherwise,

for all v ∈ Vars(φ).

Trivially, we have Mx′ = {s} and My′ = ∅, so that M |= x′ ̸= y′. Hence, we
are left to prove that M |= x = y \ z, for each positive literal of φ.

By definition of M , for all t ∈ Mx, we have t = s and s ∈ M ′x. Since M ′ |= φ
then s ∈M ′y \M ′z thus My = {s} and Mz = ∅ thus My \Mz = {s}, proving
that Mx ⊆My \Mz.

On the other hand, for all t ∈My\Mz, by definition ofM , t = s andMy\Mz =
{s}. We must have My = {s} and Mz = ∅ thus s ∈ M ′y \M ′z = M ′x then
Mx = {s}, proving that My \Mz ⊆ Mx. Combining the two last result we
have Mx =My \Mz for all positive literals of φ, therefore M |= φ.

By putting σ = {s} we obtain our thesis.

All of the proofs of NP-hardness for fragments of BST will require the above
lemma. As an intuition we can notice that using the set assignment generated
by Lemma 3.3 we can easily associate the truth value true to the set σ and false
to the empty set.

3.1.1 BST(\, ̸=)

The first fragment we analyze is BST(\, ̸=), which is defined as:
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Definition 3.2. The fragment BST(\, ̸=) consists of all conjunctions of literals
of the following type

t1 ̸= t2,

where t1, t2 are terms involving only set variables and the set operator ‘ \ ’.

In order to reduce 3SAT to BST(\, ̸=), let F be a generic 3SAT formula, and let
P1, . . . , Pn be its distinct propositional variables. Put X1, . . . , Xn,X as n + 1
distinct set variables. For i = 1, . . . ,m and j = 1, 2, 3, we put:

Tij :=

{︄
Xk if Lij = Pk for some k

X \Xk if Lij = ¬Pk for some k.

Then, put for each i = 1, . . . ,m

Ci :=
(︁
(X \ Ti1) \ Ti2

)︁
\ Ti3.

Finally, let:

ΦF := (· · · (((X \ C1) \ C2) \ C3) \ · · · \ Cm−1) \ Cm ̸= X \ X . (3.2)

We claim that:

Lemma 3.4. Any 3-SAT instance F is propositionally satisfiable if and only
if the BST(\, ̸=)-formula ΦF obtained from F using the above construction is
satisfiable by a set assignment.

Proof. (Necessity). To begin with, let us assume that F is propositionally sat-
isfiable, and let v be a Boolean valuation satisfying it. Consider the following
set assignment:

MX := b,

MXk :=

{︄
b if v(Pk) = true

∅ if v(Pk) = false,

for k = 1, . . . , n, where b is any nonempty set. The set assignment M satisfies
ΦF . Indeed, since v satisfies F , then v(Ci) = true, for each i = 1, . . . ,m. Hence,
for each i = 1, . . . ,m there exists a j = 1, 2, 3 such that v(Lij) = true. If
Lij = Pk, for some k, we have that MTij = MXk = b, while if Lij = ¬Pk,
for some k, we have that MTij = MX \MXk = b \ ∅ = b. Hence, for each
i = 1, . . . ,m, MCi = ∅, and therefore:

MΦF =
(︁
(· · · (((MX \MC1) \MC2) \MC3) \ · · · \MCm−1) \MCm ̸=MX \MX

)︁
=

(︁
(· · · (((b \ ∅) \ ∅) \ ∅) \ · · · \ ∅) \ ∅ ̸= b \ b

)︁
=

(︁
b ̸= ∅

)︁
= true.

In conclusion, we have M |= ΦF , so if F is propositionally satisfiable, then ΦF

is satisfied by a set assignment.
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(Sufficiency).Now assume ΦF is satisfied by the set assignmentM . By Lemma 3.3,
since ΦF has only one negative literal, we can pick M such that Mv ∈ {∅, σ},
for every v ∈ Vars(ΦF ), and some nonempty set σ. We prove that the Boolean
valuation v defined by

v(Pk) :=

{︄
true if MXk ̸= ∅
false otherwise,

for k = 1, . . . , n, propositionally satisfies F . Since M |= ΦF , for each i =
1, . . . ,m we have MCi = ∅. Hence there exists a j = 1, 2, 3 such that MTij ̸= ∅,
if Lij = Pk then MTij = MXk ̸= ∅ so that v(Lij) = true, while if Lij = ¬Pk
then MTij = M(X \ Xk) ̸= ∅ so v(Lij) = true. Then for each i = 1, . . . ,m
there exists a j = 1, 2, 3 such that v(Lij) = true so that v(Ci) = true, hence v
propositionally satisfies the 3SAT instance F .

It is quite easy to show that the above construction can be used to transform
any 3SAT instance F in the BST(\, ̸=)-formula ΦF in O(|F |)-time. Hence the
3SAT problem can be reduced in linear-time to the satisfiability problem for
BST(\, ̸=).

We have proved that the decision problem for BST(\, ̸=) belongs to the class
NP-hard. In addition, since BST(\, ̸=) is a fragment of BST, it also belongs to
the class NP. Therefore, we can conclude:

Lemma 3.5. The satisfiability problem for BST(\, ̸=) belongs to the NP-complete
complexity class.

3.1.2 BST(∪,∩, ̸=)

Next is the fragment BST(∪,∩, ̸=) defined as:

Definition 3.3. The fragment BST(∪,∩, ̸=) consists of all conjunctions of literals
of type

t1 ̸= t2,

where t1, t2 are terms involving the set operators ‘ ∪ ’ and ‘ ∩ ’ alongside set
variables.

Again, we reduce 3SAT to BST(∪,∩, ̸=). So, let P1, . . . , Pn be the distinct
propositional variables in a generic 3SAT instance F and let X1, X1, . . . , Xn, Xn

be 2n pairwise distinct set variables. For i = 1, . . . ,m and j = 1, 2, 3, set

uij :=

{︄
Xk if Lij = Pk for some k

Xk if Lij = ¬Pk for some k.
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Then, for each i = 1, . . . ,m, define

ti := ui1 ∪ ui2 ∪ ui3,
X := (X1 ∪X1) ∩ · · · ∩ (Xn ∪Xn)

Y := (X1 ∩X1) ∪ · · · ∪ (Xn ∩Xn)

T := t1 ∩ · · · ∩ tm,

and finally put
ΦF := T ∩X ̸= T ∩X ∩ Y. (3.3)

Lemma 3.6. Any 3SAT instance F is propositionally satisfiable if and only if
so is the BST(∪,∩, ̸=)-formula ΦF obtained from F according to the above con-
struction.

Proof. (Necessity). First, we show that if the 3SAT instance F is propositionally
satisfiable, then ΦF is satisfied by a set assignment. Let v be a Boolean valuation
satisfying F. We prove that the set assignment M such that

MXk := b and MXk := ∅ if v(Pk) = true

MXk := ∅ and MXk := b if v(Pk) = false,

where b is a nonempty set satisfies ΦF . Notice that, regardless of the value of
v(Pi), we have (MXi ∪MX i) = b and (MXi ∩MX i) = ∅, so that MX = b
and MY = ∅. Hence to prove that M |= ΦF , we just need to prove that
MT = b. First, we notice that Mx ∈ {b, ∅}, for each set variable x. Since
v satisfies F , for each i = 1, . . . ,m, we have v(Ci) = true. Hence, for each
i = 1, . . . ,m, there exists a j = 1, 2, 3 such that . So, if Lij = Pk, for some k,
then Muij =MXk = b, while if Lij = ¬Pk, for some k, then Muij =MXk = b.
Hence Mti = b, for i = 1, . . . ,m, and also MT = b holds.

(Sufficiency). Concerning the converse, assume that ΦF is satisfiable. Since
there is only one negative literal in ΦF , by Lemma 3.3 there exists a set assign-
ment M that satisfies ΦF and is such that Mv ∈ {σ, ∅}, for every set variables
v ∈ Vars(ΦF ). Since M satisfies ΦF , plainly MX ̸= ∅ and MY = ∅, so that
(MX1 ∪ MX1) ∩ . . . ∩ (MXn ∪ MXn) ̸= ∅ and also (MX1 ∩ MX1) ∪ . . . ∪
(MXn ∩MXn) = ∅. Hence, for every i = 1, . . . , n, we have (MXi ∪MX i) ̸= ∅
and (MXi ∩MX i) = ∅, from which it follows that

if MXi ̸= ∅ then MX i = ∅, (3.4)

and vice versa. Moreover, since MT ̸= ∅, then Mti ̸= ∅ for each i = 1, . . . ,m.
Hence, for each i = 1, . . . ,m, there exists a j = 1, 2, 3 such that Muij ̸= ∅.
Consider the following Boolean valuation

v(Pk) :=

{︄
true if MXk ̸= ∅
false otherwise.
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We only need to show that, for each i = 1, . . . ,m, there exists a j = 1, 2, 3 such
that v(Lij) = true. We know that, for i = 1, . . . ,m, there exists a j = 1, 2, 3
such that Muij ̸= ∅, if Lij = Pk for some k. Then uij = Xk, so that MXk ̸= ∅.
Hence v(Lij) = true, while if Lij = ¬Pk for some k, we have Muij =MXk ̸= ∅
so that, by (3.4), MXk = ∅, v(Pk) = false, and v(Lij) = true. Thus v satisfies
F , concluding our proof.

Since the above construction can be used to reduce in O(|F |)-time any 3SAT
instance F into the BST(∪,∩, ̸=) formula ΦF , we can then conclude that:

Lemma 3.7. The satisfiability problem of BST(∪,∩, ̸=) belongs to the NP-complete
complexity class.

3.1.3 BST(∪,=,Disj,¬Disj)
Next in our analysis of the NP-complete fragments of BST we consider the
fragment BST(∪,Disj,¬Disj,=).

Definition 3.4. The fragment BST(∪,=,Disj,¬Disj) of BST consists of all con-
junctions of literals of the forms

t1 = t2, Disj (t3, t4) , ¬Disj (t5, t6) ,

where t1, t2, t3, t4, t5, and t6 are terms only comprising set variables and the set
operator ∪.

Given any 3SAT instance F let P1, . . . , Pn be the distinct propositional letters
found occurring in F ; associate with them 2n+1 pairwise distinct set variables
X1, X1, . . . , Xn, Xn, plus a set variable X . For i = 1, . . . ,m and j = 1, 2, 3,
define

Tij :=

{︄
Xk if Lij = Pk for some k

Xk if Lij = ¬Pk for some k,

and put
Ci := Ti1 ∪ Ti2 ∪ Ti3 = X .

Finally, put

ΦF :=
m⋀︂
i=1

Ci ∧
n⋀︂
k=1

(︂
Disj

(︁
Xk, Xk

)︁
∧ Xk ∪Xk = X

)︂
∧ ¬Disj (X ,X ) . (3.5)

Lemma 3.8. Any 3SAT-instance F is propositionally satisfiable if and only if
the BST(∪,= ,Disj,¬Disj)-formula ΦF defined as above is satisfied by some set
assignment.

Proof. (Sufficiency). To prove sufficiency, suppose that ΦF is satisfiable. Since
¬Disj (X ,X ) is the only negative constraint in ΦF , according to Lemma 3.3
there exists a model M of ΦF such that

MXk,MXk ∈ {∅, σ} (3.6)
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holds for each k = 1, . . . , n , where σ is a fixed nonempty set.

Since M |= ΦF , we have

M |= ¬Disj (X ,X ) ∴

M |= X ∩ X ̸= ∅ ∴

M |= X ̸= ∅ ∴

MX ̸= ∅, (3.7)

and also, for each k = 1, . . . , n ,

M |= Disj
(︁
Xk, Xk

)︁
∧ Xk ∪Xk = X ∴

M |= Xk ∩Xk = ∅ ∧ Xk ∪Xk = X ∴

MXk ∩MXk = ∅ ∧ MXk ∪MXk ̸= ∅ (by (3.7)). (3.8)

By combining (3.6) and (3.8), we obtain:(︁
MXk = σ ∧ MXk = ∅

)︁
∨

(︁
MXk = ∅ ∧ MXk = σ

)︁
. (3.9)

Now consider the following truth-value assignment:

v(Pk) =

{︄
true if MXk ̸= ∅
false otherwise.

We have assumed thatM |= ΦF ; thereforeM |= Ci holds, for each i = 1, . . . ,m,
and hence:

M (Ti1 ∪ Ti2 ∪ Ti3) =MX ∴

MTi1 ∪MTi2 ∪MTi3 ̸= ∅ (by (3.7)).

Thus, for each k = 1, . . . , n, there exists a j = 1, 2, 3, such that MTij ̸= ∅.
There are only two cases to be examined: Tij = Xk and Tij = Xk. In the
former case, we have Lij = Pk for some k, and also MXk = MTij ̸= ∅; hence
v(Lij) = v(Pk) = true, and thus v(Ci) = true. In the latter case, we have
Lij = ¬Pk for some k, and also MXk = MTij ̸= ∅; hence, by (3.9), MXk = ∅,
and v(¬Pk) = v(Lij) = true, and thus v(Ci) = true. We conclude that the truth-
value assignment v satisfies the instance F of 3SAT; hence F is propositionally
satisfiable, in consequence of ΦF being satisfied by a set assignment.

(Necessity). For the necessity part of this lemma, suppose that v is a truth-
value assignment satisfying the instance F of 3SAT, and define the following set
assignment:

MX = b,

MXk =

{︄
b if v(Pk) = true

∅ otherwise,

MXk = b \MXk,
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where b is a non-empty set.

Plainly the set assignmentM satisfies ¬Disj (X ,X ). Since, for each k = 1, . . . , n,
when MXk = b holds then MXk = b \MXk = ∅, and when MXk = ∅ then
MXk = b \MXk = b, we have:

MXk ∩MXk = ∅ ∴ M |= Disj
(︁
Xk, Xk

)︁
and

MXk ∪MXk = b =MX ,

so that

M |=
n⋀︂
k=1

(︂
Disj

(︁
Xk, Xk

)︁
∧ Xk ∪Xk = X

)︂
.

It remains to be proved that M |= Ci for each i = 1, . . . ,m. Since v propo-
sitionally satisfies F , we have that v(Ci) = true holds for each i = 1, . . . ,m;
hence for each Ci there must be at least one Lij, j ∈ {1, 2, 3}, whose truth value
is true. This means that for each Ci there is a Tij such that MTij = b, hence
M |= Ci . In fact, if Lij = Pk for some k, then Tij = Xk and v(Pk) = true,
hence MTij = b; if Lij = ¬Pk for some k, then Tij = Xk and v(Pk) = false,
hence MXk = b \MXk = b \ ∅ = b. We conclude that M |= ΦF ; thus, there
exists a set assignment satisfying ΦF in consequence of F being propositionally
satisfiable.

After noticing that any 3SAT instance F can be reduced to the conjunction ΦF

using the above construction in O(|F |)-time, the lemma just seen readily yields
that:

Lemma 3.9. The satisfiability problem for BST(∪,=,Disj,¬Disj) belongs to the
complexity class of NP-complete problems.

3.1.4 BST(∪,∩,=∅, ̸=∅)

The last fragment of BST we prove to be NP-complete is BST(∪,∩,=∅, ̸=∅).

Definition 3.5. The fragment BST(∪,∩,=∅, ̸=∅) consists of all conjunctions of
literals of the forms

t1 = ∅, t2 ̸= ∅,

where t1, t2 stand for any terms involving the set operators ∪ and ∩, in addition
to set variables.

Reducing the 3SAT problem, associate to each propositional letter Pk inside an
instance F of the 3SAT problem two set variables Xk and Xk, then build the
following BST(∪,∩,=∅, ̸=∅)-formula:

ΦF :=
m⋀︂
i=1

(Ti1 ∩ Ti2 ∩ Ti3 = ∅) ∧
n⋀︂
k=1

(Xk ∩Xk = ∅) ∧ C, (3.10)
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where

Tij :=

{︄
Xk if Lij = Pk for some k

Xk if Lij = ¬Pk for some k ,

and
C := (X1 ∪X1) ∩ · · · ∩ (Xn ∪Xn) ̸= ∅.

Intuitively speaking, here we are representing true by the set constant ∅; thus,
e.g., Ti1 ∩ Ti2 ∩ Ti3 = ∅ means that at least one of Ti1, Ti2, Ti3 must be ‘true’.

Lemma 3.10. Any instance F of the 3SAT problem is propositionally satisfi-
able if and only if the BST(∪,∩,=∅, ̸=∅)-formula ΦF resulting from the above
construction is satisfied by some set assignment.

Proof. (Satisfiability). First suppose that ΦF is satisfiable. Since C is the only
negative constraint in ΦF , following Lemma 3.3 there exists a model M of ΦF

sending each v ∈ Vars(ΦF ) to Mv ∈ {∅, σ}, where σ is a fixed non-empty set.
Since M |= C and M |= Xk ∩Xk = ∅, either

MXk ̸= ∅ and MXk = ∅
or

MXk = ∅ and MXk ̸= ∅

must hold for each k = 1, . . . , n .

Now we prove that the truth-value assignment

v(Pk) :=

{︄
true if MXk = ∅
false if MXk = ∅

satisfies F . Since M |= ΦF , for each i = 1, . . . ,m there exists a j ∈ {1, 2, 3}
such that MTij = ∅. If Tij coincides with Xk for some k, then Lij = Pk and
MXk = ∅; hence v(Lij) = v(Pk) = true. On the other hand, if Tij = Xk for
some k, then Lij = ¬Pk and MXk = ∅; hence v(Lij) = ¬v(Pk) = true. We
therefore conclude that v satisfies F .

(Necessity). For the converse implication, suppose that F is propositionally
satisfiable. Consider a truth-value assignment v satisfying F , arbitrarily pick a
set b ̸= ∅, and then put

MXk :=

{︄
b if v(Pk) = false

∅ if v(Pk) = true,
MXk :=

{︄
∅ if v(Pk) = false

b if v(Pk) = true,

for each k = 1, . . . , n. Notice that MXk ∩MXk = ∅ and MXk ∪MXk = b ̸= ∅
hold for each k; therefore M |= C and M |= Xk ∩Xk = ∅.

Moreover, for each i = 1, . . . ,m there exists a j ∈ {1, 2, 3} such that v(Lij) =
true. If Lij = Pk for some k, then Tij = Xk and v(Pk) = true, hence Tij = ∅;
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if Lij = ¬Pk for some k, then Tij = Xk, and v(Pk) = false, hence Tij = ∅. We
therefore conclude that M |= ΦF .

The lemma just seen, and the fact that the above construction yields the con-
junction ΦF in O(|F |)-time, readily yield that

Lemma 3.11. The satisfiability problem for BST(∪,∩,=∅, ̸=∅) belongs to the
complexity class NP-complete.

3.1.5 Summary

In the above discussion we presented four BST fragments whose decision prob-
lems belong to the class NP-complete, and also how these results extend to
fourteen other fragments. Plainly, any of the above proof can be used also to
prove the NP-completeness of both BST and MLS, since the formulae used are
naturally also BST, hence MLS, formulae.

Lemma 3.12. The decision problem for the theory MLS, and its fragment BST,
belongs to class of problems NP-complete.

Gathering the results presented in this section we can begin to compile the
table representing the complete complexity taxonomy of BST. The fragments
presented in Table 3.2 comprises all the minimal NP-complete fragments of
BST, no proof is given to prove that all the sub-theories of this fragments are
polynomial however this will become evident after we present the polynomial
fragments of BST.

∪ ∩ \ =∅ ̸=∅ Disj ¬Disj ⊆ ⊈ = ̸= Complexity

⋆ ⋆ NP-complete

⋆ ⋆ NP-complete

⋆ ⋆ NP-complete

⋆ ⋆ NP-complete

⋆ ⋆ ⋆ NP-complete

⋆ ⋆ ⋆ NP-complete

⋆ ⋆ ⋆ ⋆ NP-complete

⋆ ⋆ ⋆ ⋆ NP-complete

⋆ ⋆ ⋆ ⋆ NP-complete

⋆ ⋆ ⋆ ⋆ NP-complete

⋆ ⋆ ⋆ ⋆ NP-complete

⋆ ⋆ ⋆ ⋆ NP-complete

⋆ ⋆ ⋆ ⋆ NP-complete

⋆ ⋆ ⋆ ⋆ NP-complete

⋆ ⋆ ⋆ ⋆ NP-complete

⋆ ⋆ ⋆ ⋆ NP-complete

⋆ ⋆ ⋆ ⋆ NP-complete

⋆ ⋆ ⋆ ⋆ NP-complete

Table 3.2: Minimal NP-complete fragments of BST
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3.2 The fragments BST(∪,=, ̸=) and BST(∪,=, ̸=)
The previous sections focused on NP-complete fragments, here we will study
three polynomial fragments, BST(∪,=, ̸=), BST(∩,=, ̸=) and BST(∪, ̸=,Disj,¬Disj),
at the end of the chapter will be clear that this fragments, listed in Table 3.3
are enough to represent all the polynomial fragments of BST, and in turn make
also clear that Table 3.2 lists the entirety of minimal NP-complete fragment of
the language. In fact, it is easy to check that removing any symbol from a frag-
ment inside Table 3.2 would lead to a sub-language of a maximal polynomial
fragment.

We begin with BST(∪,=, ̸=) and BST(∩,=, ̸=), two fragments that are very
close to each other so that in the following we will present a single cubic-time
algorithm that can be used to solve the decision problem for both fragments
(the results regarding these two fragments can also be found in [CMO21]).

Last we will show that using the expressibility results presented in Chapter 2, it
is possible to extend BST(∪,=, ̸=) and BST(∩,=, ̸=) to two broader fragments,
BST(∪,=∅, ̸=∅,¬Disj,⊆,⊈,=, ̸=) and BST(∩,=∅, ̸=∅,Disj,¬Disj,⊆,⊈,=, ̸=)
respectively, which are polynomial maximal inside BST.

Definition 3.6. The fragment BST(∪,=, ̸=) is the collection of all the conjunc-
tions of literals of types:

∪L =∪R, ∪L ̸=∪R, (3.11)

where L and R are nonempty collections of set variables.

Definition 3.7. The fragment BST(∩,=, ̸=) is the collection of all the conjunc-
tions of literals of types:

∩L =∩R, ∩L ̸=∩R, (3.12)

where L and R are nonempty collections of set variables.

We recall that given a set assignment M and a collection of set variables V , we
follow the standard interpretation

MV := {Mv | v ∈ V }

that in presence of the unary operator ∪, and ∩ directly translates into

M ∪ V =∪MV =
⋃︂
v∈V

Mv, M ∩ V =∩MV =
⋂︂
v∈V

Mv.

Throughout this section, since several of the properties and lemmas we are
about to present hold true for both fragments BST(∪,=, ̸=) and BST(∩,=, ̸=),
we will use the symbol ‘⋆’ as a placeholder for either ‘∪’ or ‘∩’, therefore we
can refer to both fragments simultaneously BST(⋆,=, ̸=). Following the above
notation we will have:
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⋆{x1, . . . , xk} := x1 ⋆ · · · ⋆ xk ,
⋆{s1, . . . , sk} := s1 ⋆ · · · ⋆ sk ,

where x1, . . . , xk and s1, . . . , sk denote variables and sets, respectively.

3.2.1 The equivalence relation ∼φ and the ∼φ-closure operator

Definition 3.8. Any formula φ of BST(⋆,=, ̸=) can be represented by two sets
of pairs:

Φ⊕
φ
:=

{︂{︁
{x1, · · · , xh}, {y1, · · · , yk}

}︁
| x1 ⋆ · · · ⋆ xh = y1 ⋆ · · · ⋆ yk is in φ

}︂
,

Φ⊖
φ
:=

{︂{︁
{u1, · · · , um}, {v1, · · · , vp}

}︁
| u1 ⋆ · · · ⋆ um ̸= v1 ⋆ · · · ⋆ vp is in φ

}︂
.

Notice that by representing φ as the pair Φ⊕
φ and Φ⊖

φ two relations between
collection of set variables are created. A core component of the satisfiability
test we designed is a closure operator built around a certain relation between
collection of set variables. Our algorithm will take as input the set Φ⊕

φ in order
to build such relation, then use Φ⊖

φ to establish the satisfiability of φ.

Definition 3.9 (Equivalence relation ∼φ). Let ∼φ be the smallest equivalence
relation over P+(Vars(φ)) that satisfies the following closure conditions:

(Cl1) Φ⊕
φ ⊆ ∼,

(Cl2) if A ∼ B, then A ∪ C ∼ B ∪ C, for all A,B,C ∈P+(Vars(φ));

When we say ∼φ is the smallest relation we mean that any relation ∼ that
satisfies both (Cl1) and (Cl2) is included in ∼φ set-theoretically.

Definition 3.10 (∼φ-closure). The ∼φ-closure Z of a set Z ∈ P+(Vars(φ)) is
the collection:

Z :=∪{W |W ∼φ Z}.

We will prove that the ∼φ-closure Z of Z is the largest set of P+(Vars(φ))
that is ∼φ-equivalent to Z, then we also provide a quadratic-time algorithm to
compute the ∼φ closure of a set and exploit this closure operator to quickly
check whether any two sets of variables are ∼φ- equivalent, in fact, as we will
show, two sets Z1 and Z2 are ∼φ-equivalent if and only if Z1 = Z2.

Lemma 3.13. Let Z ∈P+(Vars(φ)). Then the closure Z of Z, namely the set

∪ {W |W ∼φ Z}, is the largest subset of Vars(φ) that is ∼φ-equivalent to Z.

Proof. Let W1,W2 be such that W1 ∼φ Z and W2 ∼φ Z. By applying (Cl2)
twice, we have: W1∪W2 ∼φ Z∪W2 ∼φ Z. In view of the finiteness of {W |W ∼φ

Z}, by induction it follows that(︂
∪ {W |W ∼φ Z}

)︂
∼φ Z .

In addition, for everyW ′ such thatW ′ ∼φ Z, we plainly haveW
′ ⊆ ∪{W |W ∼φ

Z}. This yields that ∪{W |W ∼φ Z} is the largest set in P+(Vars(φ)) that
is ∼φ-equivalent to Z.



48 Chapter 3. A complete complexity taxonomy for Boolean Set Theory

Before moving on to the main lemmas upon which by our algorithm is based, we
first present some useful properties of the ∼φ-closure and the ∼φ-equivalence.

Lemma 3.14. Let Z,Z1, Z2 ∈P+(Vars(φ)). Then

(a) Z ⊆ Z and Z ∼φ Z;

(b) Z = Z;

(c) if Z1 ∼φ Z2, then Z1 ⊆ Z2;

(d) Z1 ∼φ Z2 if and only if Z1 = Z2;

(e) if Z1 ⊆ Z2, then Z1 ⊆ Z2;

(f) Z1 ⊆ Z2 if and only if Z1 ⊆ Z2;

(g) if Z1 ⊆ Z or Z2 ⊆ Z holds and Z1 ∼φ Z2, then Z ∼φ Z ∪ Z1 ∪ Z2.

Proof. Property (a) follows directly from Lemma 3.13.

Concerning (b), the transitivity of ∼φ yields Z ∼φ Z so that, by the definition

of Z, Z ⊆ Z holds. By (a) we have Z ⊆ Z, therefore Z = Z.

As for (c), if Z1 ∼φ Z2, then Z1 ⊆ Z2 = Z2.

Concerning (d), if Z1 ∼φ Z2, then the transitivity of ∼φ yields Z1 ∼φ Z2. Thus,
by (c), we get Z1 = Z2. Conversely if Z1 = Z2, then Z1 ∼φ Z2, thus by
transitivity Z1 ∼φ Z2 holds.

Regarding (e), let Z1 ⊆ Z2. Since by (a) Z2 ⊆ Z2 and Z1 ∼φ Z1 hold, by (Cl2)
we have

Z2 = Z1 ∪ (Z2 \ Z1) ∼φ Z1 ∪ (Z2 \ Z1) = Z1 ∪ Z2 .

Thus, by (c), we get the inclusion Z1 ∪ Z2 ⊆ Z2, and therefore Z1 ⊆ Z2.

Concerning (f), if Z1 ⊆ Z2, then by (e) and (b) we have Z1 ⊆ Z2 = Z2.
Conversely, if Z1 ⊆ Z2, then by (a) we have Z1 ⊆ Z1 ⊆ Z2.

Finally, as for (g), suppose that we have Z1 ∼φ Z2 and either Z1 ⊆ Z or
Z2 ⊆ Z holds. By (Cl2), we have Z ∪ Z1 ∼φ Z ∪ Z2. But {Z ∪ Z1, Z ∪ Z2} =
{Z,Z ∪ Z1 ∪ Z2}, hence Z ∼φ Z ∪ Z1 ∪ Z2 follows.

We are now ready to prove that the equivalence relation ∼φ captures which
equalities among terms must be true in every model, if any, of a given formula
φ.

Lemma 3.15. Let φ be any formula in BST(⋆,=, ̸=), and let M be any set
assignment over Vars(φ) satisfying φ. Then

Z1 ∼φ Z2 =⇒ ⋆MZ1 = ⋆MZ2,

for all Z1, Z2 ∈P+(Vars(φ)).
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Proof. In view of the minimality of ∼φ, it is sufficient to prove that the equiv-
alence relation ∼M over P+(Vars(φ)) defined by

Z1 ∼M Z2
Def.⇐==⇒ ⋆MZ1 = ⋆MZ2

satisfies the closure conditions (Cl1) and (Cl2).

Concerning (Cl1), if {L,R} ∈ Φ⊕
φ then ⋆ML = ⋆MR, so L ∼M R holds,

proving Φ⊕
φ ⊆ ∼M .

As for (Cl2), let A ∼M B and C ⊆ Vars(φ). Then ⋆MA = ⋆MB, and
therefore

⋆M(A ∪ C) = (⋆MA) ⋆ (⋆MC) = (⋆MB) ⋆ (⋆MC) = ⋆M(B ∪ C),

from which A ∪ C ∼M B ∪ C follows.

We next prove the following key property, which will be used in the correctness
proof of our fast algorithm presented in Section 3.2.3 for computing ∼φ-closures.

Lemma 3.16. Given a BST(⋆,=, ̸=)-formula φ, let Z ∈ P+(Vars(φ)) be such
that

L ⊆ Z ⇐⇒ R ⊆ Z , for every {L,R} ∈ Φ⊕
φ . (3.13)

Then, for all W1,W2 ∈P+(Vars(φ)) such that W1 ∼φ W2, we have

W1 ⊆ Z ⇐⇒ W2 ⊆ Z . (3.14)

Proof. Let φ and Z be as in the hypothesis. In view of the minimality of ∼φ, it
is sufficient to prove that the equivalence relation over P+(Vars(φ)) defined by

W1 ∼Z W2
Def.⇐==⇒

(︁
W1 ⊆ Z ⇐⇒ W2 ⊆ Z

)︁
(3.15)

satisfies the closure conditions (Cl1) and (Cl2).

As for (Cl1), just from the hypothesis it follows that L ∼Z R, for every {L,R} ∈
Φ⊕

φ . Concerning (Cl2), let A ∼Z B and C ⊆ Vars(φ), and assume that A ∪
C ⊆ Z. Then, A ⊆ Z and C ⊆ Z, so that by (3.15) we have B ∪ C ⊆ Z.
Symmetrically, it can be shown that B ∪ C ⊆ Z implies A ∪ C ⊆ Z. Hence,

A ∪ C ⊆ Z ⇐⇒ B ∪ C ⊆ Z

holds and, by (3.15), we readily have A ∪ C ∼Z B ∪ C. The arbitrariness of A,
B, and C yields that even the closure condition (Cl2) holds for ∼Z.

Finally, from the minimality of ∼φ, we have ∼φ ⊆ ∼Z. Therefore, if W1 ∼φ W2,
then W1 ∼Z W2, which by (3.15) implies W1 ⊆ Z ⇐⇒ W2 ⊆ Z.
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3.2.2 Satisfiability in BST(∪,=, ̸=) and in BST(∩,=, ̸=)

Below we will present a necessary condition that also suffices to ensure that
a given formula in either BST(∪,=, ̸=) or BST(∩,=, ̸=) is satisfiable. Notice-
ably, this condition is essentially the same for both languages, so that the same
algorithm can be used to test formulae of either language for satisfiability.

Theorem 3.17. Let φ be a BST(∪,=, ̸=)-formula. Then φ is satisfiable if and
only if L ̸∼φ R (namely L ̸= R) holds for every pair {L,R} ∈ Φ⊖

φ .

Proof. (Necessity.) Let M be a model for φ. By way of contradiction, assume
that there exists a pair {L,R} ∈ Φ⊖

φ such that L ∼φ R. Then by Lemma 3.15
we would have ∪ML = ∪MR, a contradiction, since by definition of Φ⊖

φ ,

∪L ̸= ∩R is a literal of φ. Therefore for all pairs {L,R} ∈ Φ⊖
φ we must have

L ̸∼φ R, completing the necessity part of the proof.

(Sufficiency.) Next, let us assume that, for each {L,R} ∈ Φ⊖
φ , we have L ̸∼φ R.

We will construct a set assignment M that satisfies φ.

Let us assign a nonempty set bV to each V such that V ∈ ∪Φ⊖
φ in such a way

that the bV ’s are pairwise distinct. Then we define the set assignment M over
Vars(φ) by putting, for each x ∈ Vars(φ),

Mx := {bV | x /∈ V and V ∈ ∪Φ⊖
φ},

so that we have

∪MU := {bV | U ⊈ V and V ∈ ∪Φ⊖
φ}, (3.16)

for every U ⊆ Vars(φ).

We first show that ∪ML = ∪MR holds whenever {L,R} ∈ Φ⊕
φ . Thus, let

{L,R} ∈ Φ⊕
φ and let bV ∈ ∪ML, for some V ∈ Φ⊖

φ such that L ⊈ V . Then

L ⊈ V , by Lemma 3.14(f). Since {L,R} ∈ Φ⊕
φ , then by (Cl1) we have L ∼φ R,

so that, by (d) and (f) of Lemma 3.14, R ⊈ V follows. Hence bV ∈ ∪MR, and
by the arbitrariness of bV we have ∪ML ⊆ ∪MR.

Analogously one can prove ∪MR ⊆ ∪ML, so ∪ML = ∪MR holds, as we
intended to show.

Next we prove that ∪ML ̸= ∪MR holds, whenever {L,R} ∈ Φ⊖
φ . Thus,

let {L,R} ∈ Φ⊖
φ , so that by our assumption we have L ̸∼φ R. Hence, by

Lemma 3.14(d), L ̸= R. W.l.o.g., let us assume that L ⊈ R. Since R ⊆ R (by
Lemma 3.14(a)) and plainly R ∈ ∪Φ⊖

φ , then bR /∈ ∪MR, by (3.16). On the

other hand, by Lemma 3.14(f), L ⊈ R, hence bR ∈ ∪ML, again by (3.16), and
therefore ∪ML ̸=∪MR, concluding the proof of the theorem.

In a dual manner, we prove that the same condition can be used to check the
satisfiability of BST(∩,=, ̸=)-formulae.

Theorem 3.18. Let φ be a BST(∩,=, ̸=)-formula. Then φ is satisfiable if and
only if L ̸∼φ R (namely L ̸= R) holds for every pair {L,R} ∈ Φ⊖

φ .
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Proof. (Necessity.) Analogously to Theorem 3.17, the necessary part of this
theorem is a direct consequence of Lemma 3.15.

(Sufficiency.) Next, let us assume that we have L ̸∼φ R for each {L,R} ∈ Φ⊖
φ .

We will construct a model M for φ.

Let us assign again a nonempty set bV to each V such that V ∈ ∪Φ⊖
φ in such a

way that the bV ’s are pairwise distinct. Then we define the set assignment M
over Vars(φ) by putting, for all x ∈ Vars(φ):

Mx := {bV | x ∈ V }, thus: ∩ML := {bV | L ⊆ V }. (3.17)

We observe first that ∩ML = ∩MR holds when {L,R} ∈ Φ⊕
φ . Indeed, let

bV ∈ ∪ML, then L ⊆ V , then by Lemma 3.14(f), L ⊆ V . Since {L,R} ∈ Φ⊕
φ ,

by (Cl1) L ∼φ R, so that by Lemma 3.14(d) and (f) again, R ⊆ V , thus
bV ∈ ∩MR, i.e. ∩ML ⊆ ∩MR. Analogously ∩ML ⊆ ∩MR, henceforth

∩ML =∩MR.

Finally we prove that ∩ML ̸= ∩MR holds, for any {L,R} ∈ Φ⊖
φ . By hypoth-

esis L ̸∼φ R, thus by Lemma 3.14(d) L ̸= R, then w.l.o.g. assume L ⊈ R. By
Lemma 3.14(a), R ⊆ R, thus bR ∈ ∩MR, while by Lemma 3.14(f), L ⊈ R,
thus bR /∈ ∩ML, therefore ∩ML ̸=∩MR.

Notice that the two above proofs are really close to each other, in particular
the two set assignment used to prove the sufficiency part of both theorems are
somewhat symmetrical. In fact we can easily prove the following corollary:

Corollary 3.19. Let φ1 be a BST(∪,=, ̸=)-formula and let φ2 be the BST(∩,=, ̸=)-
formula obtained by replacing each symbol ‘ ∪ ’ within φ1 with the symbol ‘ ∩ ’.
Then the follow holds:

i) φ1 and φ2 are equisatisfiable;

ii) if φ1 is satisfiable then there exist a modelM1 of it such that the set assign-
ment M2 such that for each variable x ∈ Vars(φ) M2x = ∪M1Vars(φ) \
M1x is a model for φ2; and analogously

iii) if φ2 is satisfiable then there exist a modelM2 of it such that the set assign-
ment M1 such that for each variable x ∈ Vars(φ) M1x = ∪M2Vars(φ) \
M2x is a model for φ1.

3.2.3 A cubic-time satisfiability test for BST(∪,=, ̸=) and for
BST(∩,=, ̸=)

Theorems 3.17 and 3.18 imply that any BST(⋆,=, ̸=)-formula φ is satisfiable if
and only if L ̸= R holds for every pair {L,R} ∈ Φ⊖

φ . Hence, they yield straight
decision procedures for the theories BST(⋆,=, ̸=).

The next step will then be to provide an algorithm for computing the closure Z
of any input Z ∈P+(Vars(φ)), namely, the largest set in P+(Vars(φ)) which
is ∼φ-equivalent to Z.
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In Algorithm 1 below, we provide a high-level specification of the function Clo-
sure, intended to compute the closure Z of any given Z ∈P+(Vars(φ)), for a
BST⋆,=, ̸=-formula φ. After proving its correctness, we will illustrate a lower-
level implementation whose time complexity is quadratic.

Algorithm 1 Satisfiability tester

Require: A BST(⋆,=, ̸=)-formula φ represented by the sets of pairs Φ⊕
φ and Φ⊖

φ .
Ensure: Is φ satisfiable ?
1: for all {L,R} in Φ⊖

φ do

2: if Closure(L,Φ⊕
φ ) = Closure(R,Φ⊕

φ ) then
3: return false;
4: return true;

1: function Closure(Z,Φ⊕
φ )

Input: a set Z and the set Φ⊕
φ

Output: the ∼φ-closure Z of Z
2: Z ← Z;
3: while there exists {L,R} ∈ Φ⊕

φ such that L ⊆ Z ⇐⇒ R ̸⊆ Z do
4: Z ← Z ∪ L ∪R;
5: return Z;

We can now prove the correctness of the function Closure.

Lemma 3.20. The function Closure computes closures correctly.

Proof. Given a BST(⋆,=, ̸=)-formula φ, with input a set Z ⊆ Vars(φ) and a
collection Φ⊕

φ the while-loop of the function Closure plainly terminates within
a number k ⩽ |Φ⊕

φ | of iterations. Let Zi be the value of the variable Z after
i iterations, so that Z0 = Z. Preliminarily, we prove by induction on i =
0, 1, . . . , k that Zi ∼φ Z and Z ⊆ Zi.

The base case i = 0 is trivial.

Next, let {L,R} ∈ Φ⊕
φ be the pair selected by the while-loop during its i-th

iteration, with i ⩾ 1. Hence, we have:

L ∼φ R, L ⊆ Zi−1 ⇐⇒ R ̸⊆ Zi−1, and Zi = Zi−1 ∪ L ∪R.

Thus, by inductive hypothesis and Lemma 3.14(g), we have

Z ∼φ Zi−1 ∼φ Zi−1 ∪ L ∪R = Zi and Zi = Zi−1 ∪ L ∪R,

from which Z ∼φ Zi and Z ⊆ Zi follow. Hence, by induction, we have Z ∼φ Z f

and Z ⊆ Z f, where Z f := Zk is the final value of the variable Z returned by the
execution of Closure(Z,Φ⊕

φ ).

In addition, the termination condition for the while-loop yields that L ⊆ Z f ⇐⇒
R ⊆ Z f, for all {L,R} ∈ Φ⊕

φ . Thus, from Lemma 3.16, it follows that

W1 ⊆ Z f ⇐⇒ W2 ⊆ Z f, (3.18)

for all W1,W2 ∈P+(Vars(φ)) such that W1 ∼φ W2.

In order to prove that Z f = Z, we observe that, since Z ∼φ Z and Z ⊆ Z f, by
(3.18) we have Z ⊆ Z f. Moreover, by Lemma 3.14(a),(d) and since Z ∼φ Z f,
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we readily get Z f ⊆ Z f = Z. The latter inclusion, together with the previously
established one Z ⊆ Z f, implies Z f = Z, i.e., Z f is the closure of Z, proving
that the call to Closure(Z,Φ⊕

φ ) computes the closure Z of Z correctly.

Theorems 3.17 and 3.18, together with Lemmas 3.20 and 3.14(d), readily yield
that Algorithm 1 is a valid satisfiability test for formulae in the languages
BST(∪,=, ̸=) and BST(∩,=, ̸=).

A quadratic implementation of the function Closure

Next, we provide a quadratic implementation of the function Closure, which,
for a given BST(⋆,=, ̸=)-formula φ, takes as input the collection Φ⊕

φ and a set

Z ∈ P+(Vars(φ)) of which one wants to compute the closure Z. As internal
data structures, the function Closure uses: a doubly linked list Ripe of sets
of the form (L∪R)\Z, where {L,R} ∈ Φ⊕

φ and Z is the internal variable whose

value will converge to Z at termination; a doubly linked list Unripe of pairs
of form

⟨︁
(L \ Z), (R \ Z)

⟩︁
, with {L,R} ∈ Φ⊕

φ ; and an array Aux of m lists of
pointers to nodes either in Ripe or in Unripe, where m is the number of the
distinct variables x1, . . . , xm in φ, intended to allow fast retrieval of nodes in
the lists Ripe and Unripe.

Algorithm 2 Implementation of the function Closure

1: function Closure(Z,Φ⊕
φ )

2: Z ← Z;
3: for all {L,R} ∈ Φ⊕

φ do
4: if L ∪R ⊈ Z then
5: if L ⊆ Z or R ⊆ Z then Ptr ← Add(Ripe, (L ∪R) \ Z);
6: ▷ Ptr is a pointer to the node just added to the list Ripe ◁
7: else Ptr ← Add(Unripe,

⟨︁
(L \ Z), (R \ Z)

⟩︁
);

8: for all index i such that xi ∈ L ∪R do Add(Aux[i], Ptr);
9: while Ripe is not empty do
10: S ← Extract(Ripe); ▷ Extracts the first set in Ripe
11: for all index i such that xi ∈ S do
12: Z ← Z ∪ {xi};
13: for all pointer Ptr in Aux[i] do
14: if Ptr is in Ripe then ▷ Ptr points to the set Ptr.Data
15: Ptr.Data← Ptr.Data \ {xi};
16: if Ptr.Data = ∅ then Remove(Ripe, Ptr);
17: else ▷ Ptr points to the pair Ptr.Data in the list Unripe
18: LPtr ← Ptr.Data.Left← Ptr.Data.Left \ {xi};
19: RPtr ← Ptr.Data.Right← Ptr.Data.Right \ {xi};
20: if LPtr = ∅ or RPtr = ∅ then
21: Remove(Unripe, Ptr);
22: if LPtr ̸= ∅ then Add(Ripe, LPtr)
23: else if RPtr ̸= ∅ then Add(Ripe, RPtr)
24: Remove(Aux[i], Ptr);
25: return Z;

We will express the complexity of the main procedure in Algorithm 1 and of our
efficient implementation of the function Closure in terms of the four quantities
m,n, p, q, where m = |Vars(φ)| is the number of distinct set variables in φ,
n = |φ| is the size of φ, p = |Φ⊕

φ | is the number of literals of type (=) in φ, and
q = |Φ⊖

φ | is the number of literals of type (̸=) in φ. Plainly, we have m, p, q ⩽ n.
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We can index the variables in Vars(φ) from 1 to m = |Vars(φ)|, so that every
subset A of Vars(φ) can be represented as a Boolean array of size m such that
any set variable xi belongs to A if and only if A[i] = 1. At the end of this chapter
we will present an algorithm (Algorithm 9), meant to be executed before any
of the satisfiability test we will present, that starting from a raw formula, a
simple string, will provide to the satisfiability test any structure it will need as
the indexing of the set variables in the formula and the array representing each
collection of set variables that appears in ∪Φ⊕

φ ∪ ∪Φ⊖
φ . This precomputation

phase will require O(n) time to obtain the set variable indexing and O((p+q)m)
time to build the arrays.

Having build such index, we can collect the m ⩽ n distinct variables of φ and
use them as integers 1, . . . ,m. By means of such an indexing, in O(m(p + q))
time (where p = |Φ⊕

φ | and q = |Φ⊖
φ |) we can represent as an m-bit array each

set of variables in ∪Φ⊕
φ ∪ ∪Φ⊖

φ , and accordingly represent Φ⊕
φ and Φ⊖

φ as lists
of pairs of m-bit arrays. Such preliminary encoding phase can be carried out in
O(m(p+ q) + n) time.

We make use of the auxiliary functions Add(List,S) and Remove(List,Ptr)
to add S to List (S can be either a set or a pair of sets) and to remove the node
pointed to by Ptr from List, respectively. Since the two lists we use, namely
Ripe and Unripe, are maintained as doubly linked lists, both operations can
be performed in O(1) time. The function Add returns also a pointer to the
newly inserted node. Finally, we use the function Extract(List) to access in
O(1) time the pointer to the first node of List while removing it.

The function Closure(Z,Φ⊕
φ ) comprises two phases: an initialization phase,

lines 2–8, and a computation phase, lines 9–25.

For each m-bit array, we maintain a counter of its bits set to 1, so that empti-
ness tests can be performed in O(1) time. Plainly, unions, set differences, and
inclusion tests of sets represented as m-bit arrays can easily be performed in
O(m) time. Also, membership tests and the operations of singleton addition
and singleton removal can be performed in O(1) time.

Thus, the initialization phase of the function Closure (lines 2–8) can be per-
formed in O(mp) time.

At the end of the initialization phase and at each subsequent step, the lists Ripe
and Unripe contain only sets disjoint from Z, and each of them has length at
most p = |Φ⊕

φ |. Specifically, the list Ripe contains the set (L ∪ R) \ Z, for all
{L,R} ∈ Φ⊕

φ such that L ∪ R ̸⊆ Z but either L ⊆ Z or R ⊆ Z holds. Instead,
the list Unripe contains the pair ⟨L \ Z, R \ Z⟩, for all {L,R} ∈ Φ⊕

φ such that
L ̸⊆ Z and R ̸⊆ Z both hold.

In view of the assignments at lines 15, 18, and 19, the disjointedness property
from Z of the sets (L∪R) \ Z in Ripe and the sets L \ Z and R \ Z such that
{L \ Z, R \ Z} is in Unripe is maintained at each iteration of the while-loop
at lines 9–24. Hence, at each extraction of a set S from the list Ripe at line 10,
none of the set variables in S has already been selected and processed by the
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for-loop 11–24. Therefore, each set variable in Vars(φ) is processed by the for-
loop at lines 11–24 at most once, yielding that, in the overall, the for-loop 11–24
is executed at most m times, for a total of O(mp) time, since each execution of
the for-loop 11–24, say relative to a set variable xi, is dominated by the time
taken by the internal for-loop 13–24, which is O(p). Indeed, (i) at the end of
the initialization phase, the list Aux[i] contains at most p pointers to nodes in
the lists Ripe and Unripe; (ii) once a pointer in the list Aux[i] is processed,
it is then removed (line 24), so that it will never be processed again; and (iii)
each line of the for-loop 13–24 can be executed in constant time.

Since each extraction at line 10 takes O(1) time and, as observed, the list Ripe
has size at most p at the end of the initialization phase, it follows that the
while-loop at lines 9–24 takes O(mp) time.

Thus, the overall complexity of the function Closure is O(mp) time. Since
m, p ⩽ n, we have also that the function Closure takes quadratic time O(n2)
in the size n of the formula φ to be tested for satisfiability.

Finally, our satisfiability tester (Algorithm 1) checks at most q pairs {L,R} ∈
Φ⊖

φ in O(mpq) time, by computing the closures L and R by means of calls
to the function Closure and comparing them. By taking into account also
the preliminary encoding phase, which has a O(m(p+ q) + n)-time complexity,
the overall complexity of Algorithm 1 is O(mpq + n), which is O(n3) since
m, p, q ⩽ n.

Concerning the space complexity of our satisfiability tester, it is immediate to
check that all data structures used in Algorithm 1 and in the function Closure
require O(mp) space, namely O(n2) space since m, p ⩽ n.

Summarizing, we have proved the following result:

Theorem 3.21. The satisfiability decision problem for the language BST(∪,=, ̸=),
as well as for BST(∩,=, ̸=), can be solved in cubic time and quadratic space.

In addition it is not hard to see that our satisfiability tester (Algorithm 1)
and its auxiliary function Closure can be refined in order that an explicit set
assignment modeling the input conjunction φ is returned when φ is satisfiable.
In fact by first instantiating Mx to the empty set, for all variable x, and then
by generating a fresh set b each time we call the function Closure and putting
Mx = Mx ∪ {b}, for each variable in the closure computed we obtain the
set assignment of Theorem 3.18. Therefore if the formula φ inputted to our
algorithm was a BST(∩,=, ̸=)-formula, M will be a model for such formula,
otherwise if φ is a BST(∪,=, ̸=)-formula we can use Remark 3.19 to obtain a
model.

3.2.4 Extensions of BST(∪,=, ̸=) and BST(∩,=, ̸=)

In Chapter 2 we presented the two notions of existential expressibility and O(f)-
expressibility, through which one can reduce, in constant or O(f) time, a set-
theoretic formula of a richer language to an equisatisfiable formula belonging to
a smaller language.
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Regarding BST(∪,=, ̸=) and BST(∩,=, ̸=) we can use the following results:

(a) the literal x = ∅ is O(n)-expressible in BST(∪,=) and in BST(∩,=);

(b) the literal x ⊆ y is existentially expressible in BST(∪,=) and in BST(∩,=);

(c) the literal x ⊈ y is existentially expressible in BST(∪, ̸=) and in BST(∩, ̸=);

(d) the literal Disj (x, y) is existentially expressible in BST(∩,=∅) and there-
fore, by (a), it is O(n)-expressible in BST(∩,=);

(e) the literal ¬Disj (x, y) is existentially expressible in BST(⊆, ̸=); there-
fore, by (a), it is existentially expressible in both of BST(∪,=, ̸=) and
BST(∩,=, ̸=).

We can reduce any formula of the two languages BST(∪,=∅, ̸=∅,¬Disj,⊆,⊈,=, ̸=)
and BST(∩,=∅, ̸=∅,Disj,¬Disj,⊆,⊈,=, ̸=) in linear time into a BST(∪,=, ̸=)
or BST(∩,=, ̸=)-formula respectively, meaning that we can use Algorithm 1 to
decide the satisfiability of those two languages.

Lemma 3.22. The satisfiability decision problem for either one of the languages
BST(∪,=∅, ̸=∅,¬Disj,⊆,⊈,=, ̸=), BST(∩,=∅, ̸=∅,Disj,¬Disj,⊆,⊈,=, ̸=) can
be solved in cubic time.

Remark 3.23. The two fragments BST(∪,=∅, ̸=∅,¬Disj,⊆,⊈,=, ̸=) and
BST(∩,=∅, ̸=∅,Disj,¬Disj,⊆,⊈,=, ̸=) are polynomial-maximal inside BST. This
becomes evident using Table 3.2. In fact, by adding any other symbol of BST
into them results in a super-language of an NP-complete fragment listed in the
table.

3.3 The fragment BST(∪, ̸=,Disj,¬Disj)
The next fragment we analyze is BST(∪, ̸=,Disj,¬Disj), whose satisfiability test,
like those of the previous two languages, can be solved in polynomial-time. In
the following section we will describe and prove the correctness of a quadratic-
time decision algorithm for BST(∪, ̸=,Disj,¬Disj)-formulae, then, using our ex-
pressibility tools, we show how it is possible for the same decision algorithm to
establish satisfiability also in the broader fragment BST(∪,=∅, ̸=∅,Disj,¬Disj,⊈, ̸=).
Alongside with BST(∪,=∅, ̸=∅,¬Disj,⊆,⊈,=, ̸=) and
BST(∩,=∅, ̸=∅,Disj,¬Disj,⊆,⊈,=, ̸=), the latter fragment comprises the whole
collection of maximal-polynomial fragments of BST, allowing us to identify a
complete complexity taxonomy of all the fragments of the language BST.

Before we can describe its decision procedure, we need to present the language
BST(∪, ̸=,Disj,¬Disj).

Definition 3.11. The fragment BST(∪, ̸=,Disj,¬Disj) is the collection of con-
juncts of literals of types:

Disj (∪L,∪R) , ¬Disj (∪L,∪R) , ∪L ̸=∪R, (3.19)

where L and R are nonempty collections of set variables.
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We recall that the Disj (A,B) predicate stands for the sets A and B are disjoint,
and it is defined as

Disj (A,B)←→ A ∩B = ∅.

As before we will not directly manipulate set variables but instead collections of
set variables. Thus it is convenient to represent BST(∪, ̸=,Disj,¬Disj)-formulae
using sets of pairs of collections of set variables. In particular, a given formula
φ will be represented by the following three sets:

ΦDisj

φ
:=

{︁
{L,R} | Disj (∪L,∪R) is in φ

}︁
,

Φ¬Disj

φ
:=

{︁
{L,R} | ¬Disj (∪L,∪R) is in φ

}︁
,

Φ⊖
φ
:=

{︁
{L,R} | ∪ L ̸=∪R is in φ

}︁
.

3.3.1 Satisfiability of BST(∪, ̸=,Disj,¬Disj)
The first step in finding a polynomial-time satisfiability test is to find an easy
to check property that is equivalent to the satisfiability of a given formula. In
the case of BST(∪,=∅, ̸=∅,Disj,¬Disj,⊈, ̸=) we found two conditions that are
related to the two sets Cφ and Nφ, that now we are going to define.

The definition of Cφ requires the unordered Cartesian product ‘A⊗B’ which we
recall is defined as:

A⊗B := {{s, t} | s ∈ A ∧ t ∈ B}.

Notice that the pair {s, t} is unordered, therefore it can also be written as {t, s}.
In addition when an element z belongs to both sets A and B, the improper pair
{z, z}, which is equivalent to the singleton {z}, belongs to A⊗B.

We are ready to define Cφ.

Definition 3.12. Given a BST(∪, ̸=,Disj,¬Disj)-formula φ we define:

Cφ :=
⋃︂

{L,R}∈ΦDisj
φ

(L⊗R).

The set Cφ is intended to be the collection of all pairs of variables in φ that any
model of the formula must assign to disjoint sets. The following lemma, besides
proving the correctness of this sentence, will make this sentence clearer.

Lemma 3.24. Let φ be a satisfiable BST(∪, ̸=,Disj,¬Disj)-formula. Then for
each pair {x, y} ∈ Cφ and all models M of φ, we have Disj (Mx,My).

By definition of Cφ, there exists a pair {L,R} ∈ ΦDisj
φ such that {x, y} ∈ L⊗ R.

W.l.o.g. let x ∈ L and y ∈ R. Then plainly Mx ⊆ ∪ML and My ⊆ ∪MR.
Since {L,R} ∈ ΦDisj

φ and M |= φ we have that ∪ML and ∪MR are disjoint,
therefore Disj (Mx,My) holds.

The other set we use in our satisfiability conditions is Nφ.
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Definition 3.13. Given a BST(∪, ̸=,Disj,¬Disj)-formula φ, we define:

Nφ :=
⋃︂

{L,R}∈ΦDisj
φ

(L ∩R).

This set is meant to be the collection of all the set variables of φ that any set
assignment must assign to the empty set in order to satisfy the formula. The
following lemma clarify this statement.

Lemma 3.25. Let φ be a satisfiable BST(∪, ̸=,Disj,¬Disj)-formula, then for each
variable x ∈ Nφ and all models M of φ, we have Mx = ∅.

Proof. By definition of Nφ, there exist a pair {L,R} ∈ ΦDisj
φ such that x ∈ L∩R.

Thus, the singleton {x} belongs to Cφ. Then, by Lemma 3.24, Disj (Mx,Mx),
that is Mx = ∅.

Lemmas 3.24 and 3.25 already give us an idea to what condition a BST(∪, ̸=,Disj,¬Disj)-
formula must satisfy in order to admit a model. For example, if the pair
{{x}, {y}} belongs to Φ⊖

φ and both x, y are in Nφ, then the formula is un-
satisfiable, otherwise we would have Mx ̸=My and Mx = ∅ =My.

The set Nφ is actually redundant since it can be entirely deduced from Cφ, in
fact we have:

Lemma 3.26. The set Nφ is equal to {x ∈ s ∈ Cφ | |s| = 1}.

Proof. Let x ∈ Nφ then there exists a pair {L,R} ∈ ΦDisj
φ such that x ∈ L ∩ R,

so that {x} ∈ L ⊗ R ⊆ Cφ, and therefore Nφ ⊆ {u ∈ s ∈ Cφ | |s| = 1}.
Now let x ∈ {u ∈ s ∈ Cφ | |s| = 1}. Then there exists a pair {L,R} ∈ ΦDisj

φ

such that {x} ∈ L ⊗ R so that x ∈ L ∩ R ⊆ Nφ. We can conclude that
Nφ = {u ∈ s ∈ Cφ | |s| = 1}.

The reason, however, to maintain the set Nφ is twofold; first to ease notation,
but more importantly because the set Nφ is easier to computer then Cφ. In
Section 3.3.4 we will see that whenever the collection Φ¬Disj

φ is empty we only
need to compute Nφ actually, lowering the time complexity.

We are now ready to present two conditions that are both necessary an sufficient
for satisfiability of BST(∪, ̸=,Disj,¬Disj)-formulae.As anticipated, both Cφ and
Nφ will play a central role.

Theorem 3.27. A BST(∪, ̸=,Disj,¬Disj)-formula φ is satisfiable if and only if
both conditions:

(L⊗R) \ C ̸= ∅ for all {L,R} ∈ Φ¬Disj

φ (3.20)

L \ N ̸= R \N for all {L,R} ∈ Φ⊖
φ , (3.21)

holds.
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Proof. (Necessity.) Let φ be a satisfiable BST(∪, ̸=,Disj,¬Disj)-formula, and
let M be a set assignment that satisfies φ. To prove the necessity of conditions
(3.20) and (3.21) we will proceed by contradiction.

First we assume that there exists a pair {L,R} ∈ Φ¬Disj
φ such that (L⊗R) ⊆ Cφ.

By Lemma 3.24, then we have

(∀x ∈ L)(∀y ∈ R) Disj (Mx,My) ,

meaning that ∪ML and ∪MR are disjoint. But since M |= φ we also have
¬Disj (∪ML,∪MR), a contradiction.

Last, assume that there exists a pair {L,R} ∈ Φ⊖
φ such that L \ Nφ = R \ Nφ.

By Lemma 3.25 we have that ∪M(L ∩ Nφ) = ∪M(R ∩ Nφ) = ∅, so that

∪ML =∪M(L\Nφ)∪∪M(L∩Nφ) =∪M(L\Nφ), and analogously∪MR =

∪M(R \ Nφ) ∪∪M(R ∩ Nφ) = ∪M(R \ Nφ). Thus ∪ML = ∪MR which is
a contradiction since M |= φ, and so ∪ML ̸=∪MR.

By assuming that either (3.20) or (3.21) are not satisfied, we obtained a con-
tradiction. Therefore both conditions must hold whenever φ is satisfiable.

(Sufficiency.) For sufficiency, let us pick |Vars(φ)|2−|Vars(φ)| pairwise distinct
sets bp, for p ∈ Vars(φ)⊗ Vars(φ).

Define the following set assignment:

Mx := {bp | x ∈ p, p /∈ Cφ}.

Notice that, by the above definition, for every pair of variables x and y, Mx ∩
My = {b{x,y}}, if {x, y} /∈ Cφ otherwise Mx ∩My = ∅.

We will show that if a formula φ satisfies both conditions (3.20) and (3.21),
then M is a model of φ, by showing that

Disj (∪ML,∪MR) holds for all pairs {L,R} ∈ ΦDisj

φ ,

¬Disj (∪ML,∪MR) holds for all pairs {L,R} ∈ Φ¬Disj

φ ,

∪Ml ̸=∪MR holds for all pairs {L,R} ∈ Φ⊖
φ .

First let {L,R} be in ΦDisj
φ . We have that (L⊗ R) ⊆ Cφ. Thus for all variables

x ∈ L and y ∈ R, we have {x, y} ∈ Cφ, so that Mx ∩My = ∅, and therefore
Disj (∪ML,∪MR).

Now, let {L,R} ∈ Φ¬Disj
φ . Then by (3.20) there exists a pair p = {x, y} ∈

(L⊗R)\Cφ. Thus, bp ∈Mx∩My ⊆ ∪ML∩∪MR, since either x ∈ L∧y ∈ R
or x ∈ R ∧ y ∈ L, so that ¬Disj (∪ML,∪MR).

Finally, let {L,R} ∈ Φ⊖
φ . By (3.21), L \ Nφ ̸= R \ Nφ. W.l.o.g., assume

L \ Nφ ⊈ R \ Nφ so that there exists an x ∈ L such that x /∈ R ∪ Nφ. Since
x /∈ Nφ x /∈ L′ ∩ R′ for each pair {L′, R′} ∈ ΦDisj

φ so that the singleton {x} does
not belong to Cφ. Then, since x ∈ L \ R, we have that b{x} ∈ ∪ML \ ∪MR
therefore ∪ML ̸=∪MR.
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3.3.2 An efficient satisfiability test for BST(∪, ̸=,Disj,¬Disj)
Theorem 3.27 readily yields a satisfiability test for BST(∪, ̸=,Disj,¬Disj). All
we have to do is compute Cφ and Nφ. Lemma 3.26 actually states that we just
need Cφ, and then check if both condition (3.20) and (3.21) are satisfied.

Algorithm 3 works in the opposite direction, instead of checking if both condition
are satisfied, it checks if at least one of the two condition is not met by the input
formula. By Theorem 3.28 this is equivalent to check if either condition (3.22)
or (3.23) is met. If so, the algorithm returns false, meaning that the formula is
not satisfiable, otherwise the algorithm returns true, meaning that the formula
is satisfiable.

Algorithm 3 Satisfiability Tester

Require: a three collection of set variables ΦDisj
φ ,Φ¬Disj

φ and Φ⊖
φ ,

Ensure: is φ satisfiable?
1: Let Cφ be a matrix of size |φ| × |φ| containing only zeroes;
2: for each pair {L,R} ∈ ΦDisj

φ do
3: for each xi ∈ L do
4: for each xj ∈ R do
5: Cφ[i][j]← Cφ[j][i]← 1;
6: for each pair {L,R} ∈ Φ¬Disj

φ do
7: IsSubset ← true;
8: for each xi ∈ L do
9: for each xj ∈ R do

10: if Cφ[i][j] = 0 then
11: IsSubset ← false;
12: if IsSubset = true then return false;
13: for each pair {L,R} ∈ Φ⊖

φ do
14: IsSubset ← true
15: for each xi ∈ (L ∪R) \ (L ∩R) do
16: if Cφ[i][i] = 0 then
17: IsSubset ← false;
18: if IsSubset = true then return false;

return true;

Theorem 3.28. A BST(∪, ̸=,Disj,¬Disj)-formula φ admits no satisfying set as-
signments if and only if at least one of the following conditions

(L⊗R) ⊆ C, for some {L,R} ∈ Φ¬Disj

φ (3.22)

(L ∪R) \ (L ∩R) ⊆ Nφ, for some {L,R} ∈ Φ⊖
φ (3.23)

holds.

Proof. To prove the theorem, it is enough to negate the conjunction

(∀{L,R} ∈ Φ¬Disj

φ )L⊗R \ Cφ ̸= ∅ ∧ (∀{L,R} ∈ Φ⊖
φ )L \ Nφ ̸= R \ Nφ.
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By applying De Morgan’s laws, we obtain

(∃{L,R} ∈ Φ¬Disj

φ )L⊗R \ Cφ = ∅ ∨ (∃{L,R} ∈ Φ⊖
φ )L \ Nφ = R \ Nφ.

Then the thesis comes directly since the bi-implications

A \B = ∅ ←→ A ⊆ B

A \ C = B \ C ←→ (A ∪B) \ (A ∩B) ⊆ C,

hold for all sets A,B, and C.

Complexity and implementation details

Finally, we focus on the time complexity of Algorithm 3. We will express the
time complexity in terms of the size n of the input formula φ, namely n =∑︁

{L,R}∈ΦDisj
φ
(|L|+ |R|)+

∑︁
{L,R}∈Φ¬Disj

φ
(|L|+ |R|)+

∑︁
{L,R}∈Φ⊖

φ
(|L|+ |R|). We also

define m as the number of different variables in the formula |Vars(φ)|, and put
p := |ΦDisj

φ |, q := |Φ¬Disj
φ |, and r := |Φ⊖

φ |.

Before running our algorithm, we first need to compute the setsVars(φ),ΦDisj
φ ,Φ¬Disj

φ ,Φ⊖
φ

and an indexing Π := {⟨x , i ⟩ | x ∈ Vars(φ)} from the input formula, We
can again refer to Algorithm 9, that requires O(n +m(p + q + r))-thus, hence
is quadratic so it does not effect the asymptotic complexity of Algorithm 3.
However, since we do not need to represent each collection of set variables in

∪ΦDisj
φ ∪ ∪Φ¬Disj

φ ∪ ∪Φ⊖
φ as an array of size m, we can entirely forgo the step

required to generate those arrays and obtain, as we will see at the end of the
chapter, a time complexity of O(n) for this preliminary phase.

Moving to the actual algorithm, we will implement both Cφ and Nφ using a
matrix of bit, Cφ, of size m × m, while each collection of set variables V will
be implemented as an ordered list of indexes AV , so that Cφ[i][j] = 1 if and
only if the pair {xi, xj} is in Cφ and AV is the list of indices of the variables
inside V . For simplicity we will use V in place of the list AV . Doing so, both
extracting a new variable index from V and checking if Cφ[i][j] is set to 1 will
require constant time. We recall that such lists can be obtained in O(n) time
using Algorithm 9.

The first operation we need to perform is initialize every cell of Cφ to 0. This re-
quires Θ(m2)-time. The for-loop at lines 2-5 cycles exactly Θ(

∑︁
{L,R}∈ΦDisj

φ
(|L|×

|R|) times. Similarly the for-loop at lines 6-12 cycles exactly Θ(
∑︁

{L,R}∈Φ¬Disj
φ

(|L|×
|R|) times.

Finally, the for-loop at lines 13-18 needs to check if for each pair {L,R} ∈ Φ⊖
φ

the variables inside the set (L ∪ R) \ (L ∩ R) are also in the main diagonal of
Cφ. Algorithm 4 can be used to compute (L∪R)\ (L∩R) in O(|L|+ |R|) times
by assuming that L and R are ordered lists of indexes. This such for-loop takes
O(

∑︁
{L,R}∈Φ⊖

φ
(|(L ∪R) \ (L ∩R)|+ |L|+ |R|)-time.

Algorithm 4, alongside Algorithms 6 and 8, is variation of the algorithm used
to merge ordered lists and is included for completeness.
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To simplify the above complexity of O(
∑︁

{L,R}∈ΦDisj
φ
(|L||R|)), we have that∑︂

{L,R}∈ΦDisj
φ

(|L||R|) ⩽
∑︂

{L,R}∈ΦDisj
φ

(|L|+ |R|)2 ⩽
(︁ ∑︂
{L,R}∈ΦDisj

φ

(|L|+ |R|)
)︁2

⩽ n2.

Analogously
∑︁

{L,R}∈Φ¬Disj
φ

(|L||R|) ⩽ n2. Thus the time complexity for the two

first for-loops is O(n2). Concerning O(
∑︁

{L,R}∈Φ⊖
φ
(|(L∪R)\(L∩R)|+ |L|+ |R|),

we plainly have that |(L∪R)\(L∩R)| ⩽ |L|+|R| and O(
∑︁

{L,R}∈Φ⊖
φ
(|L|+|R|) ⩽

n. Summing up, we obtain a total time complexity of O(
∑︁

{L,R}∈ΦDisj
φ
(|L|×|R|)+∑︁

{L,R}∈Φ¬Disj
φ

(|L| × |R|) +
∑︁

{L,R}∈Φ⊖
φ
|((L ∪R) \ (L ∩R)|+ |L|+ |R|), that can

be simplified into O(n2) so that we can conclude that

Lemma 3.29. The satisfiability problem for BST(∪, ̸=,Disj,¬Disj) can be solved
in quadratic time.

Algorithm 4 Compute (A ∪B) \ (A ∩B)

Require: two sets A and B represented as ordered lists of indexes,
Ensure: the ordered list representing (A ∪B) \ (A ∩B)
1: Let C be an empty list of indexes;
2: n← 0
3: i← pop(A);
4: j ← pop(B);
5: while n < |L|+ |R| do
6: if i < j then add(i,C);
7: i← pop(A);
8: else if i > j then add(j,C);
9: j ← pop(B);
10: else
11: i← pop(A);
12: j ← pop(B);
13: n← n+ 1;
14: n← n+ 1;
15: return C;

Finally, following the proof of Theorem 3.27, it is easy to modify Algorithm 3
to also generate a model for the input formula. First initializeMx to the empty
set for each variable x ∈ Vars(φ). Then each time the value of Cφ[i][j] changes
from 0 to 1, we generate a fresh set bij and add it to bothMxi andMxj. Then if
the formula is satisfiable, the set assignment generated, which is exactly the set
assignment used to prove Theorem 3.27, will be a model for the input formula.

3.3.3 Extending BST(∪, ̸=,Disj,¬Disj)
In the previous section we showed our to use the tools of expressibility to ex-
tend the two languages BST(∪,=, ̸=) and BST(∩,=, ̸=) into broader languages.
Similarly, we can also extend BST(∪, ̸=,Disj,¬Disj). Using the following facts it
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is in fact possible to reduce any BST(∪,=∅, ̸=∅,Disj,¬Disj,⊈, ̸=)-formula into
a BST(∪, ̸=,Disj,¬Disj)-formula in constant time.

(a) the literal x =∅ is existential expressible in BST(Disj);

(b) the literal x ̸=∅ is existential expressible in BST(¬Disj);

(c) the literal x ⊈ y is existential expressible in BST(∪, ̸=).

Hence, we have:

Lemma 3.30. The satisfiability problem for the language BST(∪,=∅, ̸=∅,Disj,¬Disj,⊈, ̸=)
can be solved in quadratic time.

Remark 3.31. The language BST(∪,=∅, ̸=∅,Disj,¬Disj,⊈, ̸=) is polynomial-
maximal inside BST. Using Table 3.2, it is easy to check that all the super-
theories of BST(∪,=∅, ̸=∅,Disj,¬Disj,⊈, ̸=) are NP-complete.

3.3.4 Emblematic, non-maximal, polynomial-complexity deci-

sion algorithms

In view of the realization of a complexity taxonomy of BST, and later to the
more comprehensive languageMLS, it is enough to find those sub-languages that
are minimal NP-complete or maximal polynomial. There is a limited interest in
further investigating the non-minimal NP-complete fragments, the satisfiability
problem for MLS is NP therefore any extension inside the language of an NP-
complete fragment will be another NP-complete fragment. One of the rationals
behind the study of a complete taxonomy of MLS is to find fast specialized sat-
isfiability test that can be used by automated proof verifies, such as ÆtnaNova,
instead of the more complex and general ones. That is why it is of a great
interest to study non-maximal polynomial fragments; the latter may, in fact,
admit decision tests outperforming any of the maximal polynomial fragments
extending them. So far we have found two of such languages, BST(∪,Disj, ̸=)
and BST(∩,=∅, ̸=). In this section, we will present their satisfiability tests.

A linear-time satisfiability test for BST(∪,Disj, ̸=)

In Section 3.3 we stated that by removing literals of type ¬Disj (∪L,∪R) from
BST(∪,Disj, ̸=) we can solve in linear time the satisfiability test for the fragment
BST(∪,Disj, ̸=). First we give the definition of BST(∪,Disj, ̸=)

Definition 3.14. The fragment BST(∪,Disj, ̸=) is the collection of all the con-
junctions of literals of types:

Disj (∪L,∪R) , ∪L ̸=∪R,
where L and R are nonempty collections of set variables.

As expected, all that applies to the fragment BST(∪, ̸=,Disj,¬Disj) also applies
to BST(∪,Disj, ̸=) too. We will reuse the same sets ΦDisj

φ and Φ⊖
φ , as before,

removing the set Φ¬Disj
φ defined in Section 3.3. Again, the set Nφ will have a
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central role in our satisfiability test, while we will not need the set Cφ, as condi-
tion (3.20) will be met vacuously by all BST(∪,Disj, ̸=)-formulae because of the
absence of literals of type ¬Disj (∪L,∪R). Taking the above in consideration,
Theorem 3.27 becomes:

Theorem 3.32. A BST(∪,Disj, ̸=)-formula φ is satisfiable if and only if

L \ Nφ ̸= R \ Nφ, for all {L,R} ∈ Φ⊖
φ . (3.24)

The proof of the above theorem is the same as for Theorem 3.27, so we omit it.

Satisfiability Test At this point, it is quite clear that Algorithm 3 can be used
to check BST(∪,Disj, ̸=)-formulae for satisfiability. Its complexity is O(n2+n),
where n is the length of the input formula. The quadratic part, however, is just
due to the computation of Cφ. Since the for-loop at lines 6-12 will never be
entered, and as we observed in the above discussion here we just need the set
Nφ in place of the whole set Cφ, we can modify Algorithm 3 as follows.

Algorithm 5 Satisfiability Tester

Require: a three collection of set variables ΦDisj
φ , and Φ⊖

φ ,
Ensure: is φ satisfiable?
1: Let Nφ be an array of size |φ| initialized to zeroes;
2: for each pair {L,R} ∈ ΦDisj

φ do
3: for each xi ∈ L ∩R do
4: Cφ[i]← 1;
5: for each pair {L,R} ∈ Φ⊖

φ do
6: IsSubset ← true
7: for each xi ∈ (L ∪R) \ (L ∩R) do
8: if Cφ[i][i] = 0 then
9: IsSubset ← false;

10: if IsSubset = true then return false;
return true;

As in the previous section we represent a collection of set variable as an ordered
lists of indexes. Again, using Algorithm 9 we can obtain all the structure needed
by the algorithm in linear time. Set m to |Vars(φ)|. Then concerning the time
complexity of Algorithm 5, we will need O(m)-time to initialize the array Nφ
and, as in the previous section, the for-loop at lines 5-10 will take O(n)-time.

Moving to the for-loop at lines 2-4, we can use Algorithm 6 to compute L ∩ R
in O(|L|+ |R|)-time, by assuming that L and R are maintained as ordered lists.
The for-loop 2-4 will take O

(︁∑︁
{L,R}∈ΦDisj

φ
(|L|+ |R|)

)︁
-time, that is O(n)-time.

We can conclude:

Lemma 3.33. The satisfiability problem for BST(∪,Disj, ̸=)-conjunctions can be
solved in linear time.
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Algorithm 6 Compute A ∩B
Require: two sets A and B represented as ordered lists of indexes,
Ensure: the ordered list representing A ∩B
1: Let C be an empty list of indexes;
2: n← 0
3: i← pop(A);
4: j ← pop(B);
5: while n < |A|+ |B| do
6: if i < j then
7: i← pop(A);
8: else if i > j then
9: j ← pop(B);
10: else
11: add(i,C);
12: i← pop(A);
13: j ← pop(B);
14: n← n+ 1;
15: n← n+ 1;
16: return C;

A quadratic-time satisfiability test for BST(∩,=∅, ̸=)

The other significant non-maximal polynomial fragments is BST(∩,=∅, ̸=),
whose satisfiability problem can be solved in quadratic time, thus improving
upon the cubic time required for BST(∩,=∅, ̸=∅,Disj,¬Disj,⊆,⊈,=, ̸=).

Definition 3.15. The fragment BST(∩,=∅, ̸=) is the collection of all conjunc-
tions of literals of types

∩L ̸=∩R, ∩D = ∅,

where L,R, and D are nonempty collections of set variables.

As usual, we represent any formula φ using the following sets:

Φ⊖
φ
:= {{L,R} | ∩ L ̸=∩R is in φ}

Φ∅
φ
:= {D | D = ∅ is in φ}.

Theorem 3.34. A BST(∩,=∅, ̸=)-formula φ is satisfiable if and only if both the
following conditions are satisfied:

(∀{L,R} ∈ Φ⊖
φ ) L ̸= R; (3.25)

(∀{D,D′} ∈ Φ∅
φ ⊗ Φ∅

φ)(∀{L,R} ∈ Φ⊖
φ ) D ⊈ L ∨ D ⊈ R. (3.26)

Proof. (Necessity.) Let φ be a satisfiable BST(∩,=∅, ̸=)-formula and let M be
one of its models. Plainly, (3.25) must be satisfied otherwise there would exist a
pair {L,R} ∈ Φ⊖

φ such that L = R. Thus, ∩ML =∩MR, and sinceM models
φ we will also have ∩ML ̸= ∩MR. Arguing by contradiction, suppose that
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condition (3.26) is not satisfied, so that there exists a pair {D,D′} ∈ Φ∅
φ ⊗ Φ∅

φ

and a pair {L,R} ∈ Φ⊖
φ such thatD ⊆ L andD′ ⊆ R. Recalling that∩MD = ∅

for all D ∈ Φ∅
φ , we have:

∩ML =∩M(L \D) ∩∩M(D) =∩M(L \D) ∩ ∅ = ∅ = ∅.
∩MR =∩M(R \D′) ∩∩M(D′) =∩M(R \D′) ∩ ∅ = ∅ = ∅.

Thus ∩ML =∩MR, but again we must have ∩ML ̸=∩MR.

(Sufficiency.) Let D be the collection of all the sets in ∪Φ⊖
φ that contains a set

of Φ∅
φ , namely

D := {V ∈ ∪Φ⊖
φ | (∃D ∈ Φ∅

φ)D ⊆ V }.

Assign to each element V of ∪Φ⊖
φ a set bV , so that V ̸= V ′ if and only if

bV ̸= bV ′ . Then define for each variable in Vars(φ) the set assignment

Mx := {bV | x ∈ V ∈ (∪Φ⊖
φ ) \ D};

then it is easy to show that for each collection of set variables S:

∩MS := {bV , | S ⊆ V ∧ V ∈ (∪Φ⊖
φ ) \ D}.

To show that M |= φ, we prove that ∩MD = ∅, for all D ∈ Φ∅
φ , and ∩ML ̸=

∩MR, for all {L,R} ∈ Φ⊖
φ .

Assume by contradiction that there exists a D ∈ Φ∅
φ such that ∩MD ̸= ∅.

Then there must exists a V ∈ (∩Φ⊖
φ ) \ D such that D ⊆ V , hence V ∈ D, a

contradiction; thus ∩MD = ∅.

Now let {L,R} ∈ Φ⊖
φ . by (3.25) we have L ̸= R. w.l.o.g., assume L ⊈ R. then

as long as R /∈ D we have bR ∈ ∩MR \ ∩ML. If R ∈ D, then there exists a
D ∈ Φ∅

φ such that D ⊆ R. Hence, by condition (3.26), L /∈ D and R ⊈ L; in
fact if R ⊆ L then D ⊆ L, contradicting (3.26). Thus bL ∈ ∩ML \ ∩MR. In
both cases ∩ML ̸=∩MR therefore we can conclude that if a formula satisfies
both conditions (3.25) and (3.26) then it is satisfiable.

Satisfiability Test

Theorem 3.34 states that, in order to establish whether or not a BST(∩,=∅, ̸=)-
conjunction is satisfiable, it suffices to check whether the conjunction satisfies
both conditions (3.25) and (3.26). Algorithm 7 is a straightforward implemen-
tation of this check. Through its analysis, we will now show that such task can
be performed in quadratic time.

Correctness of Algorithm 7 is easy to prove; just notice that the for-loop at lines
1-3 ensures that (3.25) is satisfied, otherwise false is returned; analogously the
second for-loop, at line 4-12 ensures that condition (3.26) is satisfied.

To analyze the complexity of this algorithm, first we put n as the length of
the input formula interpreted as a string. Using Algorithm 9, we will obtain, in
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Algorithm 7 Satisfiability test for BST(∩,=∅, ̸=)-conjunctions

Require: The collections Φ⊖
φ and Φ∅

φ .
Ensure: Is φ satisfiable?
1: for {L,R} ∈ Φ⊖

φ do
2: if Li = Ri then
3: return false;
4: for {L,R} ∈ Φ⊖

φ do
5: BL ← BR ← false;
6: for D ∈ Φ∅

φ do
7: if D ⊆ L then
8: BL ← true;
9: if D ⊆ R then
10: BR ← true;
11: if BL ∧BR then
12: return false;
13: return true;

linear time, both sets Φ⊖
φ and Φ∅

φ along with the representation of each collection
of set variables that appears in φ as an ordered list of set variables, according
to some ordering. Doing so we can use Algorithm 8 to check if S ⊆ T in time
O(|S|+ |T |).

Then, it is an easy matter to show that the for-loop at lines 1-3 runs in
O
(︁∑︁

{L,R}∈Φ⊖
φ
(|L|+ |R|)

)︁
-time, that can be quickly simplified into O(n) time.

Similarly, the for-loop at lines 4-12 runs in O
(︁∑︁

{L,R}∈Φ⊖
φ

∑︁
D∈Φ∅

φ
(|D| + |L| +

|R|)
)︁
. We can rewrite the last expression as O

(︁
|Φ∅

φ|
∑︁

{L,R}∈Φ⊖
φ
(|L| + |R|) +

|Φ⊖
φ |
∑︁

D∈Φ∅
φ
|D|

)︁
. Plainly, the terms |Φ∅

φ|, |Φ⊖
φ |,

∑︁
{L,R}∈Φ⊖

φ
(|L|+|R|) and

∑︁
D∈Φ∅

φ
|D|

are smaller then n. Thus we can simplify the above expression to O(n2).

Summing up, we have:

Lemma 3.35. The satisfiability problem for BST(∩,=∅, ̸=) can be solved in
quadratic time.

3.3.5 Managing the input formulae

In sections 3.2, 3.3, and 3.3.4, we presented several polynomial-time satisfiability
tests. Neither of these algorithms, however, take as input the raw formula, as a
string of length n, but instead requires a specific representation of the formula,
i.e., using sets such as Φ⊕

φ .

We need a precomputation phase that can provide such sets to the various sat-
isfiability tests by parsing the input formula. It is important for this precom-
putation phase to not overcome the asymptotic time complexity of the actual
satisfiability test. Some of the strategies we used for the polynomial satisfiability
test are chosen to reduce time complexity. For example a naive implementation
of the check required to ensure that two sets A and B are equal could require
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Algorithm 8 Is A ⊆ B

Require: two sets A and B represented as ordered lists of indexes,
Ensure: is A ⊆ B true?
1: i← pop(A);
2: j ← pop(B);
3: n← 1
4: c← 1
5: while n ⩽ |R| do
6: if ( theni < j)
7: return false;
8: else if ( theni > j)
9: j ← pop(B);

10: else
11: i← pop(A);
12: j ← pop(B);
13: c← n+ 1;
14: n← n+ 1;
15: if c = |A| then
16: return true;
17: else
18: return false;

O(|A||B|)-time, while a more accurate implementation requires O(|A| + |B|)-
time. For Algorithm 9 we target linear time complexity, although failing since
Step 5 requires quadratic time. Luckily Step 5 is only required by the satisfia-
bility test for BST(∪,=, ̸=) and BST(∩,=, ̸=), whose time complexity is cubic,
while forgoing this step the algorithm can be executed in linear time.

From the above discussion, we can underline the specification for this precom-
putation algorithm:

• The input of Algorithm 9 is a string of characters representing a BST
formula;

• the output of Algorithm 9 is a collection of sets Φ, one for each relation
symbol inside the formula; and an indexing of the variables of the formula;

• Φ is a set of pairs {L,R}, where L,R are collection of set variables repre-
sented either by ordered lists of set variables or by arrays of bits.

To implement the set Φ we will use simple linked lists. Likewise, the two
support structures F and V, to be discussed later, will also be implemented as
linked lists, while set variables will be represented by pairs (x, i) where x is a
string containing the name of the variable (the same string found inside the raw
formula) while i is the indexing of the variable in the index we are building.

A requirement to support the linear-time complexity of the satisfiability test for
BST(∪,Disj, ̸=) is that the five step algorithm, presented in Algorithm 9, can be
performed also in linear-time. As we will show, this requirement is met by the



3.3. The fragment BST(∪, ̸=,Disj,¬Disj) 69

first four steps of the algorithm, while Step 5 will take quadratic-time. Luckily
this last step is only required by the satisfiability test for both BST(∪,=, ̸=) and
BST(∩,=, ̸=), which have a cubic time complexity, and can be entirely skipped
in the other cases.

Obtaining a linear time complexity for the first four step is not trivial however.
In particular Step 2 will require a boundedness condition, which is quite natural.

Definition 3.16. A(n infinite) collection C of finite lists of finite sets of natural
numbers is said to be

(a) c-bounded (for some constant c ⩾ 1), if each list [S1, . . . , Sk] in C satisfies
the following condition:

- if Si ̸= ∅, for some i = 1, . . . , k, then

max
k⋃︂
i=1

Si −min
k⋃︂
i=1

Si + 1 ⩽ c ·
k∑︂
i=1

|Si| ;

(b) bounded, if it is c-bounded for some c ⩾ 1.

Let L := [S1, . . . , Sk] be a list of finite subsets of N, drawn from an infinite
bounded collection C. Without loss of generality, we assume that at least one
set in L is nonempty. Put

n :=
k∑︂
i=1

|Si| (input size)

and

σ := max
k⋃︂
i=1

Si −min
k⋃︂
i=1

Si + 1 (range size),

so that σ = O(n), by the boundedness assumption.

Algorithm 9 Precomputation algorithm

Step 1 Instantiate three empty lists Φ,F, and V, then parse the formula φ to
populate the list Φ, while doing so put the pointer to each collection of
set variables inside F and the pointer to each set variables to V;

Step 2 . sort the two lists Φ and V and also each list pointed by the elements of
F;

Step 3 . following the order inside V assign to each distinct variable an index;
Step 4 . remove all the duplicate variables inside the collections pointed by the

elements of F;
Step 5 . Associate to each list V pointed by an element of F an array of bit AV

representing the same collection of set variables as V ;

Algorithm 9 provides a quick overview of the precomputation algorithm. What
follows is a detailed description alongside an analysis of the complexity for each
of its steps.
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Step 1. To parse the formula we do as follows: collect characters from the formula
inside the current string x until either an operator, or a relation symbol,
or a logical connective is found. Then add the pair (x, i), where i is an
uninitialized integer, to the current list V , that represents a collection of
set variables. A pointer to this pair is also added to the list V. Then
initialize a new current string x. Whenever a relation symbol, or a logical
connective ‘∧’ is found, add the current list V to the current triple {V, U,∼
}, where ∼ is a relation symbol, also add the pointer to V to the list ⊕, and
initialize a new current list V . When a relation symbol ∼ is found, add it
to the current triple {V, U,∼}. Finally, whenever a logical connective is
found, add the current triple {V, U,∼} to the list Φ, and then initialize a
new current triple {V, U,∼}. Once the entire formula φ is parsed, V will
represent the collection Vars(φ), containing multiple instance of the same
variable. Moreover, the collections V ’s are unordered and can contain
duplicate set variables. In order to complete this step, the input formula
must be parsed once. For each character scanned, a constant number of
basic operation must be performed: initialize a pair, add a character at
the end of a string, add a pointer to a list, thus this step can be performed
in O(n)-time.

Step 2. During this step, we need to sort both lists Φ and V, alongside all the list
pointed by elements of F. To order the triples inside Φ, we give whatever
order to the different relation symbols and order the triples only referring
to their relation symbol. Doing so we can easily split Φ by gathering each
triple by their relation symbol, obtaining the various sets Φ⊕

φ ,Φ
⊖
φ and so

on. We will treat the list V as the list of set variables pointed by its
elements, and sort each list of set variables according to the lexicographic
order of the strings x representing the set variable.

Since we are targeting linear-time complexity, we can not use sorting al-
gorithms based on comparisons, such as Quick-Sort, otherwise we would
have a lower bound of Ω(n log n). We recall that Φ, V and∪F, that is the
concatenation of all the lists pointed by the elements of F , have all size
O(n). The sorting algorithm we choose is Bucket-Sort. However, if during
step Step 2, the lists V ’s pointed by the elements of F were sorted sepa-
rately by means of k distinct runs of the Bucket-Sort algorithm, then this
step would take O

(︁
k(n+σ)

)︁
-time, namely O(n+(k+1)σ) = O((k+1)n)-

time, by the boundedness condition, where k is the size of F, ruling out
from the very outset the possibility to attain an overall O(n)-time com-
plexity. However, the following trick will allow us to sort the sets V ’s by
a single run of Bucket-Sort. The collections V are naturally indexed by
their position inside F, so that we can call Vi the i-th element of ⊕, we
can scan F, in O(n)-time, to build the collection P := {(x, i) | x ∈ Vi} and
call Bucket-Sort over this set. Specifically, each set Vi, for i = 1, . . . , k,
is scanned and, for each x ∈ Vi, the pair (x, i) (rather than just the
plain string x, as would happen in a standard execution of Bucket-Sort)
is placed in bucket x (previously initialized to empty). Afterwards, k ini-
tially empty tuples Ti, with i = 1, . . . , k, are allocated and the buckets are
inspected in increasing order. For each pair (x, i) in bucket x, the pair
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(x, i) is appended to the tuple Ti. After all buckets have been scanned,
each tuple will contain the elements of the corresponding set in sorted
order. We can then simply order V with a single additional run of the
Bucket-Sort algorithm; the total complexity of phase Step 2 is easily seen
to be O(n+ σ), which, by the boundedness condition, reduces to O(n).

Step 3. To implement this step, first set a counter c to 0 and then for each pair
(x, i) ∈ V, increment c if the string x is different to that of its predecessor
inside V, then set i = c. It is important that the first index is 0. During
this step, we need to reed the string x of each set variables that appears in
the formula twice, one time when we are comparing x with its predecessor
and another time when we are comparing x with its successor, since the
combined length of each string x, for all the set variables, is less then n,
we can conclude that this step requires O(n)-time.

Step 4. This step is easy to implement. Once the collection V inside F are in-
ternally ordered, we can just scan each V and remove from them each
pair (x, i) that is equal to its predecessor. Also this step plainly requires
O(n)-time to be completed.

Step 5. To generate the arrays of this step, we proceed as follows: for each col-
lection of set variables V pointed by an element of F, initialize an array
of AV , whose size is equal to the index of the variable pointed by the last
element of V plus one, that is |Vars(φ)|. Initially all the array components
are set to 0; then for each set variable (x, i) in V AV [i] is set to 1. For each
list V , we need to initialize each cell of an array of |Vars(φ)| to 0, then
scan the list to set to 1 the proper cells. This requires O(|Vars(φ)|n)-time
namely quadratic time.

From the above discussion, it should be clear that to execute Algorithm 9 we
need quadratic-time. However, by not executing Step 5, this complexity re-
duces to linear-time allowing us to confirm the linear time complexity for the
satisfiability test for BST(∪,Disj, ̸=).

3.3.6 Summary

We have concluded our analysis of the polynomial fragments of BST. We can
gather the results of the above sections and add them to our table representing
the taxonomy of BST.

∪ ∩ \ =∅ ̸=∅ Disj ¬Disj ⊆ ⊈ = ̸= Complexity

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ O(n2)
⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ O(n3)

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ O(n3)

Table 3.3: Maximal polynomial fragments of BST
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3.4 A complete complexity taxonomy for BST

Table 3.3 claims to be the table of all the maximal polynomial polynomial
fragments of BST, and it is true indeed. By combining this table with Table 3.2
we should cover every possible fragment of BST. Something is missing however:
what about BST(\,=)? This fragment is neither a super-theory of a minimal
NP-complete fragment nor a sub-theory of a maximal polynomial fragment.

3.4.1 Constant time satisfiable fragments of BST

There are actually quite a few other fragments that share this property with
BST(\,=), those are the fragment that only contains satisfiable formulae, there-
fore their satisfiability problem can be solved in constant time.

Like polynomial fragments, constant fragments can be represented by the col-
lection of maximal constant fragments, we have two such fragments:

BST(∪,∩, \,=∅,Disj,⊆,=), BST(∪,∩,=, ̸=∅,¬Disj,⊆).

The first fragment comprises all the positive relators and the complete suite of
Boolean operators. It is immediate to check that each of its conjunctions φ is
satisfied by the null set assignment M∅ over Vars(φ) such that M∅x = ∅ for
each x ∈ Vars(φ).

Concerning the second fragment, it can easily be verified that each of its conjunc-
tions ψ is satisfied by any constant non-null set assignment Ma over Vars(ψ),
where a is a nonempty set and Max = a for every x ∈ Vars(ψ).

After adding this last small piece to our puzzle, we can finally compile Table 3.4
reporting over the complete complexity taxonomy of the language BST.
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∪ ∩ \ =∅ ̸=∅ Disj ¬Disj ⊆ ⊈ = ̸= Complexity

⋆ ⋆ NP-complete

⋆ ⋆ NP-complete

⋆ ⋆ NP-complete

⋆ ⋆ NP-complete

⋆ ⋆ ⋆ NP-complete

⋆ ⋆ ⋆ NP-complete

⋆ ⋆ ⋆ ⋆ NP-complete

⋆ ⋆ ⋆ ⋆ NP-complete

⋆ ⋆ ⋆ ⋆ NP-complete

⋆ ⋆ ⋆ ⋆ NP-complete

⋆ ⋆ ⋆ ⋆ NP-complete

⋆ ⋆ ⋆ ⋆ NP-complete

⋆ ⋆ ⋆ ⋆ NP-complete

⋆ ⋆ ⋆ ⋆ NP-complete

⋆ ⋆ ⋆ ⋆ NP-complete

⋆ ⋆ ⋆ ⋆ NP-complete

⋆ ⋆ ⋆ ⋆ NP-complete

⋆ ⋆ ⋆ ⋆ NP-complete

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ O(n3)
⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ O(n3)

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ O(n4)
⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ O(1)
⋆ ⋆ ⋆ ⋆ ⋆ ⋆ O(1)

Table 3.4: Complete taxonomy of theory BST
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Chapter 4

A complete complexity taxonomy of
MST

The language Membership Set Theory (MST) can be viewed as the dual frag-
ment of BST inside MLS, in fact it is obtained by removing the equality relation
symbol ‘ = ’. The constructs of MST refer to a universe of nested (as opposed
to ‘flat’) sets: this is the domain which the variables of MST range over. Albeit
MST is devoid of quantifiers. In the ongoing we will prove that the decision
problem for MST is NP-complete, proving once again the NP-completeness of
MLS. Furthermore, like BST, we will show that some of the fragments of MLS
have a polynomial-time solvable decision problem. We will provide a complete
taxonomy of MST that can be useful in real life scenarios, such as the implemen-
tation of a proof verifier, this time we have to analyze far less fragments then
for BST. In fact, MST admits 24 distinct fragments, of which 14 are polynomial
and 10 are NP-complete, nevertheless we only study the minimal NP-complete
and the maximal polynomial fragments inferring the complexity of the other
fragments from them. The following results where already shown in [CMO20].

Before moving on to the various results, we provide an overview of the syntax
of the language MST.

Syntax of MST

The fragments of set theory whose satisfiability problems are addressed in this
chapter are parts, syntactically delimited, of a specific quantifier-free language
MST.

The symbols appearing inside MST are:

• infinitely many set variables x, y, z, . . .;

• the constant symbol ‘∅’;

• the set operators symbols ‘ \ ’, ‘ ∪ ’, ‘ ∩ ’;

• the set membership relation symbol ‘ ∈ ’;

• the logical connective ‘ ∧ ’, ‘¬’.

Then we define the MST-terms as the smallest set of expressions such that:
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• all the set variables and the constant ‘∅’ are MST-terms;

• if s and t are MST-terms, so are s \ t, s ∪ t, and s ∩ t.

The MST-atoms are the smallest set of expressions of type

s ∈ t,

where both s and t are MST-terms; MST-literals are simply atoms A and their
negation ¬A and finally MST-formulae are conjunctions of literals be means of
the logical connective ∧.

We will forgo the symbol ‘¬’ in our formulae replacing each literal ¬(s ∈ t) with
the atom s /∈ t.

As before, it is needless to define a semantic for MST since we will use the same
interpretation used for MLS.

In the following section we will build, in a similar fashion to Table 3.4, a table
listing all the fragments of MST alongside their complexity.

∪ ∩ \ ∈ /∈ Complexity

Table 4.1: Empty complexity table for MLS

4.1 The minimal NP-complete fragments of MST

Beginning with NP-complete fragments, we will study the two fragmentsMST(∪,∩,∈)
and MST(\,∈) which are minimal NP-complete. For the time being, their min-
imality in only suggested, but it will become evident once we present the poly-
nomial fragments of MST.

4.1.1 The fragment MST(∪,∩,∈)
Definition 4.1. The fragment MST(∪,∩,∈) consists of all the conjunctions of
literals of type:

t1 ∈ t2,

where t1 and t2 are terms involving only set variables and the set operators ‘∪ ’
and ‘ ∩ ’.

We shall prove that the satisfiability problem for MST(∪,∩,∈)-formulae is NP-
complete by reducing the problem 3SAT to it.

Let F be an instance of 3SAT, defined as in Definition 3.1, and let x,X1, X1, . . . , Xn, Xn

be 2n+ 1 distinct set variables.

For all i ∈ {1, . . . ,m}, j ∈ {1, 2, 3}, and k ∈ {1, . . . , n}, let us put

Tij :=

{︄
Xk if Lij = Pk ,

Xk if Lij = ¬Pk .
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Finally, put

ΦF :=
m⋀︂
i=1

(︁
x ∈ Ti1 ∪ Ti2 ∪ Ti3

)︁
∧

n⋀︂
k=1

(︁
x ∈ Xk ∪Xk ∧ Xk ∩Xk ∈ x

)︁
.

Theorem 4.1. A 3SAT instance F is propositionally satisfiable if and only if the
corresponding MST(∪,∩,∈)-conjunction ΦF is satisfied by some set assignment.

Proof. (Necessity). Assume first that F is propositionally satisfiable, and let v
be a Boolean valuation that satisfies it. Let Mv be the set-assignment induced
over Vars(ΦF ) by v according to the following rules: for k = 1, . . . , n,

MvXk :=

{︄
{{∅}} if v(Pk) = true ,

∅ otherwise;

MvXk := {{∅}} \MvXk ; Mvx := {∅} .

Hence, Mv(Xk ∪Xk) = {{∅}} and Mv(Xk ∩Xk) = ∅ for each k, so that

Mv |=
n⋀︂
k=1

(︁
x ∈ Xk ∪Xk ∧ Xk ∩Xk ∈ x

)︁
. (4.1)

Let now i ∈ {1, . . . ,m}. Since v satisfies F by hypothesis, v(Li1 ∨ Li2 ∨ Li3) =
true, and hence v(Liji) = true for some ji ∈ {1, 2, 3}. Let k ∈ {1, . . . , n} be such
that Liji ∈ {Pk,¬Pk}. If Liji = Pk, then v(Pk) = true and Tiji = Xk, and hence
MvTiji = {{∅}}. On the other hand, if Liji = ¬Pk, then v(Pk) = false and Tiji =
Xk; hence, again, MvTiji = {{∅}}. Thus, Mvx = {∅} ∈ {{∅}} = Mv(Tiji) ⊆
Mv(Ti1 ∪ Ti2 ∪ Ti3), proving that Mv satisfies the literal x ∈ Ti1 ∪ Ti2 ∪ Ti3.

This fact, true of each i, along with (4.1), yields that Mv rightly models ΦF .

(Sufficiency). Assume next that the MST(∪,∩,∈)-conjunction ΦF is satisfiable,
and consider a set assignment M modeling it. Then, for each k = 1, . . . , n, we
have

Mx ∈MXk ∪MXk ∧ MXk ∩MXk ∈Mx,

whence Mx /∈ MXk ∩MXk. Thus, either Mx ∈ MXk or Mx ∈ MXk holds,
but not both. A Boolean valuation vM is induced on P1, . . . , Pn by the rule

vM(Pk) :=

{︄
true if Mx ∈MXk ,

false otherwise .

Since M |= ΦF , then M |=
⋀︁m
i=1 x ∈ Ti1 ∪ Ti2 ∪ Ti3 holds. Thus, for each

i ∈ {1, . . . ,m}, Mx ∈MTiji holds for some ji ∈ {1, 2, 3}. Let k ∈ {1, . . . , n} be
such that Tiji ∈ {Xk, Xk}. If Tiji = Xk, then Liji = Pk and vM(Pk) = true. If,
on the contrary, Tiji = Xk, then Liji = ¬Pk and vM(Pk) = false. In any case,
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vM(Liji) = true, and so vM(Li1 ∨ Li2 ∨ Li3) = true. This fact, true of each i,
yields that the Boolean valuation v satisfies F .

Since ΦF gets constructed from F in O(|F |)-time, from Theorem 4.1 we get:

Lemma 4.2. The satisfiability problem for MST(∪,∩,∈)-conjunctions is NP-
complete.

4.1.2 The fragment MST(\,∈)
Definition 4.2. The fragment MST(\,∈) consists of all the conjunctions of lit-
erals of type:

t1 ∈ t2,

where t1 and t2 are terms involving only set variables and the set operator ‘ \ ’.

We shall prove that the satisfiability problem for MST(\,∈)-conjunctions is
NP-complete by reducing the problem 3SAT to it.

Again let F be an instance of the 3SAT problem, and let x,X1, . . . , Xn, X
∗ be

n+ 2 distinct set variables. For i = 1, . . . ,m and j = 1, 2, 3, put

Tij :=

{︄
Xk if Lij = Pk for some k ,

X∗ \Xk if Lij = ¬Pk for some k ;

then define
Ci := (((X∗ \ Ti1) \ Ti2) \ Ti3) ,

and finally put

ΨF := x ∈ (· · · ((X∗ \ C1) \ C2) · · · ) \ Cm . (4.2)

Theorem 4.3. A 3SAT instance F is propositionally satisfiable if and only if the
corresponding MST(\,∈)-conjunction ΨF is satisfied by some set assignment.

Proof. (Necessity). First assume that F is propositionally satisfiable, and let v
be a Boolean valuation satisfying it; then define, for k = 1, . . . , n:

M∗Xk :=

{︄
{{∅}} if v(Pk) = true ,

∅ otherwise;

M∗x := {∅} ; M∗X∗ := {{∅}} .

Since v satisfies F , for each i ∈ {1, . . . ,m} we have v(Ci) = true, and hence
to each i there corresponds a j = 1, 2, 3 such that v(Lij) = true. If Lij = Pk
for some k, then M∗Tij = M∗Xk = {{∅}} = M∗X∗ follows from v(Pk) = true;
if, on the contrary, Lij = ¬Pk for some k, then M∗Tij = M∗X∗ \ M∗Xk =
M∗X∗ \ ∅ = M∗X∗ follows from v(Pk) = false. These remarks make it clear
that M∗Ci = ∅ holds for i = 1, . . . ,m, so that

(· · · (M∗X∗ \M∗C1) · · · ) \M∗Cm =M∗X∗ ;
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therefore, since M∗x ∈M∗X∗, we conclude that M∗ models ΨF .

(Sufficiency). Assume next that the MST(\,∈)-conjunction ΨF is satisfiable,
and consider a set-model M for it. Define the Boolean evaluation v by the rule

v(Pk) :=

{︄
true if Mx ∈MXk ,

false otherwise.

Since M |= ΨF , it must hold that Mx ∈ MX∗ and Mx /∈ MCi for any i ∈
{1, . . . ,m}. Thus, by the definition of Ci, to each i there must correspond a
j ∈ {1, 2, 3} such that Mx ∈ MTij: if Lij = Pk for some k, then Mx ∈
MTij = MXk, hence v(Pk) = v(Lij) = true; if, on the contrary, Lij = ¬Pij,
then Mx ∈ MTij = MX∗ \ MXk, hence Mx /∈ MXk, v(Pk) = false, and
v(Lij) = true again. Summing up, for each i = 1, . . . ,m there exists a j = 1, 2, 3
such that v(Lij) = true, hence v satisfies F .

Since ΨF gets constructed from F in O(|F |)-time, from Theorem 4.3 we get:

Lemma 4.4. The satisfiability problem for MST(\,∈) is NP-complete.

Remark 4.5. In Theorems 4.1 and 4.3 concerning NP-hardness, we have built
models of rank at most 2. It is often interesting, in connection with more de-
manding fragments of set theory (see, e.g., [Can91, CUO02]), to determine the
maximum rank needed to satisfy a formula as a function of its length (or just
the number of relators, in case of normalized conjunctions), so as to obtain a
small model theorem of some sort.

4.2 The maximal polynomial fragments of MST

The maximal polynomial fragments of MST are MST(∪,∈, /∈), MST(∩,∈, /∈),
and MST(∪,∩, \, /∈), whose satisfiability problems can be solved in linear,
quadratic, and constant time, respectively, as we are about to show.

In sight of the results we will present in this section, it is useful to analyze some
easy, yet crucial, examples of unsatisfiable conjunctions in the aforementioned
fragments of MST.

4.2.1 Introductory examples

Example 4.1. The MST(∪,∈)-conjunction

x0 ∪ x1 ∈ x2 ∪ x3 ∧ x2 ∪ x3 ∈ x0 ∪ x2

is unsatisfiable.

Notice that if the above conjunction were satisfied by some set assignment M ,
then Mx2 ∪ Mx3 ∈ Mx0 ∪ Mx2 should hold. However, Mx2 ∪ Mx3 cannot
belong to Mx2, else we would have Mx2 ∪Mx3 ∈ Mx2 ∪Mx3. On the other,
Mx2 cannot belong to Mx0 either, else the first conjunct would lead us into
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Mx2 ∪Mx3 ∈Mx0 ∪Mx1 ∈Mx2 ∪Mx3, a membership cycle again. Summing
up, the conjunction under consideration is unsatisfiable.

Example 4.2. The MST(∪,∈, /∈)-conjunction

x0 ∪ x1 ∈ x2 ∪ x3 ∧
x2 ∪ x3 ∈ x0 ∪ x2 ∪ x4 ∪ x5 ∧
x2 ∪ x3 /∈ x4 ∪ x5

is unsatisfiable.

Since the last two conjuncts can be simplified into the single conjunct x2∪x3 ∈
x0∪x2, the above conjunction yields the one discussed in Example 4.1; therefore
it is unsatisfiable in its turn.

Example 4.3. The MST(∩,∈, /∈)-conjunction

x0 ∩ x1 ∈ x2 ∩ x3 ∩ x4 ∧ x0 ∩ x1 /∈ x2 ∩ x4

is unsatisfiable.

The conjunction is plainly unsatisfiable since it requires that x0 ∩ x1 belongs
and does not belong to x2 ∩ x4.

Example 4.4. The MST(∩,∈)-conjunction

x0 ∩ x1 ∈ x2 ∩ x3 ∩ x4 ∧ x2 ∩ x3 ∈ x0 ∩ x1 ∩ x5

is unsatisfiable.

In this case, if the conjunction were satisfied by some set assignment M , then
Mx2∩Mx3 ∈Mx0∩Mx1 ∈Mx2∩Mx3 should hold, conflicting with the axiom
of regularity.

4.2.2 The fragment MST(∪,∈, /∈), decidable in linear time

In order to see that the satisfiability problem for MST(∪,∈, /∈)-conjunctions ad-
mits a linear-time solution, we first prove an analogous statement forMST(∪,∈)
and then will prove that the satisfiability problem for MST(∪,∈, /∈) can be re-
duced in linear time to the one for MST(∪,∈).

A linear-time satisfiability test for MST(∪,∈).

To begin with, we provide a decision procedure for MST(∪,∈) and then prove
that it runs in linear time in the size of the input formula.

Definition 4.3. The fragment MST(∪,∈) is the collection of all the conjunctions
of literals of types

∪L ∈ ∪R,
where L and R are nonempty collections of set variables.
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In order to simplify our proof, we can all the literals of a given MST(∪,∈)-
formula φ so that we have

φ :=

p⋀︂
i=1

∪Li ∈ ∪Ri. (4.3)

Theorem 4.6. Let φ be an MST(∪,∈)-conjunction of the form (4.3). Then:

(a) if ≺ is a linear ordering of Vars(φ) satisfying the condition

max(Li,≺) ≺ max(Ri,≺), for i = 1, . . . , p, (4.4)

then φ has a model M such that

(a1) Mx = {bx} ∪ {∪MLi | i = 1, . . . , p ∧ x = max(Ri,≺) } for each
x ∈ Vars(φ), where the bx’s are pairwise distinct sets of the same
rank α, and

(a2) ∪ML /∈Mx, for any L ⊆ Vars(φ) and any x ∈ Vars(φ) such that

p⋀︂
i=1

(︁
L = Li −→ x /∈ Ri

)︁
; (4.5)

(b) if φ is satisfiable, then there is a linear ordering ≺ of Vars(φ) such that
condition (4.4) holds.

Hence, the satisfiability problem for MST(∪,∈)-conjunctions is solvable.

Proof. Let us first assume that there is a linear ordering ≺ of Vars(φ) such that
(4.4) holds. Following the ordering ≺, for x ∈ Vars(φ) we put

Mx := {bx} ∪
{︁ ∪MLi | i = 1, . . . , p ∧ x = max(Ri,≺)

}︁
, (4.6)

where the bx’s are pairwise distinct sets of the same rank α. For any literal

∪Li ∈ ∪Ri in φ, with i ∈ {1, . . . , p}, by setting xi := max(Ri,≺) we enforce

∪MLi ∈Mxi ⊆ ∪MRi, so that M |=∪Li ∈ ∪Ri. Thus, M models correctly
all conjuncts of φ, and it plainly satisfies condition (a1).

To see that also condition (a2) is true of M , we argue as follows. The biimpli-
cation

∪ML =∪ML′ if and only if L = L′ (4.7)

holds for L,L′ ⊆ Vars(φ), as the sets bx in ∪ML are the same as those in

∪ML′ if and only if L = L′. Let L ⊆ Vars(φ) and x ∈ Vars(φ) be such
that

⋀︁p
i=1(L = Li −→ x /∈ Ri) holds, but assume, by way of contradiction,

∪ML ∈ Mx. Then, by (4.7) and (4.6), L = Li0 for some i0 ∈ {1, . . . , p} such
that x = max(Ri0 ,≺) ∈ Ri0 , contradicting (4.5). Hence M satisfies condition
(a2) too.
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Concerning claim (b), assume now that M is a model of our conjunction φ.
Also, let ≺ be any linear ordering of Vars(φ) such that

rk
(︁
Mx

)︁
< rk

(︁
My

)︁
−→ x ≺ y, for x, y ∈ Vars(φ). (4.8)

To check that the ordering ≺ satisfies (4.4), consider an i ∈ {1, . . . , p}. Since

∪MLi ∈ ∪MRi , we have

max{rk
(︁
Mx

)︁
|x ∈ Li} = rk

(︁∪MLi
)︁
< rk

(︁∪MRi

)︁
= max{rk

(︁
Mx

)︁
|x ∈ Ri},

so that, by (4.8), max(Li,≺) ≺ max(Ri,≺) holds also in this case. Therefore
(4.4) holds, completing the proof of (b).

Claims (a) and (b) of the above theorem entail that the formula φ is satisfiable
if and only if there is a linear ordering ≺ of Vars(φ) satisfying (4.4). From this,
the decidability of the satisfiability problem for MST(∪,∈) readily follows.

Towards a linear-time satisfiability test for MST(∪,∈), we next derive two con-
ditions which can be tested in linear time and whose conjunction is equivalent
to (4.4). To begin with, in connection with any formula φ of MST(∪,∈), we
define the left-variables (resp., right-variables) of φ to be those variables in
φ occurring in the left-hand side L (resp., right-hand side R) of some literal

∪L ∈ ∪R in φ. We call pure right-variables the right-variables of φ that are
not left-variables.

Now let φ be any satisfiable MST(∪,∈)-formula and let ≺ be any linear ordering
of Vars(φ) fulfilling condition (4.4). Plainly, no left-variable in φ can be ≺-
maximal. Hence

(A) φ has some pure right-variable.

In addition, by letting φ− be the result of dropping from φ all conjuncts that
involve some pure right-variable, we clearly have

(B) φ− is satisfiable.

It turns out that conditions (A) and (B) are also sufficient for the satisfiability
of φ. Indeed, assume that conditions (A) and (B) hold for a given MST(∪,∈)-
formula φ, and let ≺− be a linear ordering of Vars(φ−) fulfilling condition (4.4)
of Theorem 4.6 as applied to φ−. Then, in order to fulfil condition (4.4) of
Theorem 4.6 as applied to φ, it will suffice to take any extension ≺ of ≺− to a
linear ordering of Vars(φ) such that x ≺ y holds for every left-variable x and
every pure right-variable y of φ; hence the conjunction φ is satisfiable.

The above considerations readily yield the following satisfiability test forMST(∪,∈):

A straightforward implementation of Algorithm 10 is quadratic. An alternative
implementation consists in counting the number of left-occurrences of each vari-
able x ∈ Vars(φ), while also maintaining, for each right-variable y in φ, the list
of the conjuncts where y occurs. Specifically, we maintain two arrays A and
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Algorithm 10 Satisfiability tester for MST(∪,∈)
while φ contains some pure right-variable do

drop from φ all of the conjuncts involving some pure right-variable;
if φ is the empty conjunction then

return satisfiable;
else

return unsatisfiable;

B, both indexed by set variables. The former array consists of counters A[x],
each indicating the number of conjunctions in which the variable x appears in
the left-hand-side term; the latter array consists of pointers B[x], each of which
is the list of pointers to the conjuncts where x appears in the right-hand-side
term. Variables with a zero counter are exactly the pure right-variables. As
long as the conjunction φ contains right-variables with a zero counter, drop
all conjuncts containing some right-variable with a zero counter from it and,
accordingly, decrement the counters of the left-occurrences in the dropped con-
juncts. If, eventually, one ends up with the empty conjunction, then the initial
conjunction φ is declared to be satisfiable, else unsatisfiable.

Algorithm 11 shows a linear-time complexity implementation for the above sat-
isfiability test. Hence, we have:

Lemma 4.7. The satisfiability problem for MST(∪,∈) is solvable in linear time.

Remark 4.8. Extending the signature of MST(∪,∈) with a constant ∅ designat-
ing the empty set only calls for marginal retouches to the decision algorithm.
In essence, we must refer the satisfiability problem to conjunctions of the form⋀︁p
i=1∪Li ∈ ∪Ri, where some of the collections Li, Ri of variables can be empty.

This slightly richer situation readily leads to an unsatisfiability response should
∅ occur among R1, . . . , Rp; otherwise, it can be handled by adding a symbol ⊥
distinct from any set-variable to the domain Vars(φ) of the orderings ≺ which
interest us (see Theorem 4.6). We must stipulate that ⊥ ≺ x holds for every
set variable x, and shall consequently take max(Li,≺) = ⊥ when Li is empty.

A linear-time reduction of MST(∪,∈, /∈) to MST(∪,∈).

We shall now prove that the satisfiability problem for MST(∪,∈, /∈) can be
reduced in linear time to the one for MST(∪,∈). This will yield a linear-
time decision procedure for the satisfiability problem of the extended fragment
MST(∪,∈, /∈).

Definition 4.4. The fragment MST(∪,∈, /∈) is the collection of all conjunctions
of literals of following types

∪L ∈ ∪R, ∪L /∈ ∪R;
where L and R are nonempty collection of set variables.
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Algorithm 11 Linear satisfiability test for MST(∪,∈)
Require: An MST(∪,∈)-formula φ
Ensure: is φ satisfiable
1: for each conjunct ℓ in φ do
2: for each left-variable l in ℓ do
3: A[l]← A[l] + 1;
4: for each right-variable r in ℓ do
5: add a pointer to ℓ to B[r];
6: for each set variable x in φ do
7: if A[x] = 0 then
8: R ← R∪ {x};
9: while φ is nonempty do
10: if R = ∅ then
11: return unsatisfiable;
12: extract a set variable x from R;
13: for each conjunct ℓ in B[x] do
14: for each left-variable l in ℓ do
15: A[l]← A[l]− 1;
16: if A[l] = 0 then
17: R ← R∪ {l};
18: for each right-variable r in ℓ do
19: remove the pointer to ℓ from B[r];
20: remove ℓ from φ
21: return satisfiable;
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LikewiseMST(∪,∈)-formulae, we can index all the literals inside a givenMST(∪,∈, /∈)-
formula φ so that

φ :=

p⋀︂
i=1

∪Li ∈ ∪Ri ∧
n⋀︂

j=p+1

∪Lj /∈ ∪Rj (4.9)

Lemma 4.9. The satisfiability problem for MST(∪,∈, /∈) can be reduced in linear
time to that for MST(∪,∈).

Proof. Let φ be a MST(∪,∈, /∈)-formula of type (4.9). For each i = 1, . . . , p, let

R′
i := Ri \ ∪{Rj | j = p+ 1, . . . , n ∧ Lj = Li }, (4.10)

and put

φ′ :=

{︄⋀︁p
i=1∪Li ∈ ∪R′

i if no R′
i is empty,

x0 ∈ x0 otherwise,

for a fixed, but otherwise arbitrary, set variable x0. Notice that x0 ∈ x0 is
unsatisfiable. It is an easy matter to verify that if φ is satisfiable, then (φ′ ≡⋀︁p
i=1∪Li ∈ ∪R′

i and) any model for φ is also a model for φ′, i.e., |= φ −→ φ′.

Conversely, if φ′ is satisfiable (and therefore φ′ ≡
⋀︁n
i=1∪Li ∈ ∪R′

i), then,
by Theorem 4.6(b), there is a linear ordering ≺ of Vars(φ′) fulfilling condition
(4.4) and in addition, by Theorem 4.6(a), the conjunction φ′ has a model M
satisfying conditions (a1) and (a2) of the same theorem. We extend M to the
variables x ∈ Vars(φ) \ Vars(φ′), if any, by setting Mx := {bx}, where the bx’s
are pairwise distinct sets of the same rank α new to the assignment M . Since

∪MR′
i ⊆ ∪MRi, for i = 1, . . . , p, we plainly have M |=

⋀︁p
i=1∪Li ∈ ∪Ri,

namely M satisfies all the positive conjuncts of φ.

Let us now show that M satisfies the negative part
⋀︁n
j=p+1∪Lj /∈ ∪Rj of φ as

well. Indeed, if this were not the case, there would exist a j ∈ {p+1, . . . , n} and
a variable x ∈ Rj such that ∪MLj ∈Mx. Since ∪MLj is not a set of rank α,
Mx cannot be of the form {bx} and therefore x ∈ Vars(φ′). Thus, by condition
(a1) of Theorem 4.6, Mx = {bx} ∪

{︁∪MLi | i = 1, . . . , p ∧ x = max(R′
i,≺)

}︁
,

and so we would have ∪MLj = ∪MLi for some i ∈ {1, . . . , p} such that
x = max(R′

i,≺), so that x ∈ R′
i. The pairwise distinctness of the urelements

would yield Lj = Li. Hence, by (4.10), x /∈ R′
i, a contradiction.

In conclusion, M must also satisfy the negative part
⋀︁n
j=p+1∪Lj /∈ ∪Rj of φ,

and thus, in view of M |=
⋀︁p
i=1∪Li ∈ ∪Ri seen above, M satisfies φ.

Summing up, we have proved that if φ′ is satisfiable, so is φ, which, in view of
|= φ −→ φ′ observed above, yields the equisatisfiability between φ and φ′.

To complete the proof, it suffices to observe that the conjunction φ′ can be
constructed in O(|φ|) time, where |φ| denotes the size of φ, by means of a
suitable linear-time algorithm for detecting all duplicates in the list L1, . . . , Ln
of sets (see below).
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Linear-time duplicate detection.

We briefly outline how to detect duplicate sets in linear time in bounded lists of
sets of natural numbers, where the notion of boundedness is defined as follows.

To detect duplicates in L, one can utilize the following three-phase algorithm:

Algorithm 12 Duplicate detection

1: sort each one of the sets Si’s in L; let L′ := [T1, . . . , Tk] be the list of the
resulting sorted tuples;

2: sort lexicographically the list L′; let L′′ := [Ti1 , . . . , Tik ] be the resulting list;
3: find the duplicate tuples in L′′ (these correspond to the duplicate sets in
L).

Completing phase 1 in O(n) is possible by simply running the first four steps
of Algorithm 9.

By means of Algorithm 3.2 of [AHU74, pp. 80–84] for sorting tuples of varying
length in lexicographic order, phase 2 can be accomplished in time O(n + σ)
that is by the boundedness condition Definition 3.16 equal to O(n).

Finally, duplicate tuples in L′′ (corresponding to duplicate sets in L) can be
spotted during phase 3 just by checking all adjacent pairs Tiℓ , Tiℓ+1

of ordered
tuples. In this last phase, each component of the tuples Ti1 , . . . , Tik is accessed
at most twice, yielding a O(n)-time complexity.

In conclusion, each of the above phases takesO(n) time, which results in an over-
all O(n)-time complexity for our three-phase algorithm. In view of Lemma 4.7,
Lemma 4.9 yields the following complexity result:

Lemma 4.10. The satisfiability problem for MST(∪,∈, /∈) can be solved in linear
time.

Remark 4.11. Much as with MST(∪,∈) (see Remark 4.8), extending the sig-
nature of MST(∪,∈, /∈) with a constant ∅ designating the empty set affects but
marginally the decision algorithm. We must refer the satisfiability problem to
conjunctions φ of the form

⋀︁p
i=1∪Li ∈ ∪Ri ∧

⋀︁n
j=p+1∪Lj /∈ ∪Rj, where some

of the collections Lh, Rh of variables can be empty. A negative literal whose
Rj is empty is obviously true and, as a matter of fact, it has no bearing on
the construction (4.10) of R′

1, . . . , R
′
p carried out by the satisfiability-preserving

translation φ ↦→ φ′ discussed in Lemma 4.9. Also in the case when Lj = ∅ but
Rj ̸= ∅ for some j ∈ {p+1, . . . , n}, the translation can treat Lj, Rj precisely in
the same manner as the pair Lj′ , Rj′ involved in any other negative literal of φ.

4.2.3 The fragment MST(∩,∈, /∈), decidable in quadratic time

Definition 4.5. The fragment MST(∩,∈, /∈) is the collection of all the conjunc-
tions of literals of the following types

∩L ∈ ∩R, ∩L /∈ ∩R′,
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where L and R are nonempty collections of set variables.

Much like MST(∪,∈) and MST(∪,∈, /∈), we can index each literal of a given
MST(∩,∈, /∈)-formula φ so that

φ :=

p⋀︂
i=1

∩Li ∈ ∩Ri ∧
n⋀︂

j=p+1

∩Lj /∈ ∩Rj. (4.11)

We shall denote by φ+ and φ− the positive part
⋀︁p
i=1∩Li ∈ ∩Ri and the

negative part
⋀︁n
j=p+1∩Lj /∈ ∩Rj of φ, respectively. Without loss of generality,

as regards decidability, we may assume that the following condition holds:

(C1) Li ̸= Lh for any two distinct i, h ∈ {1, . . . , p}.

In fact, condition (C1) can be enforced, without affecting satisfiability, by re-
placing, for each set L ∈ {L1, . . . , Lp} of variables, the collection of conjuncts

∩Li ∈ Ri in φ+ such that Li = L by the single conjunct ∩L ∈ ∩R, where
R := ∪{Ri | i = 1, . . . , p ∧ Li = L}, since |= ∩{∩Ri | i = 1, . . . , p ∧ Li =
L} =∩R.
As seen earlier, the duplicates in the list L1, . . . , Lp of sets can be detected in
linear time, and therefore condition (C1) can be enforced in time O(|φ|).

Theorem 4.12. Let φ be an MST(∩,∈, /∈)-formula of the form (4.11), fulfilling
condition (C1). Then φ is satisfiable if and only if the following two conditions
hold:

(a) Lj = Li implies Rj ⊈ Ri, for i = 1, . . . , p and j = p+ 1, . . . , n;

(b) the relation
{(i, h) | i, h = 1, . . . , p ∧ Li ⊆ Rh}

among subscripts of the conjuncts of φ+ is acyclic.

Proof. (Necessity). Assume first that φ is satisfiable, and let M |= φ.

Concerning condition (a), suppose that Lj = Li, for some i ∈ {1, . . . , p} and
j ∈ {p + 1, . . . , n}. Then we have ∩MLj = ∩MLi ∈ ∩MRi \ ∩MRj, so
Rj ⊈ Ri must hold.

As for condition (b), by way of contradiction suppose that

i0, . . . , in ∈ {1, . . . , p} are such that Ri0 ⊇ Li1 , . . . , Rin−1 ⊇ Lin , and Rin ⊇ Li0

Then φ+ requires that

∩MLi0 ∈ ∩MRi0 ⊆ ∩MLi1 ∈ · · · ∈MRin−1 ⊆ ∩MLin ∈ ∩MRin ⊆ ∩MLi0 ,

leading to the untenable cycle ∩MLi0 ∈ ∩MLi1 ∈ · · · ∈ ∩MLin ∈ ∩MLi0 .

(Sufficiency). Conversely, assume that φ complies with conditions (a), (b).
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We associate a distinct set bk with each conjunct in φ such that all the sets bk’s
have the same rank α and, for each i = 1, . . . , p , make the following technical
definition:

Ii := {bk | k = 1, . . . , n ∧ Li ⊆ Lk} ∪ {Ih |h = 1, . . . , p ∧ Li ⊆ Rh} . (4.12)

Thanks to condition (b), this definition of the Ii’s is well-posed. In what follows,
we will manage to define a model M of φ so that, for i = 1, . . . , p and k =
1, . . . , n, Ii will equal the intersection of all Mℓ’s with ℓ ∈ Lk if and only if
i = k.

We put, for x ∈ Vars(φ):

Mx := {bk | k = 1, . . . , n ∧ x ∈ Lk} ∪ {Ii | i = 1, . . . , p ∧ x ∈ Ri} . (4.13)

The rest of the proof is devoted to showing that M , as just defined, satisfies φ.
We shall make use of the following claims.

Claim 4.13. Ii ̸= Ih holds for all i, h = 1, . . . , p such that i ̸= h.

By (C1), Li ̸= Lh follows from i ̸= h. Assuming, w.l.o.g., Li ⊈ Lh, we get
bi ∈ Ii \ Ih from (4.12).

Claim 4.14. Ii =∩MLi holds for all i = 1, . . . , p.

By (4.13) and (4.12) every member of ∩MLi, as well as of Ii, either is a sat bk
of rank α, with k ∈ {1, . . . , n}, or is a set Ih, with rank strictly greater then α,
with h ∈ {1, . . . , p}. We also have

bk ∈ ∩MLi ⇐⇒
bk ∈Ml, for all l ∈ Li ⇐⇒
bi ⊆ Lk by (4.13) ⇐⇒
bk ∈ Ii by (4.12);

and

Ih ∈ ∩MLi ⇐⇒
Ih ∈Ml, for all l ∈ Li ⇐⇒
Li ⊆ Rh by (4.13) and Claim 4.13 ⇐⇒
Ih ∈ Ii by (4.12).

Claim 4.15. For every S ⊆ Vars(φ) and i = 1, . . . , p, if Ii ∈ ∩MS then
S ⊆ Ri.
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Ii ∈ ∩MS =⇒
Ii ∈Mv, for all v ∈ S =⇒
v ∈ Ri, for all v ∈ S by (4.13) and Claim 4.13 =⇒
S ⊆ Ri.

Claim 4.16. For i = 1, . . . , p and k = 1, . . . , n, if Ii =∩MLk then Li = Lk.

Suppose that Ii =∩MLk. Then, by (4.13), bk ∈ Ii; hence, by (4.12), Li ⊆ Lk.
Again by (4.13), thanks to Claim 4.14, bi ∈ ∩MLk; therefore, in analogy with
the proof of Claim 4.14, Lk ⊆ Li.

Now, in order to prove that the positive conjuncts of φ are satisfied by M ,
consider a literal ∩Li ∈ ∩Ri with i ∈ {1, . . . , p}. By Claim 4.14, ∩MLi = Ii
holds. In addition, by (4.13), Ii ∈ Mx for all x ∈ Ri, and therefore ∩MLi ∈
∩MRi, which proves that M models correctly the conjunct ∩Li ∈ ∩Ri.

Next we show that also the negative conjuncts of φ are satisfied by M . To
see this, consider a literal ∩Lj /∈ ∩Rj with j ∈ {p + 1, . . . , n}. By way of
contradiction, suppose that ∩MLj ∈ ∩MRj; then, by (4.13) and since ∩MLj
is a set of rank grather then α, since bj ∈ ∩MLk, ∩MLj = Ii for some
i ∈ {1, . . . , p}. Then Lj = Li holds by Claim 4.16, and Rj ⊆ Ri holds by
Claim 4.15, contradicting condition (a) of the theorem. Thus∩MLj /∈ ∩MRj,
which proves that M models correctly the conjunct ∩Li /∈ ∩Ri.

Complexity issues

We can assess the complexity of the satisfiability problem for MST(∩,∈, /∈) as
follows. Given an MST(∩,∈, /∈)-formula of the form (4.11), condition (a) of
Theorem 4.12 can be tested in O(φ) time by detecting the duplicates in the list
L1, . . . , Lp of sets.

Next, we observe that condition (b) of Theorem 4.12 is equivalent to the acyclic-
ity of the oriented graph Gφ+ = (Vφ+ , Eφ+), where Vφ+ := {1, . . . , p} and
Eφ+ := {(i, h) |Li ⊆ Rh, for i, h ∈ Vφ+}. The graph Gφ+ can be constructed in
time O(p·|φ+|) and its acyclicity tested in time O(p2). Hence, condition (b) can
be tested in time O(p · |φ+|), yielding an overall time complexity O(p · |φ+|+ |φ|)
for the satisfiability problem of MST(∩,∈, /∈).

Summing up:

Lemma 4.17. The satisfiability problem for MST(∩,∈, /∈)-conjunctions can be
solved in quadratic time.
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4.2.4 The trivial fragment MST(∪,∩, \, /∈)
Finally we quickly disclose the fragment MST(∪,∩, \, /∈).

Definition 4.6. The fragment MST(∪,∩, \, /∈) is the collection of all the con-
junctions of literals of type

t1 /∈ t2,

where t1 and t2 are terms involving the set operators ‘∪ ’, ‘∩ ’, and ‘\ ’ alongside
set variables.

Since any MST(∪,∩, \, /∈)-formula φ is trivially satisfied by the assignment M∅
over Vars(φ), defined by

M∅x = ∅ for every x ∈ Vars(φ),

we readily get:

Lemma 4.18. The satisfiability problem for the fragment MST(∪,∩, \, /∈) can be
solved in constant time.

Remark 4.19. By adding any symbol of the language MST to eitherMST(∪,∈, /∈),
or MST(∩,∈, /∈), or MST(∪,∩, \, /∈), we will obtain a fragment that contains
one of the two NP-complete fragments MST(∪,∩,∈) or MST(\,∈). On the
other end by removing any symbol from the two aforementioned NP-complete
fragments, we obtain a sub-language of a polynomial fragment.

So MST(∪,∈, /∈), MST(∩,∈, /∈), and MST(∪,∩, \, /∈) are all the maximal poly-
nomial fragments of MST and MST(∪,∩,∈) and MST(\,∈) are all the minimal
NP-complete fragments of MST.

Before compiling the table listing the complete complexity taxonomy of MST
we analyze one last fragment of the theory, that can be viewed either as a
restriction over MST(∪,∩,∈) or an extension of MST(∪,∈).

4.3 The fragment MST(∪,∩R,∈), decidable in linear

time

In Section 4.1.1 we proved that the fragment MST(∪,∩,∈) is NP-complete; now
we shall prove that if we forbid the set intersection operator ‘ ∩ ’ to occur in
the left-hand sides of membership conjuncts, the resulting fragment, denoted
MST(∪,∩R,∈), admits a linear-time satisfiability test.

Definition 4.7. The fragment MST(∪,∩R,∈) is the collection of all the conjunc-
tions of literals of type

t1 ∈ t2,

where t1 is a term that comprises only set variables and the set operator ‘ ∪ ’
while t2 is a term comprising set variables and both the set operators ‘ ∪ ’ and
‘ ∩ ’.
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Towards this direction, a preliminary immediate result is a consequence of the
following straightforward equivalence

|= s ∈ s1 ∩ · · · ∩ sk ←→ s ∈ s1 ∧ · · · ∧ s ∈ sk (4.14)

that holds for any set terms s, s1, . . . , sk. In the specific case in which all of
s, s1, . . . , sk are ∪-terms, the equivalence (4.14) allows one to rewrite the literal
s ∈ s1 ∩ · · · ∩ sk as the MST(∪,∈)-formula s ∈ s1 ∧ · · · ∧ s ∈ sk. Thus, by
repeatedly applying the equivalence (4.14), a conjunction φ of the form

φ =

p⋀︂
i=1

si ∈ ∩Ui, (4.15)

where the si’s are ∪-terms and the Ui’s are finite nonempty collections of ∪-
terms, can be rewritten as the equivalent MST(∪,∈)-formula

φ′ :=

p⋀︂
i=1

⋀︂
t∈Ui

si ∈ t .

By recalling that the satisfiability problem for MST(∪,∈) can be solved in linear
time by the decision test reported in Algorithm 11 (see also Lemma 4.7), and
by observing that |φ′| = O(|φ|2), we conclude that the rewriting approach just
described provides us with a quadratic decision procedure for the sub-collection
MST′(∪,∩R,∈) of MST(∪,∩R,∈) consisting of all conjunctions φ of the form
φ =

⋀︁p
i=1 si ∈ ∩Ui, where the si’s are ∪-terms and the Ui’s are finite nonempty

collections of ∪-terms.

To further cement the relationship between this fragment and MST(∪,∈), we
provide the following example of an unsatisfiable conjunction.

Example 4.5. The MST(∪,∩R,∈)-formula

x0 ∪ x1 ∈ (x2 ∪ x3) ∩ (x4 ∪ x5) ∧ x2 ∪ x3 ∈ x0 ∪ x2,

is unsatisfiable.

Since the first conjunct can be rewritten as x0∪x1 ∈ x2∪x3 ∧ x0∪x1 ∈ x4∪x5, the
above conjunction can be reduced to the unsatisfiable MST(∪,∈)-conjunction
discussed in Example 4.1.

In the rest of this section, we shall provide a linear satisfiability test forMST(∪,∩R,∈).

Given a nonempty MST(∪,∩R,∈)-formula φ, we let Lφ denote the collection
of the left-variables of φ, namely the variables occurring in the left-hand side
s of any membership conjunct s ∈ t in φ. Analogously, we let Rφ denote the
collection of the right-variables of φ. More precisely, we put:

Lφ :=
⋃︂

s∈t in φ

Vars(s) and Rφ :=
⋃︂

s∈t in φ

Vars(t).
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Plainly, Vars(φ) = Lφ ∪Rφ.

Then a necessary condition for the satisfiability of any MST(∪,∩R,∈)-formula
φ is that φ must have at least one pure right-variable, namely a right-variable
that is not a left-variable:

Lemma 4.20. Every nonempty satisfiable MST(∪,∩R,∈)-formula φ has a pure
right-variable, namely Rφ \ Lφ ̸= ∅.

Proof. Let M be a model for φ, and let x ∈ Vars(φ) be such that rk (Mx) =
max{rk (Mx) |x ∈ Vars(φ)}. We claim that x is a pure right-variable. By way
of contradiction, assume that x is a left-variable, and let s ∈ t be any conjunct
in φ such that x occurs in s. Then,

rk (Mx) ⩽ rk (Ms) < rk (Mt) = max{rk (Mx) | x ∈ Vars(t)} ⩽ rk (Mx) ,

a contradiction. Thus, x is a pure right-variable.

Next, we describe a simplification procedure that, given an MST(∪,∩R,∈)-
formula φ with some pure right-variables and any variable x ∈ Rφ \ Lφ, pro-
duces a shorter MST(∪,∩R,∈)-formula φx, equisatisfiable with φ, such that
Vars(φx) ⊆ Vars(φ)\{x} holds. By repeatedly applying such simplification pro-
cedure till possible, one generates in a linear number of steps an MST(∪,∩R,∈)-
formula φ of a special form which is equisatisfiable with the initial conjunction
φ. Specifically, two cases are possible for φ: either φ is just the empty con-
junction, in which case φ is vacuously satisfiable1 (and so φ can be declared
satisfiable), or φ has no pure right-variable, namely Rφ ⊆ Lφ, in which case,
by Lemma 4.20, φ is unsatisfiable (and therefore φ can accordingly be declared
unsatisfiable). We shall also argue that the satisfiability test for MST(∪,∩R,∈)
just outlined admits an efficient linear-time implementation.

We shall make use of the following simple monotonicity property for set-assignments,
in connection with {∪,∩}-terms. Specifically, given a collection V of set vari-
ables and two set assignments M1 and M2 over V , we write “M1 ⊆V M2” to
mean that

M1x ⊆M2x, for every x ∈ V. (4.16)

As expected, the monotonicity property (4.16) extends to all {∪,∩}-terms over
V , as proved in the next lemma.

Lemma 4.21 (Monotonicity). Let M1 and M2 be set assignments over a given
collection V of set variables such that M1 ⊆V M2, and let t be any {∪,∩}-term
over V . Then M1t ⊆M2t.

Proof. We proceed by structural induction on t. The base case in which t is
just a variable is checked out by the very definition of M1 ⊆V M2.

Next, if t = t′ ∪ t′′, for some {∪,∩}-terms t′ and t′′ over V , we have

M1t =M1(t
′ ∪ t′′) =M1t

′ ∪M1t
′′ ⊆M2t

′ ∪M2t
′′ =M2(t

′ ∪ t′′) =M2t,

1We recall that the empty conjunction is satisfied by every set assignment.
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as by inductive hypothesis M1t
′ ⊆M2t

′ and M1t
′′ ⊆M2t

′′.

Analogously, if t = t′ ∩ t′′, for some {∪,∩}-terms t′ and t′′ over V , then

M1t =M1(t
′ ∩ t′′) =M1t

′ ∩M1t
′′ ⊆M2t

′ ∩M2t
′′ =M2(t

′ ∩ t′′) =M2t,

since, as before, by inductive hypothesis M1t
′ ⊆M2t

′ and M1t
′′ ⊆M2t

′′.

Corollary 4.22. Let M be a set assignment over a given collection V of set
variables, and let S be any set such that Mx ⊆ S, for every x ∈ V . Then,
Mt ⊆ S, for every {∪,∩}-term t over V .

Proof. Let MS be the S-constant set assignment over V , namely the one such
that MSx = S, for each x ∈ V . Plainly, we have M ⊆V MS. Hence, the claim
follows at once from Lemma 4.21.

Let φ be a (nonempty) satisfiable MST(∪,∩R,∈)-formula. By Lemma 4.20, φ
has some pure right-variable x. LetM be any set assignment over Vars(φ) such
that M |= φ, and let DM :=

⋃︁
x∈Vars(φ)Mx be its ‘active domain’. Consider the

x-variant M of M defined by

Mx :=

{︄
Mx if x ∈ Vars(φ) \ {x} ,
DM if x = x.

By Corollary 4.22, Mt ⊆ DM = Mx, for every {∪,∩}-term t over Vars(φ). In
addition, for every literal s ∈ t in φ, we have:

- Ms =Ms (since x /∈ Vars(s)),

- Mt ⊆Mt (by Lemma 4.21, since M ⊆Vars(φ) M).

Hence, Ms = Ms ∈ Mt ⊆ Mt, so that M |= s ∈ t, and therefore M |= φ, in
view of the arbitrariness of the conjunct s ∈ t in φ.

Each subterm in φ of the form x ∪ t or t ∪ x, for some term t, can be replaced
by the variable x without disrupting the satisfiability by M , since

M(x ∪ t) =M(t ∪ x) =Mx ∪Mt =Mx

(∪-absorption rule w.r.t. x).

Dually, each subterm in φ of the form x ∩ t or t ∩ x, for some term t, can be
replaced by the term t without disrupting the satisfiability by M , since

M(x ∩ t) =M(t ∩ x) =Mx ∩Mt =Mt

(∩-absorption rule w.r.t. x).

By repeatedly applying the ∪- and ∩-absorption rules to φ, in any order and
until possible, one ends up with an MST(∪,∩R,∈)-formula φ′ that is satisfied
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by M and whose conjuncts have one of the forms

s ∈ t and s ∈ x,

where s and t are terms over Vars(φ) \ {x}.

Next, all literals of the form s ∈ x are dropped from φ′ (dropping rule w.r.t. x).
We refer to the resulting (possibly empty) MST(∪,∩R,∈)-formula, denoted φx,
as the x-reduction of φ2. Trivially, the inclusion Vars(φx) ⊆ Vars(φ) \ {x}
holds.

Summing up, we have:

(A) the x-reduction φx of a satisfiable MST(∪,∩R,∈)-formula φ with respect
to any x ∈ Rφ \ Lφ is also satisfiable, and

(B) Vars(φx) ⊊ Vars(φ) (and |φx| < |φ|).

The converse property holds too, namely for every MST(∪,∩R,∈)-formula φ
such that Rφ \ Lφ ̸= ∅ and every variable x ∈ Rφ \ Lφ, if the x-reduction φx of
φ is satisfiable, so is φ.

In order to prove it, it is enough to show that the above property holds after
each single application of any ∪- and ∩-absorption rule and each single removal
of any literal of the form s ∈ x, which we do next.

Let then φ be an MST(∪,∩R,∈)-formula and let x ∈ Rφ \ Lφ. Also let φ∪ be
the conjunction resulting from replacing, in φ, a subterm t of the form x ∪ u
or u ∪ x (for some term u) by the set variable x. Thus, φ = φz{z ↦→ t} and
φ∪ = φz{z ↦→ x} for a suitable MST(∪,∩R,∈)-formula φz, where z is any set
variable not occurring in φ, {z ↦→ t} is the substitution mapping the variable z
to the term t, and {z ↦→ x} is the substitution mapping the variable z to the
variable x. Notice that φz contains just a single occurrence of the variable z and
this is placed within a term in the right-hand side of some of its membership
literals, so that z ∈ Rφz \ Lφz .

We claim that if φ∪ is satisfiable, so is φ. Indeed, let M∪ be any set assignment
over Vars(φ) ∪ {z} such that M∪ |= φ∪ , and let M z

∪ and M z,u
∪ be its z-variants

defined by

M z
∪x :=

{︄
M∪x if x ∈ Vars(φ) ,

M∪x if x = z

and

M z,u
∪ x :=

{︄
M∪x if x ∈ Vars(φ) ,

M∪x ∪M∪u if x = z.

2In fact, it can be shown that the ∪- and ∩-absorption rules form a confluent system and
therefore the x-reduction of φ does not depend on the order in which such rules are applied
to φ.
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Plainly, M z
∪ |= φz. Since M z

∪ ⊆Vars(φ)∪{z} M
z,u
∪ , then Lemma 4.21 yields M z

∪t ⊆
M z,u

∪ t, for every {∪,∩}-term t over Vars(φ)∪{z}. In addition, we plainly have
M z

∪s =M z,u
∪ s, for every ∪-term s over Vars(φ). Thus, M z,u

∪ |= φz, since

M z,u
∪ s =M z

∪s ∈M
z
∪t ⊆M z,u

∪ t,

for every literal s ∈ t in φz. But then M z,u
∪ |= φ, since

M z,u
∪ z =M∪x ∪M∪u =M z,u

∪ x ∪M z,u
∪ u =M z,u

∪ t,

proving that φ is satisfiable.

Analogously, letting φ∩ be the conjunction resulting from replacing in φ a sub-
term t of the form x∩ u or u∩ x (for some term u) by the set term u, it can be
proved that if φ∩ is satisfiable, so is φ.

Finally, let φ− be the conjunction resulting after dropping from φ any literal
of the form s ∈ x. We claim that if φ− is satisfiable, so is φ. Indeed, let M−

be any set assignment over Vars(φ) satisfying φ−, and let M+ be its x-variant
defined by

M+x :=

{︄
Mx if x ∈ Vars(φ) \ {x} ,
Mx ∪Ms if x = x.

(4.17)

Since Vars(s) ⊆ Vars(φ) \ {x}, we plainly have

M+s =Ms ∈Mx ⊆M+x,

proving thatM+ models correctly the literal s ∈ x. In addition, sinceM− ⊆Vars(φ)

M+ and x /∈ Vars(s′), for every conjunct s′ ∈ t′ in φ−, Lemma 4.21 yields

M+s′ =M−s′ ∈M−t′ ⊆M+t′,

and therefore, from the arbitrariness of s′ ∈ t′ it follows that M+ |= φ−∧ s ∈ x,
i.e., M+ |= φ.

Having thus proved that an MST(∪,∩R,∈)-formula φ is satisfiable if so is the
result of either applying to it any ∪- or ∩-absorption rule w.r.t. to any variable
x ∈ Rφ \ Lφ, or by dropping from it any literal of the form s ∈ x, by a simple
inductive argument we get that φ is satisfiable if so is its x-reduction φx.

We hence conclude:

(C) if the x-reduction φx of φ w.r.t. to a variable x ∈ Rφ \ Lφ is satisfiable,
so is the conjunction φ.

Together with the previously proved assertions (A) and (B), assertion (C) yields
the following result:

Lemma 4.23. Let φ be an MST(∪,∩R,∈)-formula and x be any pure right-
variable occurring in φ. Then φ and its x-reduction φx are equisatisfiable. In
addition, Vars(φx) ⊆ Vars(φ) \ {x} (and |φx| < |φ|).
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As argued above, Lemmas 4.20 and 4.21 allow us to conclude that the satisfia-
bility test for MST(∪,∩R,∈) in Algorithm 13 below is correct.

Algorithm 13 Satisfiability test for MST(∪,∩R,∈)-formula

Require: An MST(∪,∩R,∈)-formula φ.
Ensure: Is φ satisfiable?
1: while φ is nonempty do
2: if Rφ \ Lφ = ∅ then return unsatisfiable;
3: let x ∈ Rφ \ Lφ;
4: φ← φx;
5: return satisfiable

Algorithm 13 can easily be implemented to run in time O(|φ|2). However, in
the next section we shall present a more careful implementation that runs in
linear time.

4.3.1 A linear-time implementation of Algorithm 13

For any MST(∪,∩R,∈)-formula φ, Algorithm 14 below will perform on φ a se-
quence of satisfiability-preserving ∪- and ∩-absorption rules till either the cur-
rent simplified conjunction, which is maintained only implicitly by Algorithm 14
and is denoted φc in this explanation, is either the empty conjunction or contains
no pure right-variable.

To efficiently apply such rules, Algorithm 14 makes use of the following variables
and data structures:

- a variable V, containing at each step of the computation the collection
of the set variables occurring in the current conjunction φc, initialized to
Vars(φ) at line 1;

- a variable pureRightOcc, containing at each step the collection of the pure
right-variables in the current conjunction φc, initialized at lines 13–16;

- an arrayMembCount of counters (indexed by the set variables in Vars(φ)),
intended to count for each x ∈ Vars(φ) the distinct occurrences of the set
variable x within the left-hand terms of the literals in φc; such counters
are initialized at line 3 of the for-loop 2–4 and in the for-loop 9–10, while
the literals of φ are scanned in the outer for-loop 5–12;

- an array RightOccSet of sets of pointers (indexed by the set variables in
Vars(φ)), intended to group for each x ∈ Vars(φ) all the occurrences of
the set variable x within the right-hand terms of the literals in φc (via
pointers); such sets are initialized at line 4 of the for-loop 2–4 and in the
for-loop 6–8, while the literals of φ are scanned in the outer for-loop 5–12.

During the computation, the current simplified conjunction φc is internally
maintained by Algorithm 14 as the implicit collection of the syntax trees of
the right-hand terms of the literals in φc, which can be accessed only through
the pointers to their variables contained in the set RightOccSet[x], for each
x ∈ Vars(φc). In addition, for each literal s ∈ t in the current conjunction
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φc, the set Vars(s) (and, indirectly, the term s) is assigned to the attribute
MembTerm of the syntax tree root of t. Such attributes are properly initial-
ized at lines 11–12, within the for-loop 5–12, while the literals of the input
conjunction φ are scanned.

Notice that the initialization phase (at lines 1–16 of Algorithm 14) takes linear
time in |φ|, as can easily be checked.

The outer while-loop at lines 17–41 of Algorithm 14 is the core of the satisfia-
bility test for the theory MST(∪,∩R,∈). It performs a sequence of applications
of the ∪-absorption rule (lines 31–37), of the ∩-absorption rule (lines 38–40),
and of dropping rule (lines 22–30) till the current conjunction φc either reduces
to the empty conjunction, namely when V = ∅ holds (in which case the initial
conjunction φ is declared satisfiable at line 42), or has no pure right-variables
despite being nonempty, namely when V ̸= ∅ and pureRightOcc = ∅ hold (in
which case φ is declared unsatisfiable at line 19).

Specifically, for each pure right-variable x in the current conjunction φc (line
20), and while there are occurrences ν of x in the (implicit) syntax tree of φc
(line 21), one of the following three possibilities must hold:

- The occurrence x is the right-hand term of a literal in φc of the form
s ∈ x: in this case, ν is the root of the right-hand term of s ∈ x and
ν.MembTerm = Vars(s). Then, the literal s ∈ x is implicitly dropped
from φc by executing the instructions at lines 23–30, which are intended
to remove consistently the left-hand term s and the occurrence ν of x from
the algorithm’s data structures.

- The occurrence ν of x in φc lies within a ∪-term of the form t ∪ x or
x ∪ t, namely the father µ of ν has label ‘∪’ (cf. line 31): in this case the
occurrence t ∪ x or x ∪ t in question is replaced by the occurrence ν of x
(lines 32–37).

- The occurrence ν of x in φc lies within a ∩-term of the form t ∩ x or
x ∩ t, namely the father µ of ν has label ‘∩’ (cf. line 38): in this case the
occurrence t ∩ x or x ∩ t in question is replaced by that of the subterm t,
i.e., the sibling of ν (lines 39–40).

It is an easy matter to check that, during the execution of the outer while-
loop at lines 17–41, the syntax tree of the input conjunction φ (implemented
as a parent pointer tree) is read just once. In addition, all the sets present
in Algorithm 14 (namely V, pureRightOcc, RightOccSet[x], for x ∈ Vars(φ),
and the attributes MembTerm of the roots of the right-hand terms) can just be
implemented as doubly-linked lists, so that each insertion, deletion, and access
(through pointers) to their elements can be performed in constant time. Hence,
the outer while-loop at lines 17–41 takes linear time in |φ|, as made clear in the
below Remark 4.24, just as the initialization phase at lines 1–16, resulting in an
overall linear time complexity of Algorithm 14.

Remark 4.24. It is immaterial, for the assessment of the algorithmic complexity
results which we will present, whether one measures the input formula as the
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length of the string of symbols representing it in the concrete syntax, or as the
size of the labeled tree representing it in the abstract syntax. As a matter of fact,
the decidable fragments which we will consider consist of formulae belonging to
a language specifiable through a simple operator-precedence grammar. In view of
the simplicity of that language, the translation of formulae from their external
syntax to their internal syntax (e.g. by means of Edsger Dijkstra’s shunting
yard algorithm) and the converse translation can both be carried out in linear
time.

4.4 A complete complexity taxonomy of MST

We have identified the maximal polynomial and the minimal NP-complete sub-
languages of the fragment MST of set theory, having in mind applications in
automated proof checking with verifiers rooted in the set-theoretic formalism.
On the basis of the reported results, summarized in Table 4.2, one easily pin-
points the 14 polynomial fragments (of which 2 are quadratic, 4 are linear, and
8 are constant) and the 10 NP-complete fragments among the 24 sub-languages
of MST.

∪ ∩ \ ∈ /∈ Complexity

⋆ ⋆ ⋆ O(n)
⋆ ⋆ O(n)

⋆ ⋆ O(n)
⋆ O(n)

⋆ ⋆ ⋆ O(n2)
⋆ ⋆ O(n2)

⋆ ⋆ ⋆ ⋆ constant
⋆ ⋆ ⋆ constant
⋆ ⋆ ⋆ constant

⋆ ⋆ ⋆ constant
⋆ ⋆ constant

⋆ ⋆ constant
⋆ ⋆ constant

⋆ constant

∪ ∩ \ ∈ /∈ Complexity

⋆ ⋆ NP-complete
⋆ ⋆ ⋆ NP-complete

⋆ ⋆ ⋆ NP-complete
⋆ ⋆ ⋆ ⋆ NP-complete

⋆ ⋆ ⋆ NP-complete
⋆ ⋆ ⋆ ⋆ NP-complete

⋆ ⋆ ⋆ ⋆ NP-complete
⋆ ⋆ ⋆ ⋆ ⋆ NP-complete
⋆ ⋆ ⋆ NP-complete
⋆ ⋆ ⋆ ⋆ NP-complete

Table 4.2: Complete taxonomy of MST, maximal polynomial
and minimal NP-complete fragments are in black
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Algorithm 14 Linear-time implementation of a satisfiability test for
MST(∪,∩R,∈)-formulae

Require: An MST(∪,∩R,∈)-formula φ.
Ensure: Is φ satisfiable?
1: V← Vars(φ);
2: for each variable x in V do
3: MembCount[x]← 0;
4: RightOccSet[x]← ∅;
5: for each conjunct s ∈ t in φ do
6: for each leaf λ in the syntax tree of the term t do
7: let z be the variable labeling λ;
8: insert λ into the set RightOccSet[z];
9: for each set variable x in the term s do
10: MembCount[x]← MembCount[x] + 1;
11: let ρt be the root of the syntax tree of the term t;
12: assign the set Vars(s) to ρt.MembTerm, namely to ρt’s attribute

MembTerm;
13: pureRightOcc← ∅;
14: for each variable x in V do
15: if MembCount[x] = 0 then
16: insert x into the set pureRightOcc;

17: while V ̸= ∅ do
18: if pureRightOcc = ∅ then
19: return unsatisfiable;
20: for each variable x in pureRightOcc do
21: while there is some node ν in the set RightOccSet[x] do
22: if ν is a root then
23: for each variable y in ν.MembTerm do
24: MembCount[y]← MembCount[y]− 1;
25: if MembCount[y] = 0 then
26: if RightOccSet[y] ̸= ∅ then
27: insert y into the set pureRightOcc;
28: else
29: remove y from V;
30: remove ν from the set RightOccSet[x];
31: else if the father µ of ν has label ‘∪’ then
32: for each leaf λ in the subtree rooted at the sibling of ν do
33: let z be the variable labeling λ;
34: remove λ from the set RightOccSet[z];
35: if RightOccSet[z] = ∅ and MembCount[z] = 0 then
36: remove z from V;
37: replace µ by ν (if µ was a root, ν inherits its MembTerm

attribute);
38: else if the father µ of ν has label ‘∩’ then
39: remove ν from the set RightOccSet[x];
40: replace µ by the sibling ν ′ of ν (if µ was a root, ν ′ inherits

the MembTerm attribute of µ);
41: remove x from the sets pureRightOcc and V;
42: return satisfiable;
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Chapter 5

The complete taxonomy of
Multi-Level Syllogistic

The ultimate goal of our analysis of the two taxonomies of BST and MST is to
lay strong foundations to a complete taxonomy of their mother theory Multi-
Level Syllogistic, MLS.

Following the same approach as before, we forgo to study the thousands of pos-
sible fragments comprising both equality ‘ = ’, and membership ‘ ∈ ’ symbols,
and instead focus to find the minimal NP-complete and maximal polynomial
fragments of the language. By their very nature, minimal NP-complete frag-
ments of MST or BST will still be minimal NP-complete fragments inside MLS,
and, as we will see, so far our investigation lacks just one minimal NP-complete
fragment of MLS. However the same can not be said for maximal polynomial
fragments, by extending the language, it is possible, and in fact it is, to extend
those fragments with symbols that where not available in the previous language
and still obtain a polynomial fragment.

At the end of this chapter we will have filled the gaps between the two tax-
onomies of BST and MST and obtained the taxonomy of the more comprehen-
sive MLS.

First we will present the last minimal NP-complete, then we extend the maximal
polynomial fragment presented so far, merging together the results for BST and
MST, obtaining a complete complexity taxonomy of MLS.

The syntax and semantics of MLS have already been presented in Section 1.1,
and will not be repeated here. In the same fashion of the tables presented for
MST and BST, we will assemble a table to store the minimal NP-complete and
maximal polynomial fragments of MLS that represent the whole taxonomy of
the language.

∪ ∩ \ =∅ ̸=∅ Disj ¬Disj ⊆ ⊈ = ̸= ∈ /∈ Complexity

Table 5.1: Early look at the table of containing the MLS
taxonomy
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5.1 The NP-complete fragment MLS(∪,Disj,∈)
Definition 5.1. The fragment MLS(∪,Disj,∈) is the collection of all the conjunc-
tions of literals of the following two types

t1 ∈ t2, Disj (t1, t2) ,

where t1 and t2 are terms involving only the set operator ‘∪ ’ and set variables.

As before we shall prove that it is possible to reduce the satisfiability problem
3SAT into of the satisfiability for MLS(∪,Disj,∈), proving so the NP-complete
the latter problem.

Let F be a generic instance of 3SAT, and let x,X1, X1, . . . , Xn, Xn be 2n + 1
distinct set variables.

For all i ∈ {1, . . . ,m}, j ∈ {1, 2, 3}, and k ∈ {1, . . . , n}, put

Tij :=

{︄
Xk if Lij = Pk for some k

Xk if Lij = ¬Pk for some k,

then put

ΦF :=
m⋀︂
i=1

(x ∈ Ti1 ∪ Ti2 ∪ Ti3) ∧
n⋀︂
k=1

(︁
x ∈ Xk ∪Xk ∧ Disj

(︁
Xk, Xk

)︁)︁
.

Lemma 5.1. A 3SAT instance F is propositionally satisfiable if and only if the
corresponding MLS(∪,Disj,∈)-formula ΦF is satisfiable.

Proof. (Sufficiency). Let M be a set assignment that satisfies ΦF . Then for
each k ∈ {1, . . . , n} we have that:

Mx ∈MXk ∪MXk ∧ Disj
(︁
MXk,MXk

)︁
.

Thus, either we have Mx ∈MXk ∧Mx /∈MXk or Mx /∈MXk ∧Mx ∈MXk.

We can define the following propositional valuation v:

v(Pk) :=

{︄
true if Mx ∈MXk

false if Mx /∈MXk.

To prove that v satisfies F , it is enough to prove that for each i ∈ {1, . . . ,m}
there exists a j ∈ {1, 2, 3} such that v(Lij) = true.

For each i ∈ {1, . . . ,m} we have Mx ∈ MTi1 ∪MTi2 ∪MTi3. Therefore, there
must exists a j ∈ {1, 2, 3} such that Mx ∈ MTij. If Tij = Xk for some k, so
that Lij = Pk, then Mx ∈ MXk and therefore v(Lij) = true. Otherwise, if
Tij = Xk, so that Lij = ¬Pk, then Mx ∈ MXk and therefore Mx /∈ MXk.
Hence v(Pk) = false and so v(Lij) = true, concluding the sufficient part of our
proof.
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(Necessity). Let v be a propositional valuation that satisfies F and let s be any
sets. Define the following set assignment:

Mx := s, MXk :=

{︄
{s} if v(Pk) = true

∅ otherwise,
MXk = {s}\MXk for k = 1, . . . , n.

Plainly, by the very definition ofM ,Mx ∈MXk∪MXk and Disj
(︁
MXk,MXk

)︁
hold for all k ∈ {1, . . . , n}.

It remains to prove that for all i ∈ {1, . . . ,m}, Mx ∈ MT1j ∪MTi2 ∪MTi3,
that is there exists a j ∈ {1, 2, 3} such that Mx ∈MTij. For all i ∈ {1, . . . ,m}
there exists a j ∈ {1, 2, 3} such that v(Lij) = true. If Lij = Pk for some k,
then Tij = Xk and MXk = {s} so that Mx ∈ MTij. If otherwise Lij = ¬Pk
then, Tij = Xk, and v(Pk) = false. Hence MXk = ∅ and MXk = {s} thus
Mx ∈MTij, proving that M |= ΦF and in turn concluding the proof.

The formula ΦF can be easily built in O(|F |)-time. Thus Lemma 5.1 readily
yields:

Lemma 5.2. The satisfiability problem for MLS(∪,Disj,∈) belongs to the class
of NP-complete problems.

5.2 Maximal polynomial fragments of MLS

The maximal polynomial fragments of BST are those fragments that only admit
NP-complete super theories inside BST, or in other words all the polynomial
super theories of those fragments must contain symbols outside BST. Following
this reasoning to find the maximal polynomial fragments of MLS it is enough to
take the maximal polynomial fragments of BST and add to them ‘ ∈ ’ or ‘ /∈ ’.
Of course we could take maximal MST fragments and add to them the symbols
that MST lacks, but in such study we would consider adding more symbols than
just ‘ ∈ ’ and ‘ /∈ ’.

Moreover all the existential expressibility result for a given fragment are also
true for all its super-languages, and although the same is not true also for
O(f)-expressibility results, for what concern us we can also extend the O(f)-
expressibility of the atom x = ∅ to all the extension inside MLS of both
BST(∪,=, ̸=) and BST(∩,=, ̸=). Summing up we just need to study the frag-
ments MLS(∪,=, ̸=,∈, /∈), MLS(∩,=, ̸=,∈, /∈), and BST(∪,Disj,¬Disj, ̸=, /∈).1

5.2.1 The theory BST ∪ {‘ /∈ ’}
The theory BST ∪ {‘ /∈ ’}, is obtained by adding the symbol ‘ /∈ ’ to BST or
alternatively is the collection of all the conjunctions of literals ℓ that are either
a BST-literal or a literal of type s /∈ t where s and t are both terms involving
only set variables and the set operators symbols ‘ \ ’, ‘ ∪ ’, and ‘ ∩ ’.

1‘ ∈ ’ must be taken out since MLS(∪,Disj,∈) was already proven NP-complete in Sec-
tion 5.1
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In order to prove that the atom x ∈ y is not existentially expressible in BST, in
Chapter 2 we proved Lemma 2.11 that states that any satisfiable BST-formula
admits a ρ-flat model. As a direct consequence of that lemma we have:

Corollary 5.3. Any BST ∪ {‘ /∈ ’}-formula φ is satisfiable if and only if its
BST-component φ−, that is the conjunction of all its BST-literals, is satisfiable.

Proof. The necessity part of the corollary is trivial. Concerning the sufficient
part assume φ− is satisfiable. Then by Lemma 2.11 it has a ρ-flat model M ,
that is a set assignment such that s ∈ Mv −→ rk (s) = ρ for all v ∈ Vars(φ−).
Notice that extending M to all the variables x ∈ Vars(φ) \Vars(φ−) by setting
Mx = ∅ for all x ∈ Vars(φ) \Vars(φ−), M remains a ρ-flat assignment. It is a
simple matter to prove by structural induction that, for each term t of φ, Mt
is either empty or as rank ρ+1 and contains sets of rank ρ only. Then for each
literal of type s /∈ t we have that rk (s) ∈ {0, ρ + 1} and either Mt = ∅ or Mt
has only set of rank ρ meaning that Ms /∈Mt, therefore M |= φ.

The above corollary states that when checking the satisfiability of any BST
∪ {‘ /∈ ’}-formula, we can forgo all the literals of type s /∈ t and solve the
satisfiability problem just for its BST-component. In particular any formula of
MLS(∪,=∅, ̸=∅,Disj,Disj,¬Disj,⊈, ̸=, /∈) is satisfiable if and only if its BST(∪,=∅, ̸=∅,Disj,Disj,¬Disj,⊈, ̸=)
component is satisfiable. Since the satisfiability problem for BST(∪,=∅, ̸=∅,Disj,Disj,¬Disj,⊈, ̸=)
can be solved in cubic time, we have:

Lemma 5.4. The satisfiability problem forMLS(∪,=∅, ̸=∅,Disj,Disj,¬Disj,⊈, ̸=, /∈)
can be solved in cubic time.

By the very same reasoning we also have that

Lemma 5.5. The satisfiability problem for both MLS(∪,∩, \,=∅,Disj,⊆,=, /∈)
and MLS(∪,∩, ̸=∅,¬Disj,⊆,=, /∈) can be solved in constant time.

5.3 The fragment MLS(∪,=, ̸=,∈, /∈)
Definition 5.2. The fragment MLS(∪,=, ̸=,∈, /∈) is the collection of all the con-
junctions of literals of the following types

∪L ∈ ∪R, ∪L /∈ ∪R, ∪L =∪R, ∪L ̸=∪R,
where L, and R are nonempty collections of set variables.

As before, for every given MLS(∪,=, ̸=,∈, /∈)-formula φ, it is convenient to
define the collections

Φ=

φ
:= {{L,R} | ∪ L =∪R is in φ},

Φ∈
φ
:= {⟨L , R ⟩ | ∪ L ∈ ∪R is in φ},

Φ̸=
φ
:= {{L,R} | ∪ L ̸=∪R is in φ},

Φ/∈
φ
:= {⟨L , R ⟩ | ∪ L /∈ ∪R is in φ},
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where the {L,R}’s and ⟨L , R ⟩’s are respectively unordered and ordered pairs
of collections of nonempty set variables.

To prove that the satisfiability problem for MLS(∪,=, ̸=,∈, /∈) is solvable in
polynomial time, we present a polynomial-time reduction to the satisfiability
problem for MLS(∪,=, ̸=, /∈), which is equivalent to the satisfiability problem
of BST(∪,=, ̸=) by Corollary 5.3.

Starting from Φ=
φ , we define the equivalence relation ∼φ in the same fashion

as in Definition 3.9 and the ∼φ-closure V of a given collection of set variables
V ⊆ Vars(φ), as V := ∪{W | W ∼φ V }. plainly all the properties of the
relation ∼φ and the closure operator · seen in Section 3.2.1 still holds.

For each collection of set variables L such that ⟨L , R ⟩ ∈ Φ∈
φ define the collection

NL as
NL := {x | (∃ ⟨U , V ⟩ ∈ Φ/∈

φ) x ∈ V ∧ L = U}. (5.1)

Retracing the proof we used to prove that the satisfiability problem forMST(∪,∈)
can be solved in linear-time, we can define the collection of non-left set variables
similarly to the definition of pure right variable of Section 4.2.2.

Definition 5.3. Given an MLS(∪,=, ̸=,∈, /∈)-formula φ, we say that a set vari-
able x ∈ Vars(φ) is non-left if

x /∈ L, for all ⟨L , R ⟩ ∈ Φ∈
φ.

Then we denote by A⟨L , R ⟩
φ , the largest collection of φ such that

(A1) all the variables inside A⟨L , R ⟩
φ are non-left;

(A2) A⟨L , R ⟩
φ ̸= ∅ −→ R ∩ A⟨L , R ⟩

φ ̸= ∅ and Disj
(︂
A⟨L , R ⟩
φ ,NL

)︂
hold;

(A3) (∀{U, V } ∈ Φ=
φ) U ∩ A

⟨L , R ⟩
φ ̸= ∅ ←→ V ∩ A⟨L , R ⟩

φ ̸= ∅.

Lemma 5.6. If an MLS(∪,=, ̸=,∈, /∈)-formula φ is satisfiable, then there exists

a pair
⟨︂
L̂ , R̂

⟩︂
such that A⟨ L̂ , R̂ ⟩φ is not empty.

Proof. Let M be a model for φ and let the pair
⟨︂
L̂ , R̂

⟩︂
∈ Φ∈

φ be such that

(∀ ⟨L , R ⟩ ∈ Φ∈
φ) rk (∪ML) ⩽ rk

(︂
∪ML̂

)︂
. (5.2)

Also let M := {x | ∪ML̂ ∈ Mx}. Notice that M is not empty since M |=
∪L̂ ∈ ∪R̂.
First assume that there exists a variable x ∈M that is not non-left. Then there
must exist a pair ⟨L′ , R′ ⟩ ∈ Φ∈

φ such that x ∈ L′. But then rk
(︂
∪ML̂

)︂
<

rk (Mx) ⩽ rk (∪ML′), contradicting (5.2), thus proving thatM satisfies (A1).

Concerning (A3), let {L,R} ∈ Φ=
φ and assumeM∩L ̸= ∅. Then there exists an

x ∈ L such that∪ML̂ ∈Mx ⊆ ∪ML. SinceM |= φ, we have∪ML =∪MR.
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Thus, there exists a variable y ∈ R such that ∪ML̂ ∈My so that R ∩M ̸= ∅.
By the generality of {L,R} in Φ=

φ and of L in {L,R}, we have thatM fulfills
(A3).

Finally, since∪ML̂ ∈ ∪MR̂, there exists R∩M ≠ ∅. By contradiction assume
that there exists a variable x ∈ NL∩M. Then there exists a pair ⟨U , V ⟩ ∈ Φ/∈

φ

such that x ∈ V and U = L̂.

Since M |= φ, then M also models its BST(∪,=, ̸=)-component. Thus, by
Lemma 3.15, if A ∼φ B then ∪MA =∪MB. Since M |= φ, then we also have
that ∪ML̂ = ∪MU /∈ ∪MV = ∪MV . Therefore ∪ML /∈ y for each y ∈ V .
But x ∈ V and ∪ML̂ ∈Mx, a contradiction. ThereforeM fulfills also (A2).

M satisfies all (A1), (A3), and (A2) hence is a subset of A⟨ L̂ , R̂ ⟩φ , proving that

A⟨ L̂ , R̂ ⟩φ is nonempty.

Let ⟨L , R ⟩ ∈ Φ∈
φ be such that A⟨L , R ⟩

φ is nonempty. We define φ− as the result
of deleting from φ the literal ∪L ∈ ∪R.
Theorem 5.7. Let φ be a MLS(∪,=, ̸=,∈, /∈)-formula. Then φ is satisfiable if

and only if there exists a pair
⟨︂
L̂ , R̂

⟩︂
∈ Φ∈

φ such that A⟨ L̂ , R̂ ⟩φ is nonempty

and φ− is satisfiable.

Proof. (Sufficiency). Let
⟨︂
L̂ , R̂

⟩︂
∈ Φ∈

φ such that A⟨ L̂ , R̂ ⟩φ is nonempty and let

φ− be satisfiable. Also let M0 be a model for φ. First we will provide another
model for φ− imbued with useful properties.

Let α be a rank large enough so that we can assign to each collection V ∈
P(Vars(φ)) a distinct nonempty set bV of rank α. For each v ∈ Vars(φ),
define

M̂v := {bV | v /∈ V } ∪ {∪M̂L | ∪M0L ∈M0x}.

We preliminarily prove that M̂ |= φ−.

First notice that ∅ ∈ P(Vars(φ)) and it is actually easy to prove that the
∼φ-closure of the ∅ is the emptyset itself. Thus, we have b∅ ∈ Mx, for all
x ∈ Vars(φ), so that rk (Mx) > α.

Let A,B ⊆ Vars(φ) and A ̸= B. Then ∪M̂A ̸= ∪M̂B. In fact, w.l.o.g., we
may assume that A ⊈ B. Then, by Lemma 3.14(f), A ⊈ B, and by definition
of ∼φ-closure B ⊆ B, bB ∈ ∪MA \ ∪MB.

Let {L,R} ∈ Φ̸=
φ− . Since M0 |= φ−, L ̸= R by Theorem 3.17. Thus ∪M̂L ̸=

∪M̂R.

Let ⟨L , R ⟩ ∈ Φ∈
φ− . Then there exists an x ∈ R such that ∪M0L ∈ M0x, so

that ∪M̂L ∈ M̂x ⊆ ∪M̂R.

Let {L,R} ∈ Φ=
φ− . We prove that ∪M̂L ⊆ ∪M̂R and analogously ∪M̂R ⊆

∪M̂L, so that ∪M̂L =∪M̂R.
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Let s ∈ ∪M̂L. Then either rk (s) = α or rk (s) > α. If rk (s) = α, then there
exists a V ⊆ Vars(φ) such that L ⊈ V . Thus, by Lemma 3.14 (c) and (f),

L = R ⊈ V and R ⊈ V , so that s = bV ∈ ∪M̂R. If rk (s) > α, then there

exists a V ∈ Vars(φ) such that s = ∪M̂V , and ∪M0V ∈ ∪M0L = ∪M0R
thus s =∪M̂V ∈ ∪M̂R.

Let ⟨L , R ⟩ ∈ Φ/∈
φ− , and assume by contradiction that ∪M̂L ∈ ∪M̂R. Then

there exists an x ∈ R such that∪M̂L ∈ M̂x, so that there exists a V ⊆ Vars(φ)
such that ∪M̂V = ∪M̂L and ∪M0V ∈ M0x. But then we have L = V , so
that ∪M0V = ∪M0L /∈ ∪M0R. Thus ∪M0V /∈ M0x, a contradiction, and
therefore ∪M̂L /∈ ∪M̂R.

We will now modify the set assignment M̂ in order to obtain a model M for φ.
For each x ∈ Vars(φ), let us put

Mx := M̂x ∪ {∪ML̂ | x ∈ A⟨ L̂ , R̂ ⟩φ }.

Let {L,R} ∈ Φ̸=
φ . Then following, the same reasoning used for M̂ , we have

∪ML ̸=∪MR.

Let ⟨L , R ⟩ ∈ Φ∈
φ. Notice that by (A1) we have Disj

(︂
L,A⟨L , R ⟩

φ

)︂
. Thus

∪ML = ∪M̂L. If ⟨L , R ⟩ ∈ φ−, then ∪M̂L ∈ ∪M̂R ⊆ ∪MR. Other-

wise if ⟨L , R ⟩ =
⟨︂
L̂ , R̂

⟩︂
then there exists an x ∈ R̂ ∩ A⟨ L̂ , R̂ ⟩φ and therefore

∪ML̂ ∈ ∪Mx ⊆ ∪MR̂.

Let {L,R} ∈ Φ=
φ . Then, by ∪M̂L =∪M̂R and (A3), ∪ML =∪MR.

Let ⟨L , R ⟩ ∈ Φ/∈
φ. By way of contradiction assume that ∪ML ∈ ∪MR. Then

there exists an x ∈ R such that ∪ML ∈ Mx. Either we have ∪ML ∈ M̂x

or we have x ∈ A⟨ L̂ , R̂ ⟩φ and ∪ML = ∪ML̂. In the first case ∪ML ∈ M̂x,
there exists a V ⊆ Vars(φ) such that ∪ML = ∪M̂V . If L ̸= V then the sets

∪M̂L and ∪M̂V would be differentiated by a set of rank α. Thus, also ∪ML
and ∪M̂V are differentiated by the same set of rank α. Notice that the rank
of ∪ML̂ is greater then α. Thus we have that L = V .

Recalling that M̂ |= φ−, then ∪M̂L = ∪M̂V , since L ∼φ V . Thus ∪M̂L ∈
M̂x ⊆ ∪M̂R, a contradiction.

In the case in which x ∈ A⟨ L̂ , R̂ ⟩φ and ∪ML = ∪ML̂, as before we have

L = L̂ and thus plainly x ∈ NL̂, contradicting (A2). Therefore we must have

∪ML /∈ ∪MR, completing the sufficient part of the theorem.

(Necessity). Let φ be satisfiable. Then, by Lemma 5.6, there exists a pair⟨︂
L̂ , R̂

⟩︂
∈ Φ∈

φ such that A⟨ L̂ , R̂ ⟩φ is nonempty. Then trivially φ− is satisfied by

any model of φ.

Remark 5.8. The necessity part of Theorem 5.7 can be strengthened. Trivially,
if a formula φ is satisfiable then so are also all of its sub-formulae, so that for
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all the pairs ⟨L , R ⟩ ∈ Φ∈
φ such that A⟨L , R ⟩

φ is nonempty we have that φ− is

satisfiable. Conversely if we found a single pair ⟨L , R ⟩ such that A⟨L , R ⟩
φ is

nonempty but φ− is unsatisfiable then the whole formula φ would be unsatisfi-
able.

5.3.1 A polynomial satisfiability test

The goal of our satisfiability test is that of trying to reduce, using Theorem 5.7,
any MLS(∪,=, ̸=,∈, /∈)-formula to an equisatisfiable MLS(∪,=, ̸=, /∈)-formula.
Then, in view of Corollary 5.3, we can simply check the satisfiability of the
BST(∪,=, ̸=)-component of the reduced formula. This strategy leads to the
fairly easy approach described below:

Algorithm 15 Strategy for MLS(∪,=, ̸=,∈, /∈) satisfiability
step 1 Find a pair ⟨L , R ⟩ ∈ Φ∈

φ such that A⟨L , R ⟩
φ ̸= ∅;

step 2 If no such pair is found, return false;
step 3 Remove ∪L ∈ ∪R from φ; if Φ∈

φ is not empty go to step 1;
step 4 Check for satisfiability of the BST(∪,=, ̸=) part of φ;

Algorithm 16 is an instance of the strategy illustrated in Algorithm 15. Al-
though much more implementation details can be added, we can use it to
obtain an upper bound to the time complexity for the satisfiability test of
MLS(∪,=, ̸=,∈, /∈).

Let n be the length of a given MLS(∪,=, ̸=,∈, /∈)-formula φ, m be the number
of literals of φ, and p = |Vars(φ)|. We will express our upper bound to the time
complexity of Algorithm 16 in terms of n, since plainly p,m ⩽ n.

Preliminarily, we observe that, by using Algorithm 9, in time O(n2) we can
generate the collections Φ∈

φ, Φ
/∈
φ, and Φ=

φ , an index of all the variables of φ, and
we can associate to all the collection of variables that appears in φ an array of
size p such that A[x] = 1 ⇐⇒ x ∈ A.

By representing any collection of set variables V as an array of size p, will can
perform each relevant operation involving collection of set variable in O(p)-time,
and each operation involving a set variable an a collection of set variables in
constant time.

The first phase of Algorithm 16 consists in computing the collection NL for
each pair ⟨L , R ⟩ ∈ Φ∈

φ (lines 1 to 5). Two nested for-loops are used, each
one iterated at most m-times. The initialization of each collection NL requires
O(p)-time, and computing the ∼φ-closure of any given collection requires O(n2)
time by using Algorithm 2. Thus, this phase takes at most O(n4) time.

Then the collection non-left of the non-left variables of φ is built. In par-
ticular, non-left[x] is the number of pairs ⟨L , R ⟩ ∈ Φ∈

φ such that x ∈ L.
Initializing non-left requires O(p)-time. To compute non-left[x] for each
x, we scan each variable y ∈ L for all pairs ⟨L , R ⟩ ∈ Φ∈

φ and increment
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Algorithm 16 Satisfiability test for MLS(∪,=, ̸=,∈, /∈)
Require: An MLS(∪,=, ̸=,∈, /∈)-formula φ
Ensure: is φ satisfiable
1: for each pair ⟨L , R ⟩ ∈ Φ∈

φ do
2: NL ←− ∅;
3: for each pair ⟨U , V ⟩ ∈ Φ/∈

φ do

4: if U = L then
5: NL ←− NL ∪ T ;
6: Let non-left be an array of size |Vars(φ)|;
7: Initialize non-left so that for each x ∈ Vars(φ) non-left[x] = 0;
8: for each pair ⟨L , R ⟩ ∈ Φ∈

φ do
9: for each x ∈ L do
10: non-left[x]←− non-left[x] + 1;
11: while Φ∈

φ ̸= ∅ do
12: m←− |Φ∈

φ|;
13: for each pair ⟨L , R ⟩ ∈ Φ∈

φ do

14: A⟨L , R ⟩
φ ←− ∅

15: for all x ∈ Vars(φ) do
16: if non-left[x] = 0 and x /∈ NL then

17: A⟨L , R ⟩
φ ←− A⟨L , R ⟩

φ ∪ {x};
18: while exists a pair {U, V } ∈ Φ=

φ such that Disj
(︂
U,A⟨L , R ⟩

φ

)︂
∧

¬Disj
(︂
V,A⟨L , R ⟩

φ

)︂
or Disj

(︂
V,A⟨L , R ⟩

φ

)︂
∧ ¬Disj

(︂
U,A⟨L , R ⟩

φ

)︂
do

19: A⟨L , R ⟩
φ ←− A⟨L , R ⟩

φ \ U ∪ V ;

20: if R and A⟨L , R ⟩
φ are not disjoint then

21: for each x ∈ L do
22: non-left[x]←− non-left[x]− 1;
23: remove ⟨L , R ⟩ from Φ∈

φ;
24: if m = |Φ∈

φ| then
25: return false;
26: remove each literal ∪L /∈ ∪R from φ;
27: return Satisfiability(φ);



110 Chapter 5. The complete taxonomy of Multi-Level Syllogistic

non-left[y] each time y is found. Hence the collection non-left can be built
in time O(mp).

The while-loop at lines 11-25 reduces the formula φ into an equisatisfiable
MLS(∪,=, ̸=, /∈) formula. At each iteration, if no pair of Φ∈

φ is discarded the
algorithm halts. Thus the while-loop can be iterated at most m times. Nested
inside this while-loop we find a for-loop that is iterated once for each pair of Φ∈

φ,
for a total of m times. During each of these m iterations, we initialize the col-
lection A⟨L , R ⟩

φ so that it contains all the non-left variables that are also not in

NL. This step requires O(mp)-time. Subsequently, we must ensure that A⟨L , R ⟩
φ

fulfills condition (A3). To do so, we look for a pair {U, V } ∈ Φ=
φ that does not

satisfy condition (A3) and remove all the variables of U ∪ V from A⟨L , R ⟩
φ , re-

peating until (A3) is fulfilled. Since A⟨L , R ⟩
φ does not get any new variable, once

a pair {U, V } is chosen during this cycle, it will never be chosen again. Thus
in order to fulfill (A3) we need to iterate this loop at most O(m2)-times, where
each iteration requires O(p) time. Thus, the while-loop at lines 11-25 can be
completed in O(n5) steps.

Finally, each literal of type ∪L /∈ ∪R can be removed in constant time, by
discarding Φ/∈

φ and then checking if the BST(∪,=, ̸=)-formula so obtained is
satisfiable. Using Algorithm 1, such a check can be performed in O(n3) time.

Lemma 5.9. The satisfiability problem for MLS(∪,=, ̸=,∈, /∈) can be solved in
O(n5) time.

5.4 The fragment MLS(∩,=, ̸=,∈, /∈)
Definition 5.4. The fragment MLS(∩,=, ̸=,∈, /∈) is the collection of all the con-
junctions of literals of the following types

∩L ∈ ∩R, ∩L /∈ ∩R, ∩L =∩R, ∩L ̸=∩R,
where L and R are nonempty collections of set variables.

The satisfiability problem for any MLS(∩,=, ̸=,∈, /∈)-formula φ is easily re-
ducible to the satisfiability of both BST(∩,=, ̸=) and MST(∩,∈, /∈) by exploit-
ing the properties of the ∼φ-equivalence and its associated closure operator.

First, we define the collection of pairs:

Φ=

φ
:= {{L,R} | ∩ L =∩R is in φ},

Φ∈
φ
:= {⟨L , R ⟩ | ∩ L ∈ ∩R is in φ},

Φ̸=
φ
:= {{L,R} | ∩ L ̸=∩R is in φ},

Φ/∈
φ
:= {⟨L , R ⟩ | ∩ L /∈ ∩R is in φ},

where as always the {L,R}’s and ⟨L , R ⟩’s are respectively unordered and
ordered pairs of nonempty collections of set variables, and define the ∼φ equiv-
alence and its closure operator as in Definitions 3.9 and 3.10.



5.4. The fragment MLS(∩,=, ̸=,∈, /∈) 111

Using the∼φ-closure operator, we generate from anyMLS(∩,=, ̸=,∈, /∈)-formula
φ the following MST(∩,∈, /∈)-formula φ

φ :=
⋀︂

⟨L , R ⟩∈Φ∈
φ

L ∈ R ∧
⋀︂

⟨L , R ⟩∈Φ/∈
φ

L /∈ R.

Finally we define φ− as the BST(∪,=, ̸=) component of φ.

Theorem 5.10. Any given MLS(∩,=, ̸=,∈, /∈)-formula is satisfiable if and only
if the MST(∩,∈, /∈)-formula φ and the BST(∩,=, ̸=)-component φ− of φ are
satisfiable.

Proof. (Sufficiency). Let both φ and φ− be satisfiable. Then by Theorem 3.18
L ̸= R, for all {L,R} ∈ Φ ̸=

φ . Let M be a model for φ, and assign to each
collection in P(Vars(φ)) a different set bV of rank α. Then define the following
set assignment:

Mx := {bV | x ∈ V } ∪ {∩ML | (∃ ⟨L , R ⟩ ∈ Φ∈
φ)∩ML ∈ ∩MR ∧ x ∈ R},

for each x ∈ Vars(φ).

First notice that, for every V ⊆ Vars(φ) we have V ⊆ Vars(φ). Thus bVars(φ) ∈
∩MV , so that rk (∩MV ) > α. We will now show that M |= φ.

Let {L,R} ∈ Φ̸=
φ i. Then we have L ̸= R. W.l.o.g., we may assume that R ⊈ L.

Thus, L ⊆ L by definition of ∼φ-closure, and therefore bL ∈ ∩ML \ ∩MR,
therefore M |=∩L ̸=∩R.
Let ⟨L , R ⟩ ∈ Φ∈

φ. Then ∩ML ∈ ∩MR and R ⊆ R, and so ∩ML ∈ ∩MR.

Let {L,R} ∈ Φ=
φ . We will prove that ∩ML ⊆ ∩MR and similarly ∩MR ⊆

∩ML hold, so that M |= ∩L = ∩R. Let s ∈ ∩ML. Then either rk (s) = α
or rk (s) > α. If rk (s) = α, there exists a V ⊆ Vars(φ) such that L ⊆ V .
Then, by Lemma 3.14(f), we have L ⊆ V , and since R = L, R ⊆ V so that
bV = s ∈ ∩MR holds.

On the other hand, if rk (s) > α then there exists a pair ⟨L′ , R′ ⟩ ∈ Φ∈
φ such

that s = ∩ML′, L ⊆ R′, and ∩ML′ ∈ ∩MR′. Then, as before, we have that
R ⊆ R′, and so s =∩ML′ ∈ ∩MR.

Finally, let ⟨L , R ⟩ ∈ Φ/∈
φ. By way of contradiction, assume ∩ML ∈ ∩MR.

Then there must exist a pair ⟨L′ , R′ ⟩ ∈ Φ∈
φ such that: ∩ML = ∩ML′,

R ⊆ R′, and ∩ML′ ∈ ∩MR′. First notice that since ∩ML =∩ML′ we have
bL ∈ ∩ML′. Thus L′ ⊆ L, and by Lemma 3.14(f) L′ ⊆ L. Analogously, L ⊆ L′

since bL′ ∈ ∩ML, so that L = L′. Then we must have that ∩ML = ∩ML′ ∈
∩MR′, and since R ⊆ R′ we have R ⊆ R′ so that ∩MR′ ⊆ R, and therefore

∩ML ∈ ∩MR. Since ⟨L , R ⟩ ∈ Φ/∈
φ, then ∩L /∈ ∩R in φ, thus we must have

∩ML /∈ ∩MR, a contradiction, and therefore we must have ∩ML /∈ ∩MR.

(Necessity). Let φ be satisfiable and let M be a model for it. Plainly, M |= φ−.
Thus, by Lemma 3.15, we have that ∩MV = ∩MV for each V ⊆ Vars(φ).
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Therefore, for each ⟨L , R ⟩ ∈ Φ∈
φ, we have

∩ML =∩ML ∈ ∩MR =∩MR,

and analogously, for every pair ⟨L , R ⟩ ∈ Φ/∈
φ, we have

∩ML =∩ML /∈ ∩MR =∩MR.

Thus M |= φ, concluding the proof of the theorem.

Using Algorithm 2, it is possible to compute the ∼φ-closure of any given col-
lection of set variables in O(n2) time, where n is the length of the formula φ.
We can assemble the MST(∩,∈, /∈)-formula φ in O(n3)-time, then we can check
the satisfiability of φ and φ− using the satisfiability tests for MST(∩,∈, /∈) and
BST(∩,=, ̸=), which take respectively O(n2) and O(n3) time. We can then
conclude:

Lemma 5.11. The satisfiability test for MLS(∩,=, ̸=,∈, /∈) can be solved in cubic
time.

5.5 ExtendingMLS(∪,=, ̸=,∈, /∈) andMLS(∩,=, ̸=,∈, /∈)
At the end of Section 3.2 we extended BST(∪,=, ̸=) and BST(∩,=, ̸=) to
BST(∪,=∅, ̸=∅,¬Disj,⊆,⊈,=, ̸=) and BST(∩,=∅, ̸=∅,Disj,¬Disj,⊆,⊈,=, ̸=)
respectively using the expressibility results presented in Chapter 2. Similarly,
in this section, we first prove that the literal x =∅ is O(n)-expressible in
MLS(∪,=, ̸=,∈, /∈) and MLS(∩,=, ̸=,∈, /∈).

Lemma 5.12. The literal x = ∅ is O(n)-expressible in MLS(∪,=, ̸=,∈, /∈).

Proof. Following Definition 2.2, we need to find a map from MLS(∪,=, ̸=,∈, /∈)
into another fragment that fulfills conditions (a) to (c). We will use the same
map seen in Lemma 2.7 thus letting φ be any MLS(∪,=, ̸=,∈, /∈)-formula, we
put

⟨φ , x =∅ ⟩ ↦→
⋀︂

v∈Vars(φ)

x ⊆ v.

Much as in Lemma 2.7, such map can be computed in O(n)-time. For short,
we put

Ξxφ :=
⋀︂

v∈Vars(φ)

x ⊆ v.

Concerning (b), let φ∧Ξxφ. Notice that the literal x ⊆ y is existentially express-
ible in BST(∪,=, ̸=) and a fortiori in MLS(∪,=, ̸=,∈, /∈). Thus, there exists a
MLS(∪,=, ̸=,∈, /∈)-formula φ′ such that

|= φ ∧ Ξxφ ←→ φ′,

proving that φ′ is satisfiable.
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In Theorem 5.7 we showed that any satisfiable MLS(∪,=, ̸=,∈, /∈) formula ad-
mits a model M ′ such that, for each variable v, M ′v as rank strictly grater
then a certain rank α, so that for every s ∈ M ′v, either rk (s) = α or there
exists a collection V of variables such that s =∪M ′V . Moreover we have that
V = V ′ ←→∪M ′V =∪M ′V ′, for all collections of variables V and V ′.

LetM ′ be such a model for φ′, so thatM ′ |= φ∧Ξxφ. First notice that rk (M ′x) =
α + 1, otherwise we would have a collection of variables V such that ∪M ′V ∈
M ′x and since M ′ |= Ξxφ M ′x ⊆ ∪M ′V we would contradict the axiom of
regularity.

Now, define the set assignment M by putting

Mv :=M ′v \M ′x ∪ {∪ML | ∪ L ∈ ∪R ∈ φ′ ∧∪M ′L ∈M ′v},

for v ∈ Vars(φ′).

Let ∪L = ∪R in φ′. Then ∪M ′L = ∪M ′R. Let s ∈ ∪ML. Then either
s ∈ ∪M ′L \ Mx or s = ∪ML′ for some L′. In the first case, we readily
have s ∈ ∪M ′R \ Mx ⊆ ∪MR, whereas in the latter case we have that

∪M ′L′ ∈ ∪M ′L = ∪M ′R′ so that ∪ML′ ∈ ∪MR. Hence, ∪ML ⊆ ∪MR.
Analogously we can prove ∪MR ⊆ ∪MR, and therefore M |= ∪L = ∪R
holds.

Let ∪L ̸=∪R be in φ′. By definition of M ′, there exists a set s of rank α that
belongs to either ∪M ′L \∪M ′R or to ∪M ′R \∪M ′L, and since M ′ |= Ξxφ we
have Mx ⊆ ∪ML and Mx ⊆ ∪MR. Thus s /∈Mx and therefore either s is in

∪Ml \ ∪MR or is in ∪MR \ ∪ML. In either cases M |=∪L ̸=∪R holds.

We can prove that M also models the membership literals of φ′ by the same
arguments used in the proof of Theorem 5.7.

Finally notice that since rk (M ′x) = α + 1, then Mx = ∅ so that M |= φ′.
Therefore M |= φ, and also M |= x = ∅, proving (b).

Concerning (c) it is enough to notice that ∅ ⊆ s, for all sets s. Thus, any model
for φ ∧ x =∅ models also φ ∧ Ξxφ.

Analogously, we can also prove that x =∅ isO(n)-expressible inMLS(∩,=, ̸=,∈, /∈).

We can merge the above results with others already known:

(a) the literal x ⊆ y is existentially expressible in BST(∪,=) and in BST(∩,=);

(b) the literal x ⊈ y is existentially expressible in BST(∪, ̸=) and in BST(∩, ̸=);

(c) the literal Disj (x, y) is existentially expressible in BST(∩,=∅) and there-
fore, by (a), it is also O(n)-expressible in BST(∩,=);

(d) the literal ¬Disj (x, y) is existentially expressible in BST(⊆, ̸=); therefore,
by (a), it is also existentially expressible in both of BST(∪,=, ̸=) and
BST(∩,=, ̸=).
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Therefore we can reduce in linear time any formula of the two languages
BST(∪,=∅, ̸=∅,¬Disj,⊆,⊈,=, ̸=,∈, /∈) and BST(∩,=∅, ̸=∅,Disj,¬Disj,⊆,⊈,=, ̸=,∈, /∈)
into MLS(∪,=, ̸=,∈, /∈) and MLS(∩,=, ̸=,∈, /∈) respectively. Thus, we have:

Lemma 5.13. The satisfiability decision problem
for both BST(∪,=∅, ̸=∅,¬Disj,⊆,⊈,=, ̸=,∈, /∈) and
BST(∩,=∅, ̸=∅,Disj,¬Disj,⊆,⊈,=, ̸=,∈, /∈) can be solved in polynomial
time.

5.6 A complete complexity taxonomy for MLS

In this chapter we explored the fragments of Multi-Level Syllogistic. Following
the same strategies used for BST andMST, we spotted the minimal NP-complete
and the maximal polynomial fragments of MLS. Table 5.2 lists all such fragments
and can be used to establish, given any fragment of MLS, whether or not its
satisfiability problem can be solved in polynomial time.

∪ ∩ \ =∅ ̸=∅ Disj ¬Disj ⊆ ⊈ = ̸= ∈ /∈ Complexity

⋆ ⋆ NP-complete

⋆ ⋆ NP-complete

⋆ ⋆ NP-complete

⋆ ⋆ NP-complete

⋆ ⋆ NP-complete

⋆ ⋆ ⋆ NP-complete

⋆ ⋆ ⋆ NP-complete

⋆ ⋆ ⋆ NP-complete

⋆ ⋆ ⋆ ⋆ NP-complete

⋆ ⋆ ⋆ ⋆ NP-complete

⋆ ⋆ ⋆ ⋆ NP-complete

⋆ ⋆ ⋆ ⋆ NP-complete

⋆ ⋆ ⋆ NP-complete

⋆ ⋆ ⋆ ⋆ NP-complete

⋆ ⋆ ⋆ ⋆ NP-complete

⋆ ⋆ ⋆ ⋆ NP-complete

⋆ ⋆ ⋆ ⋆ NP-complete

⋆ ⋆ ⋆ ⋆ NP-complete

⋆ ⋆ ⋆ ⋆ NP-complete

⋆ ⋆ ⋆ ⋆ NP-complete

⋆ ⋆ ⋆ ⋆ NP-complete

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ O(n3)
⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ O(n5)

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ O(n3)
⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ O(1)
⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ O(1)

Table 5.2: Complete taxonomy of theory MLS
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Chapter 6

Combining MLS with non-set
theoretic theories

In the previous chapters we proved that the satisfiability problem for MLS be-
longs to the class of NP-complete problems, and we presented several fragments
of MLS imbued with a deterministic polynomial-time decision procedures.

Here we will show that MLS and its fragments also enjoy a useful property
that in favorable cases allow us to combine efficiently (i.e., in deterministic
polynomial time) their decision procedures, with those of other theories outside
Set Theory. This result was first published in [CDDM21].

6.1 Combining decision procedures and the Nelson-

Oppen method

In the process of developing reliable and provably correct software, it is often
necessary to express and then subsequently verify properties that belong to dif-
ferent logical languages. Thus, the correctness of a software system depends on
being able to prove these conditions, expressed in distinct first-order signatures
with equality. The search for a satisfying assignment of a given formula with re-
spect to some background first-order theory is known as the SMT (Satisfiability
Modulo Theories) problem.

The Satisfiability Modulo Theories (SMT) problem concerns the satisfiability of
formulae from multiple background theories, usually expressed in the language
of first-order predicate logic with equality. SMT solvers are often based on vari-
ants of the Nelson-Oppen combination method, a solver for the quantifier-free
fragment of the combination of theories with disjoint signatures, via cooperation
among their decision procedures.

SMT solvers [BST10] are particularly useful tools for the automated verification
of properties expressed with quantifier-free first-order formulae. Some theories
usually integrated with common SMT solvers are the theory of arrays, of bit-
vectors, of linear arithmetic, and the theory of uninterpreted functions. Every
background theory used in some SMT solver comes along with its own satisfi-
ability procedure. The problem of modularly combining such special-purpose
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algorithms is highly non-trivial, since without the appropriate restrictions it is
not even decidable [BGN+06].

We will now briefly introduce some definitions to understand how to tackle the
SMT problem and under which assumptions one can do it effectively.

Definition 6.1 (Stably Infinitess). A first-order quantifier-free theory T , identi-
fied with the set of its theorems, is stably infinite if every formula φ satisfiable
in T is satisfiable in an infinite model of T .

It is not difficult to prove that MLS is stably infinite.

Definition 6.2. Let Σ1 and Σ2 be signatures for a first-order language. A (Σ1 ∪
Σ2)-formula φ is pure if every literal in φ is either a Σ1-literal or a Σ2-literal.

It is easy to see that every quantifier-free (Σ1 ∪ Σ2)-formula φ can be purified,
yet maintaining satisfiability, by

(i) substituting every impure subterm of the form f(t) with f(x), where x is
a new variable,

(ii) adding to φ the conjunct x = t, and

(iii) recursively purifying the term t, if needed.

Definition 6.3. We say that two theories T1 and T2 over the signatures Σ1 and
Σ2, respectively, are disjoint when Σ1 and Σ2 do not share any non-logical sym-
bols.

The Nelson-Oppen [NO79] procedure provides a method for combining decision
procedures for disjoint, stably infinite theories T1 and T2 into one for T1 ⊕ T2,
namely the (Σ1∪Σ2)-theory defined as the deductive closure of the union of the
theories T1 and T2.

Given two disjoint stable infinite theories T1 and T2, the Nelson-Oppen combi-
nation technique establishes the satisfiability of a conjunction of pure formulae
φ1 ∧ φ2 (where φi has signature Σi) in T1 ⊕ T2 from the decision procedures
for φ1 and φ2. The key idea is to propagate equalities x = y to φ2 whenever
T1 ∪ φ1 implies x = y, and conversely. Usually this iterative process is non-
deterministic, however it can be performed quickly in deterministic polynomial
time, when the theories involved are convex.

Definition 6.4. A theory T is convex if for all conjunctions of literals φ in T and,
for all nonempty disjunctions

⋁︁n
i=1 xi = yi of equalities, φ implies

⋁︁n
i=1 xi = yi

in T if and only if φ implies xi = yi in T for some i ∈ {1, ..., n}.

Examples of convex theories are the theory of Linear Rational Arithmetic TLRA

and the theory of list structure TL.
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The non-logical symbols of the theory of TLRA are +, −, ⩽, 0, 1; following
[BM07, Chapter 3.4.2], its axioms (universally quantified) are:

x+ 0 = x, x+ (−x) = 0,

(x+ y) + z = x+ (y + z), x+ y = y + x,

x ⩽ y ∧ y ⩽ x→ x = y, x ⩽ y ∨ y ⩽ x,

x ⩽ y → x+ z ⩽ y + z, x ⩽ y ∧ y ⩽ z → x ⩽ z,

nx = 0→ x = 0, (∃y) x = ny (for each positive integer n),

where nx stands for x+ · · ·+ x⏞ ⏟⏟ ⏞
n times

.

After [NO79], the non-logical symbols of the theory of list structure TL are car,
cdr, cons, and atom, and its axioms are:

car(cons(x, y)) = x,

cdr(cons(x, y)) = y,

¬atom(x)→ cons(car(x), cdr(x)) = x,

¬atom(cons(x, y)),

where (i) cons is a binary function, with cons(x, y) representing the list con-
structed by prepending the object x to the list y, (ii) car and cdr are unary
functions, the left and right projections, respectively, and (iii) atom is true if
and only if x is a single-element list.

In what follows we will prove that when it is suitably represented conjuntively
also the theory MLS is convex. Specifically, we restrict to the case in which
to MLS is represented as the collection of all the conjunctions of atoms of the
following types:

x = y \ z, x ∈ y. (6.1)

6.2 Convexity of MLS

Our main goal is to prove that the theory MLS is convex, namely that, for any
MLS-conjunction φ and any given finite nonempty set E of equalities among
variables, we have:

|= φ −→
⋁︂
E =⇒ |= φ −→ x = y, for some equality x = y in E .

To prove that the theoryMLS is convex, we will proceed by way of contradiction.

Thus, let us suppose that there exists an MLS-conjunction φ (namely a conjunc-
tion of literals of type (6.1)) and a finite, nonempty set E of equalities among
variables such that:

(C1) |= φ −→
⋁︁
E ;
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(C2) ̸|= φ −→ x = y, for every x = y in E
(that is, for every x = y in E there exists some set assignment Mx,y such
that Mx,y |= φ ∧ x ̸= y).

It is not restrictive to additionally assume that Vars(E) ⊆ Vars(φ).1

In view of condition (C2), our formula φ is satisfiable. Among all the models for
φ, we select one, say M , that satisfies as few as possible equalities in E , namely
such that the cardinality of E+M := {ℓ ∈ E |M |= ℓ} is minimal. We also set
E−M := {¬ℓ | ℓ ∈ E \ E+M}, so E

−
M is the collection of the inequalities x ̸= y such

that x = y is in E and M ̸|= x = y (hence, M |= x ̸= y).

Plainly, we have M |= φ ∧
⋀︁
E+M ∧

⋀︁
E−M . Notice that, while

⋀︁
E−M may be

empty, the conjunction
⋀︁
E+M is guaranteed to contain at least one literal by

condition (C1).

Let ℓ be any equality x = y in
⋀︁
E+M , which will be referred to in the rest of our

proof as the designated equality of E . We will prove that the conjunction

φ∗ := φ ∧
⋀︂(︁
E+M \ {ℓ}

)︁
∧

⋀︂
E−M ∧ x ̸= y

is satisfiable, thereby contradicting the assumed minimality ofM , since for every
model M∗ for φ∗ we would have E+M∗ = E+M \ {ℓ}, and therefore |E+M∗ | < |E+M |.

Before diving into the details of the proof, we provide an overview of how the
set assignmentM can be suitably enlarged into another set assignmentM∗ that
satisfies all the conjuncts of φ ∧

⋀︁
E+M ∧

⋀︁
E−M but the designated equality ℓ,

thus proving that φ∗ is satisfiable.

Proof overview

The construction of M∗ consists in two phases: the first phase, the Boolean
phase, takes care of the satisfiability of the Boolean literals of φ∗, namely the
literals in φ∗ of type x = y \ z, x = y, and x ̸= y, whereas the second phase, the
membership phase, takes care of the satisfiability of the membership literals
of φ∗, namely those of the form x ∈ y.

In order to model x ̸= y, we add to exactly one between Mx and My a new
member s not already occurring in

⋃︁
x∈Vars(φ)Mx. The set s must be chosen

with care to prevent that it may be accidentally formed during the subsequent
membership phase. In addition, the set s must be added to the right sets Mx
in order that the resulting assignment keeps satisfying all the Boolean literals
in φ∧

⋀︁
E+M ∧

⋀︁
E−M other than the designated equality x = y. The first problem

is solved by selecting as s any set of rank strictly greater than that of M . As
for the second condition, recalling that, by (C2), the conjunction φ ∧ x ̸= y is
satisfiable, we can select a model M for it. Therefore Mx ̸=My, and so we can
pick some element t belonging to exactly one of the setsMx andMy. By adding
our special set s as an element to all and only those sets Mx such that t ∈Mx,

1Indeed, without disrupting conditions (C1) and (C2), for any variable x ∈ Vars(E) one
may add to φ the literal x ∈ w, where w stands for some fresh variable.
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for x ∈ Vars(φ), we obtain a new assignment, which will be denoted M0. It
turns out thatM0 correctly models all the conjuncts in φ∗, but the membership
literals x ∈ y for which M0x ̸=Mx. We denote by V0 the collection of variables
x in φ such that M0x ̸=Mx.

Example 6.1. We illustrate the Boolean phase of our enlargement process with
the following MLS-conjunction

φ := x = y \ z ∧ x = x \ w ∧ x ̸= y ∧ y ∈ w ∧ w ∈ v ∧ z ∈ v

and with the equality x = y.

LetM andM be the set assignments over Vars(φ) = {v, w, x, x, y, z} so defined,
where to enhance readability we use the shorthand {∅}2 := {{∅}}—likewise, {∅}4
will denote the set {{{{∅}}}}:

Mx = ∅, Mx =My = {∅}, Mz =Mw = {∅, {∅}}, Mv = {{∅, {∅}}},
Mx = ∅, My =Mz = {∅}, Mx =Mw = {∅}2, Mv = {{∅}, {∅}2}.

It can easily be checked that M |= φ ∧ x = y and M |= φ ∧ x ̸= y hold.

Let s := {∅}4, so that rk (s) = 4 > 3 = rk (Mv) = rk (M). Since ∅ ∈ My \Mx,
we can put t := ∅, and so we have:

M0u =

⎧⎪⎨⎪⎩
{∅, s} if u = y

{∅, {∅}, s} if u = z

Mu otherwise

and V0 = {y, z}.

Plainly, M0 satisfies all literals in φ∧x ̸= y but the literals y ∈ w and z ∈ v.

The subsequent membership phase performs the following enlargement step, for
k = 0, 1, 2, . . ., until needed:

extend the assignment Mk by putting, for each u ∈ Vk,

Mk+1u := Mku ∪ {Mkv | v ∈ Vk and Mv ∈Mu},

while settingMk+1u :=Mku for the remaining variables u inVars(φ),
and define Vk+1 as the collection of variables u in Vars(φ) such that
Mk+1u ̸=Mku.

For k = 0, 1, 2, . . ., it turns out that each Mk correctly models all the Boolean
literals in φ∗ and all the membership literals in φ∗ but those of the form x ∈ y
with x ∈ Vk+1. Hence, as soon as some Vk is empty, the assignmentMk is plainly
a model for φ∗, and so the membership phase can stop. By the well-foundedness
of the membership relation, such a situation occurs in at most n := |Vars(φ)|
steps, and therefore Mn is a model for φ∗, proving that φ∗ is satisfiable.
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Example 6.2 (cntd). We continue our example by illustrating the membership
phase of our enlargement process. We recall that V0 = {y, z}. Since My ∈
Mw = Mz and Mz ∈ Mv, we have V1 = {z, w, v}, M1z = {∅, {∅}, s, {∅, s}},
M1w = {∅, {∅}, {∅, s}}, M1v = {{∅, {∅}}, {∅, {∅}, s}}, and M1u = M0u for
all u ̸= z, w, v. Next, since Mw ∈ Mv and Mz ∈ Mv, we have V2 = {v},
M2u =M1u for all u ̸= v, and

M2v = {{∅, {∅}}, {∅, {∅}, s}, {∅, {∅}, s, {∅, s}}, {∅, {∅}, {∅, s}}}.
Finally, since Mv /∈

⋃︁
u∈Vars(φ)Mu, we can actually stop. In fact, at this point

we have M2 =M3 =M4 = · · · . Plainly, M2 |= φ ∧ x ̸= y.

Proof details

For any V ⊆ Vars(φ), we will use the notationMV to denote the set {Mv |v ∈
V }. Let s be any fixed set whose rank is larger than the rank of M , namely
such that rk (s) > rk (M).

We define by recursion two sequences {Vn}n∈N and {Mn}n∈N, respectively of
subsets of Vars(φ) and of set assignments over Vars(φ), by putting:

V0 := {u ∈ Vars(φ) | t ∈Mu}, (6.2)

Vn := {u ∈ Vars(φ) | Mu ∩MVn−1 ̸= ∅}, for n ⩾ 1, (6.3)

and

M0v :=

{︄
Mv ∪ {s} if v ∈ V0

Mv if v ∈ Vars(φ) \ V0,
(6.4)

Mnv :=

{︄
Mn−1v ∪Mn−1{u ∈ Vn−1 |Mu ∈Mv} if v ∈ Vn

Mn−1v if v ∈ Vars(φ) \ Vn,
(6.5)

for n ⩾ 1 and v ∈ Vars(φ).

As a direct consequence of (6.4) and (6.5), the following results can be easily
proved by induction:

Lemma 6.1. (a) For every v ∈ Vars(φ), we have

Mv ⊆ M0v ⊆ · · · ⊆ Mnv ⊆ · · · .

(b) For all v ∈ Vars(φ) and n ∈ N, we have:

Mnv ⊆ Mv ∪ {s} ∪
n−1⋃︂
k=0

Mk{u ∈ Vk |Mu ∈Mv}.

Lemma 6.1(a) implies that the sequence of assignments {Mn}n∈N is plainly
pointwise convergent. As a consequence of the next lemma and corollary, it will
follow in fact that {Mn}n∈N converges “uniformly”, and it does so in at most
|Vars(φ)| steps.

Lemma 6.2. Let k ∈ N. We have:
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(a) if Vk = ∅ then, for all n ⩾ k,

(a1) Vn = ∅,

(a2) Mn =Mk;

(b) if Vk ̸= ∅, then

k ⩽ min
(︁
|Vars(φ)| − 1, rk (M)

)︁
. (6.6)

Proof. If Vk = ∅, then Vk+1 = ∅ andMk+1 =Mk by (6.3) and (6.5), respectively.
By iterating the same argument, one can easily prove that Vn = ∅ andMn =Mk,
for all n ∈ N, proving (a).

As for (b), we preliminarily observe that, by (6.3), for all v ∈ Vars(φ) and n ⩾ 1
we have

v ∈ Vn =⇒ (∃u ∈ Vn−1)Mu ∈Mv. (6.7)

Thus, if Vk ̸= ∅, by picking any vk ∈ Vk and by repeatedly applying (6.7), it
follows that there exist v0, v1, . . . , vk−1 ∈ Vars(φ) such that

Mv0 ∈ Mv1 ∈ · · · ∈ Mvk−1 ∈ Mvk. (6.8)

By the well-foundedness of ∈, the variables v0, v1, . . . , vk−1, vk must be pairwise
distinct. Hence, k+1 ⩽ |Vars(φ)|. In addition, (6.8) also yields k ⩽ rk (Mvk) ⩽
rk (M). Thus, (6.6) follows, proving (b).

The preceding lemma yields immediately the following result.

Corollary 6.3. For all h, k > min
(︁
|Vars(φ)| − 1, rk (M)

)︁
, we have Mh =Mk.

Letting n := |Vars(φ)|, Corollary 6.3 implies that Mn =Mn, for all n ⩾ n.

Next we prove a number of technical lemmas that will culminate in the proof
that

Mn |= φ ∧
⋀︂
E−M ∧ x ̸= y

holds, where we recall that x = y is the designated equality of E . Thus, we will
have that

E−M ⊊ E−Mn
and |E+Mn

| < |E+M |,

contradicting the minimality of |E+M |. Hence, the convexity of MLS will follow,
since our initial assumption on φ and E that conditions (C1) and (C2) hold will
be proved to be untenable.

The following lemma provides some useful bounds on the rank ofMnv, for n ∈ N
and v ∈ Vars(φ).

Lemma 6.4. For all n ∈ N and v ∈ Vars(φ), we have

- rk (Mnv) = rk (s) + n+ 1, if v ∈ Vn,

- rk (Mnv) ⩽ rk (s) + n, if v /∈ Vn.
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Proof. We proceed by induction on n. For n = 0 and v ∈ V0, from (6.4) we
haveM0v =Mv ∪ {s}. Hence, rk (M0v) = max{rk (Mv) , rk ({s})} = rk (s)+1,
since rk (s) > rk (Mv). On the other hand, if v /∈ V0, then rk (M0v) = rk (Mv) <
rk (s).

Next, let n > 0 and v ∈ Vn. By (6.5), we have:

rk (Mnv) = max
(︁
rk (Mn−1v) , rk (Mn−1{z ∈ Vn−1 |Mz ∈Mv})

)︁
. (6.9)

By inductive hypothesis, we readily have

- rk (Mn−1v) ⩽ rk (s) + n, and

- rk (Mn−1{z ∈ Vn−1 |Mz ∈Mv}) ⩽ rk (s) + n+ 1.

In addition, since v ∈ Vn, then by (6.3), Mu ∈ Mv for some u ∈ Vn−1.
Hence, again by inductive hypothesis, rk (Mu) = rk (s) + n, and since u ∈
{z ∈ Vn−1 |Mz ∈Mv}, we have

rk (Mn−1{z ∈ Vn−1 |Mz ∈Mv}) = rk (s) + n+ 1.

Thus, by (6.9), we get rk (Mnv) = rk (s) + n+ 1.

On the other hand, if v /∈ Vn, then by (6.5) and by the inductive hypothesis we
have rk (Mnv) = rk (Mn−1v) ⩽ rk (s) + n.

Next we prove that the set s can enter Mn only when n = 0.

Lemma 6.5. For all n ∈ N and v ∈ Vars(φ), we have:

(a) Mnv ̸= s;

(b) s ∈Mnx ⇐⇒ s ∈M0x.

Proof. Concerning (a), we proceed by induction on n.

For n = 0, by (6.4) we have:

- rk (M0v) = rk (s) + 1, if v ∈ V0 (by Lemma 6.4);

- rk (M0v) = rk (Mv) < rk (s), if v /∈ V0.

In both cases, it follows that M0v ̸= s.

For the inductive step, let n > 1. If v ∈ Vn, then by Lemma 6.4 we have
rk (Mnv) = rk (s)+n+1, and therefore Mnv ̸= s. On the other hand, if v /∈ Vn,
then Mnv =Mn−1v ̸= s, by (6.5) and by the inductive hypothesis.

Next we prove (b) by induction on n.

The base case n = 0 is trivial.

For the inductive step, let n > 0. If s ∈ M0x, then Lemma 6.1(a) yields
readily s ∈ Mnx. Conversely, let s ∈ Mnx. If x /∈ Vn, then by (6.5) we have
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s ∈ Mnx = Mn−1x, and therefore by inductive hypothesis s ∈ M0x. On the
other hand, if x ∈ Vn, then again by (6.5) we have

s ∈ Mnx = Mn−1x ∪ Mn−1{y ∈ Vn−1 |My ∈Mx}.

In view of (a), the latter formula yields s ∈ Mn−1x, and therefore s ∈ M0x
follows again by inductive hypothesis, completing the proof of (b), and in turn
of the lemma.

The following lemma proves that, at each construction step of the assignments
Mn’s, only elements of rank at least rk (s) can enter into play.

Lemma 6.6. For every set q ∈ Mnx, for some x ∈ Vars(φ) and n ∈ N, if
rk (q) < rk (s) then q ∈Mx.

Proof. Let x ∈ Vars(φ), n ∈ N, and q ∈ Mnx, with rk (q) < rk (s). From
Lemma 6.1(b), we have

Mnx ⊆ Mx ∪ {s} ∪
n−1⋃︂
k=0

Mk{y ∈ Vk |My ∈Mx}.

Since, by Lemma 6.4, the rank of each member of {s}∪
⋃︁n−1
k=0 Mk{y ∈ Vk |My ∈

Mx} is greater than or equal to rk (s), then necessarily q ∈Mx

All the inequalities x ̸= y satisfied by M are satisfied by every Mn, as proved
in the following corollary.

Corollary 6.7. If Mx ̸= My, for some x, y ∈ Vars(φ), then Mnx ̸= Mny, for
every n ∈ N.

Proof. W.l.o.g., let us assume that Mx ⊈ My, and let q ∈ Mx \My. Also,
let n ∈ N. By Lemma 6.1(a), q ∈ Mnx. Plainly, rk (q) < rk (Mx) < rk (s) and
q /∈My. Thus, Lemma 6.6 yields q /∈Mny, proving that Mnx ̸=Mny.

To show that every membership x ∈ y satisfied by M is correctly modeled by
Mn, we will need the following result.

Lemma 6.8. For all n ∈ N and x, y ∈ Vars(φ), if x ∈ Vn and Mx ∈ My, then
y ∈ Vn+1 and Mnx ∈Mn+1y.

Proof. Let n ∈ N and assume that Mx ∈ My, for some x, y ∈ Vars(φ), and
that x ∈ Vn. Then, by (6.3), y ∈ Vn+1. In addition, from (6.5), the latter
membership relation yields immediately that Mnx ∈Mn+1y.

We are now ready to prove our main lemma.

Lemma 6.9. The assignment Mn satisfies φ.
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Proof. We prove the lemma, by showing that Mn correctly models all the con-
juncts in φ. We recall that, in view of the reduction process outlined in Corol-
lary 2.2, our formula φ contains conjuncts of two types only, namely x ∈ y and
x = y \ z.

Conjuncts of type x ∈ y. Let x ∈ y occur in φ, so that Mx ∈ My holds. If
x /∈ Vn for all n ∈ N, then Mnx = Mx ∈ My ⊆ Mny (by Lemma 6.1(a)), from
which Mnx ∈Mny follows.
Conversely, if x ∈ Vn, for some n ∈ N, we set m := max{n ∈ N | x ∈ Vn}.
In addition, since Mx ∈ My and x ∈ Vm, Lemma 6.8 implies y ∈ Vm+1 and
therefore, by Lemma 6.2(b), m + 1 ⩽ |Vars(φ)| − 1 ⩽ n. Thus, Lemma 6.8
again together with Lemma 6.1(a) yields Mnx = Mmx ∈ Mm+1y ⊆ Mny, from
which Mnx ∈Mny follows.

Conjuncts of type x = y \ z. Let x = y \ z occur in φ, so that Mx =My \Mz
holds. We will prove that Mn |= x = y \ z, by proving that Mnx ⊆Mny \Mnz
and Mny \Mnz ⊆Mnx hold.

Proof of Mnx ⊆Mny \Mnz. From Lemma 6.1(b), we have:

Mnx ⊆ Mx ∪ {s} ∪
n−1⋃︂
k=0

Mk{u ∈ Vk |Mu ∈Mx}.

Let q ∈Mnx. We first consider that case in which q ∈Mx. Then q ∈My\Mz.
Hence, by Lemma 6.1(a), q ∈ Mny. In addition, since q /∈ Mz and rk (q) <
rk (s), Lemma 6.6 yields q /∈Mnz. Thus, q ∈Mny \Mnz.

Next, let q = s. Hence, s ∈ M0x (by Lemma 6.5(b)), so that x ∈ V0 (by (6.4)
and (6.2)), and therefore t ∈ Mx. Since Mx = My \Mz, then Mx ⊆ My,
and so t ∈ My and t /∈ Mz. From t ∈ My, it follows that y ∈ V0 and z /∈ V0.
Therefore (by (6.4) and Lemma 6.1(b)) s ∈ M0y ⊆ Mny and also (by (6.2))
s /∈ M0z. Thus, by Lemma 6.5(b), s /∈ Mnz. In conclusion, if q = s then
q ∈Mny \Mnz, as in the preceding case.

Finally, let q = Mku, for some 0 ⩽ k < n and u ∈ Vk such that Mu ∈ Mx.
Recalling that Mx =My \Mz, then Mu ∈My, so that Mku ∈Mk+1y ⊆Mny
(by Lemma 6.8). In addition, Mu /∈ Mz. By Lemma 6.4, Mku /∈ Mz ∪ {s}.
Since, by Lemma 6.1(b),

Mnz ⊆ Mz ∪ {s} ∪
n−1⋃︂
k=0

Mk{v ∈ Vk |Mv ∈Mz}, (6.10)

to prove that Mku /∈ Mnz, it is sufficient to show that Mku /∈
⋃︁n−1
h=0Mh{v ∈

Vh |Mv ∈ Mz}. By way of contradiction, let us assume that Mku = Mhv,
for some 0 ⩽ h < n and v ∈ Vh such that Mv ∈ Mz. By Lemma 6.4, and
since u ∈ Vk, we must have h = k. Since Mu /∈ Mz while Mv ∈ Mz, we
plainly have Mu ̸= Mv. Hence, by Corollary 6.7, Mhu ̸= Mhv = Mku, which
contradicts our preceding assumptionMku =Mhu. Thus, Mku /∈

⋃︁n−1
h=0Mh{v ∈

Vh | Mv ∈ Mz} holds. In view of Mku /∈ Mz ∪ {s} and (6.10), the latter
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equation implies Mku /∈ Mnz, proving that q ∈ Mny \Mnz even in the case in
which q ∈

⋃︁n−1
k=0 Mk{u ∈ Vk |Mu ∈Mz}.

From the arbitrariness of q ∈Mnx, we conclude that Mnx ⊆Mny \Mnz holds.

Proof of Mny \Mnz ⊆Mnx. Let us assume now that q ∈Mny \Mnz, so that
q ∈Mny. Again from Lemma 6.1(b), we have:

Mny ⊆ My ∪ {s} ∪
n−1⋃︂
k=0

Mk{v ∈ Vk |Mv ∈My}.

First we consider the case in which q ∈ My, so that rk (q) < rk (s). Since q /∈
Mnz, then by Lemma 6.1(a) q /∈Mz, and therefore q ∈My\Mz =Mx ⊆Mnx.
Thus, q ∈Mnx.

Next, if q = s, then s ∈ Mny \Mnz. Thus, s ∈ M0y and s /∈ M0z by Lem-
mas 6.5(b) and 6.1(a), respectively. Hence, by (6.4), y ∈ V0 and z /∈ V0, so
that t ∈ My \Mz = Mx (since M |= φ). In view of (6.2), the latter member-
ship relation yields x ∈ V0. Thus q = s ∈ M0x ⊆ Mnx, which readily implies
q ∈Mnx.

Finally, let us assume that q = Mkv, for some 0 ⩽ k < n such that v ∈ Vk
and Mv ∈ My. Plainly, Mv /∈ Mz, otherwise by Lemma 6.8 we should
have q = Mkv ∈ Mk+1z ⊆ Mnz, contradicting q ∈ Mny \ Mnz. Thus,
Mv ∈My \Mz =Mx, so that Mv ∈Mx. But then, by Lemma 6.8 again, we
get q = Mkv ∈ Mk+1x ⊆ Mnx, from which q ∈ Mnx follows even in the last
case.

Thus, in all cases we have q ∈Mnx. By the arbitrariness if q in Mny \Mnz, we
therefore obtain Mny \Mnz ⊆Mnx.

In view of the reverse inclusionMnx ⊆Mny \Mnz established earlier, the latter
inclusion yields Mnx =Mny \Mnz, namely Mn |= x = y \ z.

Summing up, we have proved that the assignment Mn satisfies all the con-
juncts of φ, and therefore Mn satisfies φ.

Together with Corollary 6.7, the preceding lemma implies

Mn |= φ ∧
⋀︂
E−M .

To find a contradiction, it only remains to prove thatMn |= x ̸= y, where x = y
is the designated equality of E+M , which we do next.

Lemma 6.10. The assignment Mn models the inequality x ̸= y correctly.

Proof. We know that t ∈Mx\My, therefore x ∈ V0 and y /∈ V0, s ∈M0x\M0y.
Hence, from Lemma 6.5(b) it follows that s ∈ Mnx \Mny, proving that Mn |=
x ̸= y.
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From Lemmas 6.9 and 6.10 and Corollary 6.7, we have:

Mn |= φ ∧
⋀︂
E−M ∧ x ̸= y.

Setting E+Mn
:= {ℓ ∈ E | Mn |= ℓ} and E−Mn

:= {¬ℓ | ℓ ∈ E \ E+Mn
}, we have

E−M ⊊ E−Mn
and so |E+Mn

| < |E+M |, contradicting the minimality of |E+M | among all
the set assignments that satisfy φ. Thus, our initial hypothesis that MLS were
not convex is inadmissible, and therefore we can conclude that:

Theorem 6.11. The theory MLS is convex.

We expect that the proof of convexity of MLS can be suitably generalized to
show that also two extensions of MLS, MLS∩ that also includes literals of the
form x =

⋂︁
y, and MLSC∩ that also include cardinality comparisons |x| = |y|

and |x| < |y|, are convex too.

Several fragments of MLS admit polynomial-time decision procedures, so they
are very appealing in the context of combination of decision procedures à la
Nelson-Oppen. We briefly review them next.

6.2.1 Polynomial fragments of MLS

Although MLS is convex, we can not use the Nelson-Oppen strategy to obtain
efficient, polynomial, decision procedure for those theories comprising MLS,
simply because the decision procedure of MLS is itself NP-complete.

However convexity of MLS is plainly inherited by all of its fragments.

Therefore all the polynomial satisfiability procedures for fragments of MLS, that
we have highlighted in the previous chapters, can be efficiently combined using
the Nelson-Oppen strategy with other polynomial decision procedures of other
convex theories disjoint from set theory to obtain SMT solvers that runs in
deterministic polynomial time.

6.3 Non-convex extensions of MLS

Some of the extensions of MLS are non-convex. To prove such results we rely
on the following property.

Lemma 6.12. Let T be any extension of MLS containing a conjunction φ with
a designated variable x such that, for some integer k ⩾ 2, we have:

- |= φ −→ |x| ⩽ k,

- φ ∧ |x| = k is satisfiable,

where |x| stands for the cardinality of x. Then T is not convex.

Proof sketch. Given φ, x, and k as in the hypotheses, it is enough to set
Φ := φ ∧

⋀︁k+1
i=1 xi ∈ x, where x1, . . . , xk+1 are pairwise distinct variables
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not occurring in φ. Then, we have:

|= Φ −→
⋁︂

1⩽i<j⩽k+1

xi = xj .

In addition, each conjunction Φ ∧ xi ̸= xj, with 1 ⩽ i < j ⩽ k+1, is satisfiable.
Hence, none of the statements

|= Φ −→ xi = xj

can hold, for 1 ⩽ i < j ⩽ k + 1. Thus, the theory T is not convex.

Using Lemma 6.12, we argue next that the following extensions of MLS are
non-convex:

• MLSS = MLS + ‘{·}’: MLS extended with the singleton operator x = {y}
(see [FOS80]),

• MLSP = MLS + ‘P(·)’: MLS extended with the powerset operator (see
[CSF85]),

• MLS∪ = MLS + ‘
⋃︁
·’: MLS extended with the general union operator

(see [CFS87]),

• MLS× = MLS + ‘×’: MLS extended with the Cartesian product operator.2

Concerning the theory MLSS, let us consider the conjunction

φ := x = {y} ∧ x′ = {y′} ∧ x = x ∪ x′ .

Then,

- for every model M for φ, we have Mx = {My,My′}, so that |Mx| ⩽ 2
holds;

- letting M be the set assignment for φ such that

My = ∅, My′ =Mx = {∅}, Mx′ = {{∅}}, Mx = {∅, {∅}},

then M satisfies φ and |Mx| = 2.

Thus, by Lemma 6.12, MLSS is non-convex.

Next, as for the theory MLSP, let us consider the conjunction

φ := x = ∅ ∧ y = P(x) ∧ x = P(y) .

Then, φ is plainly satisfiable and, for every set assignment M satisfying φ,
we have Mx = {∅, {∅}}, so that |Mx| = 2. Thus, by Lemma 6.12, MLSP is
non-convex.

2The decision problem for MLS× is still open.
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Concerning the fragment MLS∪, let us consider the conjunction

φ := x = ∅ ∧
⋃︂

y = x ∧
⋃︂

x = y .

Then,

- for every set assignment M satisfying φ, we have Mx ⊆ {∅, {∅}} so that
|Mx| ⩽ 2 holds;

- letting M be the set assignment over Vars(φ) such that

Mx = ∅, My = {∅}, Mx = {∅, {∅}},

we readily have that M satisfies φ and |Mx| = 2.

Hence, by Lemma 6.12, MLS∪ is non-convex.

Since MLSSP is an extension of non-convex theories, namely MLSS and MLSP,
it follows immediately that MLSSP is non-convex as well.

Regarding the extension MLS× of MLS with the Cartesian product, we have

|= x× y = ∅ −→ (x = ∅ ∨ y = ∅). (6.11)

Since the two conjunctions x × y = ∅ ∧ x ̸= ∅ and x × y = ∅ ∧ y ̸= ∅ are
clearly satisfiable, then

̸|= x× y = ∅ −→ x = ∅ and ̸|= x× y = ∅ −→ y = ∅.

Together with (6.11), the latter statements imply that MLS× is non-convex.

By replacing in the above proof the Cartesian product × by the unordered
Cartesian product ⊗, one can readily show that the extension MLS⊗ of MLS
with the unordered Cartesian product ⊗ is non-convex too.

Finally, notice that the membership relator did not play any role in the above
proof of non-convexity of MLS× and MLS⊗. Therefore, by exactly the same
argument as the above one, we can show that the extensions BST× and BST⊗
of BST with the Cartesian product and the unordered Cartesian product are
non-convex.

Summarizing, we have proved:

Lemma 6.13. The theories MLSS, MLSP, MLSSP, MLS∪, MLS×, MLS⊗, BST×,
and BST⊗ are all non-convex.
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Conclusions

In this dissertation we presented an in-depth study of the theory Multi-Level
Syllogistic, whose satisfiability problem is decidable and belongs to the class
of NP-complete problems as first seen in [COP90]. Specifically, our study has
mainly focused on spotting the fragments of MLS satisfiability problem can be
solved in deterministic polynomial time.

The main rationale behind such study is twofold: solving the foundational prob-
lem of finding the boundaries between NP-completeness and polynomiality be-
tween fragments of MLS, and finding new more efficient algorithms to solve the
decision problem for MLS under the suitable constraints.

The task of studying all the fragments of MLS, that are more than two thousand,
seemed to be very lengthy at first. However, thanks to existential expressibility
and its new extension O(f)-expressibility, we managed to shrink considerably
the number of fragments to analyze. In fact, it turned out that we could fo-
cus only on very small, therefore more easy to approach, fragments, such as
BST(∪,=, ̸=), then using the expressibility tools to expand those fragments to
much larger ones, such as BST(∪,=∅, ̸=∅,¬Disj,⊆,⊈,=, ̸=).

Another result obtained using the expressibility tools is the reduction of each
MLS-formula into a conjunction of just two kinds of literals: x ∈ y and x = y\z,
simplifying most of the proofs involving MLS. For example each time we need
to prove that a set assignment models an MLS-formula we can just focus on
literals of those two forms.

At the end of our study we obtained Table 5.2, which lists all the minimal
NP-complete and maximal polynomial fragments of MLS. Table 5.2 is enough
to discern given any fragment of the theory whether it is polynomial or NP-
complete. In fact, if a given fragment is a sub-language of a maximal polynomial
fragment then it is polynomial otherwise it is NP-complete.

Table 5.2 is also very useful in practical situation to enhance the performance
of any tool that needs to establish the satisfiability of MLS-formulae, such as
the proof verifier ÆtnaNova. In fact, instead of simply running the satisfiability
test for MLS over each MLS-formula the tool may select in favorable cases a
polynomial satisfiability test in place of the nondeterministic polynomial test
for full MLS.

Finally we proved that the theory MLS is convex, meaning that we can use the
Nelson-Oppens approach to combine the decision procedure for the polynomial
fragments of MLS with the decision procedures of other convex theories, outside
Set theory, in deterministic polynomial time.
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Although having provided a complete complexity taxonomy of MLS may seems
to end our study, that is not case. When we find a minimal NP-complete frag-
ment we can not say more about that fragment, while when we found a maximal
polynomial fragment, it can be useful to study some of its sub-languages since,
as we seen for instance in the case of BST(∪, ̸=,Disj,¬Disj) and BST(∪,Disj, ̸=),
it may be possible to find more efficient satisfiability test specialized for such
sub-languages. Moreover, we have not proved that the satisfiability tests we
have found for the polynomial fragments are the most efficient possible, for in-
stance we found a cubic time satisfiability test for BST(∪,=, ̸=), but we do not
now if this fragments admits some satisfiability test strictly less than cubic.

The most natural way to continue this research for polynomial fragments is that
of analyzing the fragments of the extensions of MLS. We notice, during the study
of the taxonomy of MLS, that starting from small languages and slowly adding
new operators and predicates is a winning strategy. The next step then could
be to add the singleton atom, x = {y}, to our taxonomy, yielding a taxonomy
for MLSS. We must notice, however, that most of the results in the taxonomy of
MLS were possible thanks to the fact that the satisfiability problem of MLS is
decidable and furthermore is NP-complete: for example all our NP-completeness
proofs are based on the fact that the decision problem of MLS is in the class
NP. The decision problem for several extensions of MLS, such as MLS×, is still
open, hence another task for the future is to solve such problems.

In conclusion, the complete complexity taxonomy might be a significant addition
to the field of Computable Set Theory, nevertheless the field still presents a large
set of further direction to study.
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